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Abstract. Developing parallel applications that can harness and effi-
ciently use future many-core architectures is the key challenge for scal-
able computing systems. We contribute to this challenge by presenting a
parallel implementation of H.264 that scales to a large number of cores.
The algorithm exploits the fact that independent macroblocks (MBs) can
be processed in parallel, but whereas a previous approach exploits only
intra-frame MB-level parallelism, our algorithm exploits intra-frame as
well as inter-frame MB-level parallelism. It is based on the observation
that inter-frame dependencies have a limited spatial range. The algo-
rithm has been implemented on a many-core architecture consisting of
NXP TriMedia TM3270 embedded processors. This required to develop
a subscription mechanism, where MBs are subscribed to the kick-off lists
associated with the reference MBs. Extensive simulation results show
that the implementation scales very well, achieving a speedup of more
than 54 on a 64-core processor, in which case the previous approach
achieves a speedup of only 23. Potential drawbacks of the 3D-Wave strat-
egy are that the memory requirements increase since there can be many
frames in flight, and that the frame latency might increase. Scheduling
policies to address these drawbacks are also presented. The results show
that these policies combat memory and latency issues with a negligible
effect on the performance scalability. Results analyzing the impact of the
memory latency, L1 cache size, and the synchronization and thread man-
agement overhead are also presented. Finally, we present performance
requirements for entropy (CABAC) decoding.

1 This work was performed while the fourth author was with NXP Semiconductors



1 Introduction

The demand for computational power increases continuously in the consumer
market as it forecasts new applications such as Ultra High Definition (UHD)
video [1], 3D TV [2], and real-time High Definition (HD) video encoding. In the
past this demand was mainly satisfied by increasing the clock frequency and
by exploiting more instruction-level parallelism (ILP). Due to the inability to
increase the clock frequency much further because of thermal constraints and
because it is difficult to exploit more ILP, multicore architectures have appeared
on the market.

This new paradigm relies on the existence of sufficient thread-level parallelism
(TLP) to exploit the large number of cores. Techniques to extract TLP from
applications will be crucial to the success of multicores. This work investigates
the exploitation of the TLP available in an H.264 video decoder on an embedded
multicore processor. H.264 was chosen due to its high computational demands,
wide utilization, and development maturity and the lack of “mature” future
applications. Although a 64-core processor is not required to decode a Full High
Definition (FHD) video in real-time, real-time encoding remains a problem and
decoding is part of encoding. Furthermore, emerging applications such as 3DTV
are likely to be based on current video coding methods [2].

In previous work [3] we have proposed the 3D-Wave parallelization strat-
egy for H.264 video decoding. It has been shown that the 3D-Wave strategy
potentially scales to a much larger number of cores than previous strategies.
However, the results presented there are analytical, analyzing how many mac-
roblocks (MBs) could be processed in parallel assuming infinite resources, no
communication delay, infinite bandwidth, and a constant MB decoding time. In
other words, our previous work is a limit study.

In this paper, we make the following contributions:

– We present an implementation of the 3D-Wave strategy on an embedded
multicore consisting of up to 64 TM3270 processors. Implementing the 3D-
Wave turned out to be quite challenging. It required to dynamically identify
inter-frame MB dependencies and handle their thread synchronization, in
addition to intra-frame dependencies and synchronization. This led to the
development of a subscription mechanism where MBs subscribe themselves
to a so-called Kick-off List (KoL) associated with the MBs they depend on.
Only if these MBs have been processed, processing of the dependent MBs
can be resumed.

– A potential drawback of the 3D-Wave strategy is that the latency may be-
come unbounded because many frames will be decoded simultaneously. A
policy is presented that gives priority to the oldest frame so that newer
frames are only decoded when there are idle cores.

– Another potential drawback of the 3D-Wave strategy is that the memory
requirements might increase because of large number of frames in flight. To
overcome this drawback we present a frame scheduling policy to control the
number of frames in flight.



– We analyze the impact of the memory latency and the L1 cache size on the
scalability and performance of the 3D-Wave strategy.

– The experimental platform features hardware support for thread manage-
ment and synchronization, making it relatively light weight to submit/retrieve
a task to/from the task pool. We analyze the importance of this hardware
support by artificially increasing the time it takes to submit/retrieve a task.

– The 3D-Wave focuses on the MB decoding part of the H.264 decoding and
assumes an accelerator for entropy decoding. We analyze the performance
requirements of the entropy decoding accelerator not to harm the 3D-Wave
scalability.

Parallel implementations of H.264 decoding and encoding have been de-
scribed in several papers. Rodriguez et al. [4] implemented an H.264 encoder
using Group of Pictures (GOP)- (and slice-) level parallelism on a cluster of
workstations using MPI. Although real-time operation can be achieved with
such an approach, the latency is very high.

Chen et al. [5] presented a parallel implementation that decodes several B
frames in parallel. However, even though uncommon, the H.264 standard allows
to use B frames as reference frames, in which case they cannot be decoded in
parallel. Moreover, usually there are no more than 2 or 3 B frames between
P frames. This limits the scalability to a few threads. The 3D-Wave strategy
dynamically detects dependencies and automatically exploits the parallelism if
B frames are not used as reference frames.

MB-level parallelism has been exploited in previous work. Van der Tol et
al. [6] presented the exploitation of intra-frame MB-level parallelism and sug-
gested to combine it with frame-level parallelism. If frame-level parallelism can
be exploited is determined statically by the length of the motion vectors, while
in our approach it is determined dynamically.

Chen et al. [5] also presented MB-level parallelism combined with frame-level
parallelism to parallelize H.264 encoding. In their work, however, the exploitation
of frame-level parallelism is limited to two consecutive frames and independent
MBs are identified statically. This requires that the encoder limits the motion
vector length. The scalability of the implementation is analyzed on a quad-core
processor with Hyper-Threading Technology. In our work independent MBs are
identified dynamically and we present results for up to 64 cores.

This paper is organized as follows. Section 2 provides an overview of MB
parallelization technique for H.264 video decoding and the 3D-Wave technique.
Section 3 presents the simulation environment and the experimental methodol-
ogy to evaluate the 3D-Wave implementation. In Section 4 the implementation
of the 3D-Wave on the embedded many-core is detailed. Also a frame scheduling
policy to limit the number of frames in flight and a priority policy to reduce la-
tency are presented. Extensive simulation results, analyzing the scalability and
performance of the baseline 3D-Wave, the frame scheduling and frame priority
policies, as well as the impacts of the memory latency, L1 cache size, paralleliza-
tion overhead, and entropy decoding, are presented in Section 5. Conclusions are
drawn in Section 6.



2 Thread-level parallelism in H.264 video decoding

Currently, H.264 [7] is one of the best video coding standard, in terms of com-
pression and quality [8]. It has a compression improvement of over two times
compared to previous standards such as MPEG-4 ASP, H.262/MPEG-2, etc.
The H.264 standard was designed to serve a broad range of application domains
ranging from low to high bitrates, from low to high resolutions, and a variety of
networks and systems, e.g., internet streams, mobile streams, disc storage, and
broadcast.

The coding efficiency gains of advanced video codecs such as H.264 come
at the price of increased computational requirements. The computing power
demand increases also with the shift towards high definition resolutions. As a
result, current high performance uniprocessor architectures are not capable of
providing the performance required for real-time processing [9,10]. Therefore, it
is necessary to exploit parallelism. The H.264 codec can be parallelized either
by a task-level or data-level decomposition.

In a task-level decomposition the functional partitions of the application such
as vector prediction, motion compensation, and deblocking filter are assigned to
different processors. Scalability is a problem because it is limited to the number
of tasks, which typically is small. In a data-level decomposition the work (data)
is divided into smaller parts and each part is assigned to a different processor.
Each processor runs the same program but on different (multiple) data elements
(SPMD). In H.264 data decomposition can be applied to different levels of the
data structure. Only MB-level parallelism is described in this work; a discussion
of the other levels can be found in [3].

In H.264, the motion vector prediction, intra prediction, and the deblocking
filter kernels use data from neighboring MBs defining the dependencies shown
in Fig. 1. Processing MBs in a diagonal wavefront manner satisfies all the de-
pendencies and allows to exploit parallelism between MBs. We refer to this par-
allelization technique as 2D-Wave, to distinguish it from the 3D-Wave proposed
in [3] and for which implementation results are presented in this work.
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Fig. 1. 2D-Wave approach for exploiting MB parallelism. The arrows indicate
dependencies.



Fig. 1 illustrates the 2D-Wave for an image of 5×5 MBs (80×80 pixels).
At time slot T7 three independent MBs can be processed: MB(4,1), MB(2,2),
and MB(0,3). The number of independent MBs varies over time. At the start
it increases with one MB every two time slots, then stabilizes at its maximum,
and finally decreases at the same rate it increased. For a low resolution like
QCIF there are at most 6 independent MBs during 4 time slots. For Full High
Definition (1920×1088) there are 60 independent MBs during 9 time slots.

MB-level parallelism has several advantages over other H.264 parallelization
schemes. First, this scheme can have good scalability, since the number of inde-
pendent MBs increases with the resolution of the image. Second, it is possible
to achieve good load balancing if dynamic scheduling is used.

MB-level parallelism also has some disadvantages, however. The first is that
entropy decoding can only be parallelized using data-level decomposition at slice-
level, since the lowest level of data that can be parsed from the bitstream are
slices. Only after entropy decoding has been performed the parallel processing
of MBs can start. This disadvantage can be overcome by using special purpose
instructions or hardware accelerators for entropy decoding. The second disad-
vantage is that the number of independent MBs is low at the start and at the end
of decoding a frame. Therefore, it is not possible to sustain a certain processing
rate during frame decoding.

The 2D-Wave technique, however, does not scale scales to future many-core
architectures containing 100 cores or more, unless extremely high resolution
frames are used. We have proposed [3] a parallelization strategy that com-
bines intra-frame MB-level parallelism with inter-frame MB-level parallelism and
which reveals the large amount of TLP required to harness and effectively use
future many-core CMPs. The key points are described below.

In H.264 decoding there is only an inter-frame dependency in the Motion
Compensation module. When the reference area has been decoded, it can be
used by the referencing frame. Thus it is not necessary to wait until a frame
is completely decoded before starting to decode the next frame. The decoding
process of the next frame can start after the reference areas of the reference
frames have been decoded. Fig. 2 illustrates this strategy called the 3D-Wave.

Fig. 2. 3D-Wave strategy: frames can be decoded in parallel because inter-frame
dependencies have a limited spatial range.



In our previous study the FFMPEG H.264 decoder [3] was modified to ana-
lyze the available parallelism for real movies. The experiments did not consider
any practical or implementation issues, but explored the limits to the paral-
lelism available in the application. The results show that the number of parallel
MBs exhibited by the 3D-Wave ranges from 1202 to 1944 MBs for SD resolution
(720×576), from 2807 to 4579 MBs for HD (1280×720), and from 4851 to 9169
MBs for FHD (1920× 1088). To sustain this amount of parallelism, the number
of frames in flight ranges from 93 to 304 depending on the input sequence and
the resolution. So, theoretically, the parallelism available on 3D-Wave technique
is huge. There are many factors in real systems, however, such as the memory
hierarchy and bandwidth, that could limit its scalability. In the next sections
the approach to implement the 3D-Wave and exploit this parallelism on an em-
bedded manycore system is presented.

3 Experimental methodology

In this section the tools and methodology to implement and evaluate the 3D-
Wave technique are detailed. Components of the many-core system simulator
used to evaluate the technique are also presented.

An NXP proprietary simulator based on SystemC is used to run the ap-
plication and collect performance data. Computations on the cores are modeled
cycle-accurate. The memory system is modeled using average transfer times with
channel and bank contention. When channel or bank contention is detected, the
traffic latency is increased. NoC contention is supported. The simulator is capa-
ble of simulating systems with up to 64 TM3270 cores with shared memory and
its cache coherence protocols. The operating system is not simulated.

The TM3270 [11] is a VLIW-based media-processor based on the Trimedia
architecture. It addresses the requirements of multi-standard video processing at
standard resolution and the associated audio processing requirements for the con-
sumer market. The architecture supports VLIW instructions with five guarded
issue slots. The pipeline depth varies from 7 to 12 stages. Address and data
words are 32 bits wide. the unified register file has 128 32-bit registers. 2×16-bit
and 4×8-bit SIMD instruction are supported. The TM3270 processor can run at
up to 350 MHz, but in this work the clock frequency is set to 300 MHz. To pro-
duce code for the TM3270 the state-of-the-art highly optimizing NXP TriMedia
C/C++ compiler version 5.1 is used.

The modeled system features a shared memory using MESI cache coherence.
Each core has its own L1 data cache and can copy data from other L1 caches
through 4 channels. The 64Kbyte L1 data cache has 64-byte lines and is 4-way
set-associative with LRU replacement and write allocate. The instruction cache
is not modeled. The cores share a distributed L2 cache with 8 banks and an
average access time of 40 cycles. The average access time takes into account L2
hits, misses, and interconnect delays. L2 bank contention is modeled so two cores
cannot access the same bank simultaneously.



The multi-core programming model follows the task pool model. A Task
Pool (TP) library implements submissions and requests of tasks to/from the
task pool, synchronization mechanisms, and the task pool itself. In this model
there is a main core and the other cores of the system act as slaves. Each slave
runs a thread by requesting a task from the TP, executing it, and requesting
another task. The task execution overhead is low. The time to request a task is
less than 2% of the MB decoding time.

The experiments focus on the baseline profile of the H.264 standard. This
profile only supports I and P frames and every frame can be used as a refer-
ence frame. This feature prevents the exploitation of frame-level parallelization
techniques such as the one described in [5]. However, this profile highlights the
advantages of the 3D-Wave, since the scalability gains come purely from the
application of the 3D-Wave technique. Encoding was done with the X264 en-
coder [12] using the following options: no B-frames, at most 16 reference frames,
weighted prediction, hexagonal motion estimation algorithm with a maximum
search range of 24, and one slice per frame. The experiments use all four videos
from the HD-VideoBench [13], Blue Sky, Rush Hour, Pedestrian, and Riverbed,
in the three available resolutions, SD, HD and FHD.

The 3D-Wave technique focuses on the TLP available in the MB processing
kernels of the decoder. The entropy decoder is known to be difficult to paral-
lelize. To avoid the influence of the entropy decoder, its output has been buffered
and its decoding time is not taken into account. Although not the main target,
the 3D-Wave also eases the entropy decoding challenge. Since entropy decod-
ing dependencies do not cross slice/frame borders, multiple entropy decoders
can be used. We analyze the performance requirements of an entropy decoder
accelerator in Section 5.7.

4 Implementation

In this work we use the NXP H.264 decoder. The 2D-Wave parallelization strat-
egy has already been implemented in this decoder [14], making it a perfect start-
ing point for the implementation of the 3D-Wave. The NXP H.264 decoder is
highly optimized, including both machine-dependent optimizations (e.g. SIMD
operations) and machine-independent optimizations (e.g. code restructuring).

The 3D-Wave implementation serves as a proof of concept thus the imple-
mentation of all features of H.264 is not necessary. Intra prediction inputs are
deblock filtered samples instead of unfiltered samples as specified in the stan-
dard. This does not add visual artifacts to the decoded frames or change the
MB dependencies.

This section details the 2D-Wave implementation used as the starting point,
the 3D-Wave implementation, and the frame scheduling and priority policies.

4.1 2D-Wave implementation

The MB processing tasks are divided in four kernels: vector prediction (VP),
picture prediction (PP), deblocking info (DI), and deblocking filter (DF). VP



calculates the motion vectors (MVs) based on the predicted motion vectors of
the neighbor MBs and the differential motion vector present in the bitstream. PP
performs the reconstruction of the MB based on neighboring pixel information
(Intra Prediction) or on reference frame areas (Motion Compensation). Inverse
quantization and the inverse DCT are also part of this kernel. DI calculates the
strength of the DF based on MB data, such as the MBs type and MVs. DF
smoothes block edges to reduce blocking artifacts.

The 2D-Wave is implemented per kernel. By this we mean that first VP is
performed for all MBs in a frame, then PP for all MBs, etc. Each kernel is
parallelized as follows. Fig. 1 shows that within a frame each MB depends on at
most four MBs. These dependencies are covered by the dependencies from the
left MB to the current MB and from the upper-right MB to the current MB, i.e.,
if these dependencies are satisfied then all dependencies are satisfied. Therefore,
each MB is associated with a reference count between 0 and 2 representing the
number of MBs it depends on. For example, the upper-left MB has a reference
count of 0, the other MBs at the top edge have a reference count of 1, and so do
the other MBs at the left edge. When a MB has been processed, the reference
counts of the MBs that depend on it are decreased. When one of these counts
reaches zero, a thread that will process the associated MB is submitted to the
TP. Fig. 3 depicts pseudo C-code for deblocking a frame and for deblocking a
MB.

When a core loads a MB in its cache, it also fetches neighboring MBs. There-
fore, locality can be improved if the same core also processes the right MB. To
increase locality and reduce task submission and acquisition overhead, the 2D-
Wave implementation features an optimization called tail submit. After the MB
is processed, the reference counts of the MB candidates are checked. If both
MB candidates are ready to execute, the core processes the right MB and sub-
mits the other one to the task pool. If only one MB is ready, the core starts
its processing without submitting or acquiring tasks to/from the TP. In case
there is no neighboring MB ready to be processed, the task finishes and the core
request another one from the TP. Fig. 4 depicts pseudo-code for MB decoding
after the tail submit optimization has been performed. atomic_dec atomically
decrements the counter and returns its value. If the counter reaches zero, the
MB dependencies are met.

4.2 3D-Wave implementation

In this section the 3D-Wave implementation is described. First we note that
the original structure of the decoder is not suitable for the 3D-Wave strategy,
because inter-frame dependencies are satisfied only after the DF is applied. To
implement the 3D-Wave, it is necessary to develop a version in which the kernels
are applied on a MB basis rather than on a slice/frame basis. In other words,
we have a function decode_mb that applies each kernel to a MB.

Since the 3D-Wave implementation decodes multiple frames concurrently,
modifications to the Reference Frame Buffer (RFB) are required. The RFB stores
the decoded frames that are going to be used as reference. As it can serve only



int deblock_ready[w][h]; // matrix of reference counts

void deblock_frame() {

for (x=0; x<w; x++)

for (y=0; y<h; y++)

deblock_ready[x][y] = initial reference count; // 0, 1, or 2

tp_submit(deblock_mb, 0, 0); // start 1st task MB<0,0>

tp_wait();

}

void deblock_mb(int x, int y){

// ... the actual work

if (x!=0 && y!=h-1){

new_value = tp_atomic_decrement(&deblock_ready[x-1][y+1], 1);

if (new_value==0)

tp_submit(deblock_mb, x-1, y+1);

}

if (x!=w-1){

new_value = tp_atomic_decrement(&deblock_ready[x+1][y], 1);

if (new_value==0)

tp_submit(deblock_mb, x+1, y);

}

}

Fig. 3. Pseudo-code for deblocking a frame and a MB.



void deblock_mb(int x, int y){

again:

// ... the actual work

ready1 = x>=1 && y!=h-1 && atomic_dec(&deblock_ready[x-1][y+1])==0;

ready2 = x!=w-1 && atomic_dec(&deblock_ready[x+1][y])==0;

if (ready1 && ready2){

tp_submit(deblock_mb, x-1, y+1); // submit left-down block

x++;

goto again; // goto right block

}

else if (ready1){

x--; y++;

goto again; // goto left-down block

}

else if (ready2){

x++;

goto again; // goto right block

}

}

Fig. 4. Tail submit.

one frame in flight, the 3D-Wave would require multiple RFBs. In this proof of
concept implementation, the RFB was modified such that a single instance can
serve all frames in flight. In the new RFB all the decoded frames are stored. The
mapping of the reference frame index to RFB index was changed accordingly.

Fig. 5 depicts pseudo-code for the decode_mb function. It relies on the ability
to test if the reference MBs (RMBs) of the current MB have already been decoded
or not. The RMB is defined as the MB in the bottom right corner of the reference
area, including the extra samples for fractional motion compensation. To be able
to test this, first the RMBs have to be calculated. If an RMB has not been
processed yet, a method is needed to resume the execution of this MB after the
RMB is ready.

The RMBs can only be calculated after motion vector prediction, which also
defines the reference frames. Each MB can be partitioned in up to four 8×8 pixel
areas and each one of them can be partitioned in up to four 4×4 pixel blocks
The 4×4 blocks in an 8×8 partition share the reference frame. With the MVs
and reference frames information, it is possible to calculate the RMB of each MB
partition. This is done by adding the MV, the size of the partition, the position
of the current MB, and the additional area for fractional motion compensation
and by dividing the result by 16, the size of the MB. The RMB results of each
partition is added to a list associated with the MB data structure, called the
RMB-list. To reduce the number of RMBs to be tested, the reference frame of



void decode_mb(int x, int y, int skip, int RMB_start){

IF (!skip) {

Vector_Prediction(x,y);

RMB_List = RMB_Calculation(x,y);

}

FOR RMB = RMB_List.table[RMB_start] TO

RMB_List.table[RMB_last]{

IF !RMB.Ready {

RMB.Subscribe(x, y);

return;

}

}

Picture_Prediction(x,y);

Deblocking_Info(x,y);

Deblocking_Filter(x,y);

Ready[x][y] = true;

FOR MB = KoL.start TO KoL.last

tp_submit(decode_mb, MB.x, MB.y, true, MB.RMB_start);

//TAIL_SUBMIT

}

Fig. 5. Pseudo-code for 3D-Wave.

Fig. 6. Illustration of the 3D-Wave and the subscription mechanism.



each RMB is checked. If two RMBs are in the same reference frame, only the
one with the larger 2D-Wave decoding order (see Fig. 1) is added to the list.

The first time decode_mb is called for a specific MB it is called with the
parameter skip set to false and RMB_start set to 0. If the decoding of this MB
is resumed, it is called with the parameter skip set to true. Also RMB_start
carries the position of the MB in the RMB-list to be tested next.

Once the RMB-list of the current MB is computed, it is verified if each RMB
in the list has already been decoded or not. Each frame is associated with a MB
ready matrix, similar to the deblock_ready matrix in Fig. 3. The corresponding
MB position in the ready matrix associated with the reference frame is atomically
checked. If all RMBs are decoded, the decoding of this MB can continue.

To handle the cases where a RMB is not ready, a RMB subscription technique
has been developed. The technique was motivated by the specifics of the TP
library, such as low thread creation overhead and no sleep/wake up capabilities.
Each MB data structure has a second list called the Kick-off List (KoL) that
contains the parameters of the MBs subscribed to this RMB. When a RMB test
fails, the current MB subscribes itself to the KoL of the RMB and finishes its
execution. Each MB, after finishing its processing, indicates that it is ready in
the ready matrix and verifies its KoL. A new task is submitted to the TP for
each MB in the KoL. The subscription process is repeated until all RMBs are
ready. Finally, the intra-frame MBs that depend on this MB are submitted to
the TP using tail submit, identical to Fig. 4.

Fig. 6 illustrates this process. Light gray boxes represent decoded MBs and
dark gray boxes MBs that are currently being processed. Hatched boxes rep-
resent MBs available to be decoded while white boxes represent MBs whose
dependencies have not yet been resolved. In this example MB(0,2) of frame 1
depends on MB(3,3) of frame 0 and is subscribed to the KoL of the latter. When
MB(3,3) is decoded it submits MB(0,2) to the task pool.

4.3 Frame scheduling policy

To achieve the highest speedup, all frames of the sequence are scheduled to run
as soon as their dependencies are met. However, this can lead to a large number
of frames in flight and large memory requirements, since every frame must be
kept in memory. Mostly it is not necessary to decode a frame as soon as possible
to keep all cores busy. A frame scheduling technique was developed to keep the
working set to its minimum.

Frame scheduling uses the RMB subscription mechanism to define the mo-
ment when the processing of the next frame should be started. The first MB
of the next frame can be subscribed to start after a specific MB of the current
frame. With this simple mechanism it is possible to control the number of frames
in flight. Adjusting the number of frames in flight is done by selecting an earlier
or later MB with which the first MB of the next frame will be subscribed.



4.4 Frame priority

Latency is an important characteristic of video decoding systems. The frame
scheduling policy described in the previous section reduces the frame latency,
since the next frame is scheduled only when a part of the current frame has been
decoded. However, when a new frame is scheduled to be decoded, the available
cores are distributed equally among the frames in flight. A priority mechanism
was added to the TP library in order to reduce the frame latency even further.

The TP library was modified to support two levels of priority. An extra task
buffer was implemented to store high priority tasks. When the TP receives a
task request, it first checks if there is a task in the high priority buffer. If so
this task is selected, otherwise a task in the low priority buffer is selected. With
this simple mechanism it is possible to give priority to the tasks belonging to
the frame “next in line”. Before submitting a new task the process checks if its
frame is the frame “next in line”. If so the task is submitted with high priority.
Otherwise it is submitted with low priority. This mechanism does not lead to
starvation because if there is not sufficient parallelism in the frame “next in line”
the low priority tasks are selected.

5 Experimental results

In this section the experimental results are presented. The results include the
scalability results of the 3D-Wave (Section 5.1), results of the frame scheduling
and priority policies (Section 5.2), impact on the memory and bandwidth re-
quirements (Section 5.3), influence of memory latency (Section 5.4), influence of
L1 data cache size on scalability and performance (Section 5.5), the impact of
parallelism overhead on scalability (Section 5.6), and the requirements for the
CABAC accelerator to leverage a 64-core system (Section 5.7).

To evaluate the 3D-Wave, one second (25 frames) of each sequence was de-
coded. Longer sequences could not be used due to simulator constraints. The four
sequences of the HD-VideoBench using three resolutions were evaluated. Since
the result for Rush Hour sequence are close to the average and other sequences
vary less than 5% only its results will be presented.

5.1 Scalability

The scalability results are for 1 to 64 cores. More cores could not be simu-
lated due to limitations of the simulator. Figs. 7(a), 7(b), and 7(c) depict
the 3D-Wave scalability on p processors (T3D(1)/T3D(p)), 2D-Wave scalability
(T2D(1)/T2D(p)), and 3D-Wave versus 2D-Wave on a single core (T2D(1)/T3D(p)),
labeled as 3D vs 2D. On a single core, 2D-Wave can decode 39 SD, 18 HD, and
8 FHD frames per second.

On a single core the 3D-Wave implementation takes 8% more time than
the 2D-Wave implementation due to administrative overhead for all resolutions.
The 3D-Wave scales almost perfectly up to 8 cores, while the 2D-Wave incurs an
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Fig. 7. 2D-Wave and 3D-Wave speedups for the 25-frame sequence Rush Hour
for different resolutions.



11% efficiency drop even for 2 cores due to the following reason. The tail submit
optimization assigns MBs to cores per line. At the end of a frame, when a core
finishes its line and there is no other line to be decoded, in the 2D-Wave the core
remains idle until all cores have finished their line. If the last line happens to be
slow the other cores wait for a long time and the core utilization is low. In the
3D-Wave, cores that finish their line, while there is no new line to be decoded,
will be assigned a line of the next frame. Therefore, the core utilization as well
as the scalability efficiency of the 3D-Wave is higher. Another advantage of the
3D-Wave over the 2D-Wave is that it increases the efficiency of the Tail Submit
optimization. In the 2D-Wave the low available parallelism makes the cores stall
more due to unsolved intra-frame dependencies. In the 3D-Wave, the available
parallelism is much larger which increases the distance between the MBs being
decoded, minimizing intra-frame dependency stalls.

For SD sequences, the 2D-Wave technique saturates at 16 cores, with a
speedup of only 8. This happens because of the limited amount of MB parallelism
inside the frame and the dominant ramp up and ramp down of the availability
of parallel MBs. The 3D-Wave technique for the same resolution continuously
scales up to 64 cores, with a parallelization efficiency of almost 80%. For the FHD
sequence, the saturation of the 2D-Wave occurs at 32 cores while the 3D-Wave
continuously scales up to 64 cores with a parallelization efficiency of 85%.

The scalability results of the 3D-Wave increase slightly for higher resolutions.
On the other hand, the 2D-Wave implementation achieves higher speedups for
higher resolutions since the MB-level parallelism inside a frame increases. How-
ever, it would take an extremely large resolution for the 2D-Wave to leverage 64
cores, and the 3D-Wave implementation would still be more efficient.

The drop in scalability efficiency of the 3D-Wave for larger number of cores
has two reasons. First, cache trashing occurs for large numbers of cores, leading
to many memory stalls, as will be show in the next section. Second, at the start
and at the end of a sequence, not all cores can be used because little parallelism is
available. The more cores are used, the more cycles are relatively wasted during
these two periods. It would be negligible in a real sequence with many frames.
To show this Fig. 7(a) also shows the scalability results for 100 frames of the
Rush Hour SD sequence. Simulation with HD or FHD sequences with more than
25 frames are not possible because the simulator cannot allocate the required
data structures.

For 64 cores the scalability grows from 49.32 to 55.67 when processing 100
instead of 25 frames. The effects of ramp up and ramp down times are minimized
when more frames are used. In this case, the scalability results are closer to the
results that would be achieved in a real life situation.

5.2 Frame scheduling and priority

In this section, experimental results for the frame scheduling and priority poli-
cies are presented. The effectiveness of these policies is presented first, then the
impact of these policies on the 3D-Wave efficiency.



Fig. 8(a) presents the results of the frame scheduling technique applied to
the FHD Rush Hour sequence using a 16-core system. This figure presents the
number of MBs processed per ms. It also shows to which frame these MBs belong.
In this particular case, the subscribe MB chosen is the last MB on the line that
is at 1/3rd of the frame. For this configuration there are at most 3 frames in
flight. Currently, the selection of the subscribe MB must be done statically by
the programmer. A methodology to dynamically fire new frames based on core
utilization needs to be developed.

The priority mechanism presented in Section 4.4 strongly reduces the frame
latency. In the original 3D-Wave implementation, the latency of the first frame
is 58.5 ms, using the FHD Rush Hour sequence with 16 cores. Using the frame
scheduling policy, the latency drops to 15.1 ms. This latency is further reduced
to 9.2 ms when the priority policy is applied together with frame scheduling.
This is 0.1 ms longer than the latency of the 2D-Wave, which decodes frames
one-by-one. Fig. 8(b) depicts the number of MBs processed per ms when this
feature is used.

(a) Number of MBs processed per ms
using frame scheduling and frames to
which these MBs belong.

(b) Number of MBs processed per ms
using frame scheduling and the priority
policy.

Fig. 8. Results for frame scheduling and priority policy for FHD Rush Hour on
a 16-core processor. Different gray scales represent different frames.

Two scenarios were used to analyze the impact of frame scheduling and prior-
ity on the scalability. The chosen scenarios use 3 and 6 frames in flight, with and
without frame priority. Figs. 9(a) and 9(b) depict the impact of the presented
techniques on the scalability. 2D-Wave (2DW) and 3D-Wave (3DW) scalability
results are presented as guidelines. In Fig. 9, FS refers to the frame scheduling.
The addition of frame priority has no significant impact on the scalability and
therefore not shown, as it would decrease legibility. The reported scalability is
based on the 2D-Wave execution time on a single core.

Fig. 9(a) shows that 6 frames in flight are not enough to leverage a 64-core
system when decoding an SD sequence. The maximum speedup of 23 is the result
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Fig. 9. Frame scheduling and priority scalability results of the Rush Hour 25-
frame sequence

of the relatively low amount of MB-level parallelism of SD frames. As presented
in Fig. 7(a), the 2D-Wave has a maximum speedup of 8. For HD (figure not
shown), the performance when 6 frames in flight are allowed is already close to
the performance of the original 3D-Wave. The maximum speedups are 24 and 45,
for three and six frames in flight, respectively. The latter is 92% of the maximum
3D-Wave speedup. For FHD, depicted in Fig. 9(b), allowing three frames in flight
provides a speedup of 46. When 6 frames are used, the difference between the
frame scheduler enabled and the original 3D-Wave is only 1%.

5.3 Bandwidth requirements

In this section, the intra-chip bandwidth requirements for the 3D-Wave and its
frame scheduling and priority policies are reported. The amount of data traffic
between L2 and L1 data caches is measured. Accesses to main memory are not
reported by the simulator.

The effects of frame scheduling and priority policies on data traffic between
L2 and L1 data caches are depicted in Fig. 10(a) and 10(b). The figures depict
the required data traffic for SD and FHD resolutions, respectively. In the figures,
FS refers to the frame scheduling while P refers to the use of frame priority.

Data locality decreases as the number of cores increases, because the task
scheduler does not take into account data locality when assigning a task to a core
(except with the tail submit strategy). This decrease in the locality contributes
to traffic increase. Due to these effects, the 3D-Wave increases the data traffic
by approximately 104%, 82%, and 68% when going from 1 to 64 cores, for SD,
HD, and FHD, respectively.

Surprisingly, the original 3D-Wave requires the least communication between
L2 and L1 data caches for 8 cores or more. It is approximately 20% to 30% (from
SD to FHD) more data traffic efficient than the original 2D-Wave, for 16 cores or
more. This is caused by the high data locality of the original 3D-Wave technique.
The 3D-Wave implementation fires new frames as soon as their dependencies
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Fig. 10. Frame scheduling and priority data traffic results for Rush Hour se-
quence.

are met. This increases the probability of the reference areas of a MB to be
present in the system. The probability increases because nearby area of several
frames are decoded together, so the reference area is still present in data caches
of other cores. This reduces the data traffic because the motion compensation
(inter-frame dependency) requires a significant portion of data to be copied from
previous frames.

The use of FS and Priority has a negative impact on the L2 to L1 data cache
traffic. The use of FS and Priority decreases the data locality, as they increase
the time between processing MBs from co-located areas of consecutive frames.
However, when the number of frames are enough to sustain a good scalability,
the increased data traffic when using FS and Priority is still lower than the data
traffic of 2D-Wave implementation. For SD, the data traffic for FS and Priority
is higher than the 2D-Wave when the available parallelism is not enough to
leverage for 32 and 64 cores. The same happens for the HD using only 3 frames
in flight. For FHD, 2D-Wave is the technique that requires most data traffic,
together with FS for 3 frames in flight. When the number of frames in flight are
enough to leverage to 32 or 64 cores, FS is 4 to 12% more efficient than 2D-Wave.
FS and Priority can be 3 to 6% data traffic less efficient than 2D-Wave in the
cases when number of frames in flight are insufficient to leverage to the number
of cores.

With the data traffic results it is possible to calculate the L2 to L1 band-
width requirements. The bandwidth is calculated by dividing the total traffic
by the time to decode the sequence in seconds. The total amount of intra chip
bandwidth required for 64 cores is 21 GB/s for all resolutions of Rush Hour
sequence. The bandwidth is independent of the resolution because the number
of MBs decoded per time unit per core is the same.



5.4 Impact of the memory latency

The type of interconnection used, and the number of cores in the system both
influence the memory latency. For increasing number of cores, also the latency of
a L2 to L1 data transfer increases. In this section we analyze the impact of this
latency on the performance. One second (25 frames) of the Rush Hour sequence,
in all three available resolutions, was decoded while with several average memory
latencies.

In the previous experiments the average L2 data cache latency was set to
40 cycles. In this experiment the Average Memory Latency (AML) ranges from
40 to 100 cycles in steps of 10 cycles. The latency of the interconnect between
L1 and L2 is modelled by adding additional delay cycles to the AML of the L2
cache.

Fig. 11(a) depicts the scalability results for FHD resolution. That is, for each
AML, the performance using X cores is compared to the performance using one
core. The results show that the memory latency does not significantly affect the
scalability. For 64 cores, increasing the AML from 40 to 100 cycles decreases
the scalability by 10%. However, the scalability does not equal the absolute
performance. In Fig. 11(b) the performance is depicted using the execution time
one a single core with an AML of 40 cycles as baseline. The performances still
scale the same, but the performance for one core is different for every line (in
contrast to Fig. 11(a)). The graph shows that in total the system’s performance
is decreased significantly. That means that large systems might be infeasible if
the memory latency increases too much.
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Fig. 11. Scalability and performance for different Average Memory Latency
(AML) values, using the 25 frame Rush Hour FHD sequence. In the scalabil-
ity graph the performance is relative to the execution on a single core, but with
the same AML. In the performance graph all performances are relative to the
execution on a single core with an AML of 40 cycles.



5.5 Impact of the L1 cache size

We analyzed the influence of the L1 data cache size on the scalability and the
amount of L2-L1 traffic. The baseline system has L1 data caches of 64KB, 4-way
set-associative, with LRU replacement, and write allocate. By modifying the
number of sets in the cache systems with different cache sizes, i.e., 12, 32, 64,
128, and 256KB, were simulated. The results for FHD resolution are depicted
in Fig. 12(a). The depicted performance are relative to the decoding time on a
single core with the baseline 64KB L1 cache.

The systems with 16KB and 32KB caches have a large performance drop of
approximately 45% and 30%, respectively, for any number of cores. The reason
for this is depicted in Fig. 12(b), which presents the L1-L2 cache data traffic
for FHD resolution. Compared to a system with 64KB caches, the system with
16KB caches has between 3.1 and 4.7 times more traffic while the system with
32KB caches has between 1.8 and 2.5 times more traffic. Those huge increases in
data traffic are due to cache misses. For FHD resolution, one MB line occupies
45KB. Preferably, the caches should be able to store more then one MB line, as
the data of each line is used in the decoding of the next line and serves as input
for the motion compensation in the next frames. For FHD, the 16KB and 32 KB
caches suffer greatly from data trashing. As a result there are a lot of write backs
to the the L2 cache as well as reads. For smaller resolutions the effects are less.
For example, for SD resolution using 16KB L1 caches the data traffic increases
between 1.19 and 1.66 compared to the baseline with 64KB caches. With 32KB
caches, the traffic increases only by approximately 7%.
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Fig. 12. Impact of the L1 cache size on performance and L1-L2 traffic for a 25
frame Rush Hour FHD sequence.

Using caches larger than 64KB provides small performance gains (up to 4%).
The reason for this is again the size of a MB line. Once the dataset fits in the
cache, the application behaves like a memory stream application and makes no
use of the additional memory space. This is also reflected in the data traffic
graph. For FHD, the system with 256KB caches has 13 to 27% less traffic than



the 64KB system. For the lower resolutions, the traffic is reduced by at most
10% and the performance gain is at most 4%.

5.6 Impact of the parallelization overhead

Alvarez et al. [15] implemented the 2D-Wave approach on an architecture with
64 dual core IA-64 processors. Their results show that the scalability is severely
limited by the thread synchronization and management overhead, i.e., the time
it takes to submit/retrieve a task to/from the task pool. On their platform it
takes up to 9 times as long to submit/retrieve a task as it takes to decode a MB.
To analyze the impact of the TLP overhead on the scalability of the 3D-Wave,
we replicate this TLP overhead by increasing the Task Pool Library by adding
dummy calculation.

The inserted extra overheads are 10%, 20%, 30%, 40%, 50%, and 100% of
the average MB decoding time, which is 4900 cycles. Because of the Tail Submit
enhancement not every MB requests or submits a task to the Thread Pool.
This causes a total performance overhead of only 3% for a single core when
comparing the 100% TPL overhead against the baseline 3D-Wave. The effects of
this increased overhead is depicted on Figs. 13(a), and 13(b), for SD and FHD
resolutions, respectively.
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Fig. 13. TPL overhead effects on scalability for Rush Hour frames

The results for SD resolution show the impact of the increase overhead on
the scalability. For 32 cores the scalability is considerably reduced when the
overhead is 40% or more. For 64 cores the effects of the extra overhead reduces
the scalability. The SD resolution is very affected with the increased overhead
because the intra frame resolution is comparatively low and the lines are short,
which increases task submition per frame. For the HD resolution (figure not
shown) the increase in overhead limits the scalability to 32 cores while for FHD
it slows down the scalability, but does not limit it. As the resolution increases the
requests to TPL per MB ratio decreases and so the impact of the extra overhead.



These results show the drastic effects of the overhead on the scalability, even with
enhancements that reduces the requests to the parallelization support.

5.7 CABAC accelerator requirements

Broadly speaking, H.264 decoding consists of two parts: entropy (CABAC) de-
coding and MB decoding. CABAC decoding of a single slice/frame is largely
sequential while in this paper we have shown that MB decoding is highly par-
allel. We therefore assumed that CABAC decoding is performed by a specific
accelerator. In this section we evaluate the performance required of such an
accelerator to allow the 3D-Wave to scale to a large number of cores.

Fig. 14 depicts the speedup as a function of the number of (MB decoding)
cores for different speeds of the CABAC accelerator. The baseline accelerator,
corresponding to the accelerator labeled “no speedup”, is assumed to have the
same performance as the TM3270 TriMedia processor. These results were ob-
tained using a trace-driven, abstract-level simulator that schedules the threads
given the CABAC and MB dependencies and their processing times. The traces
have been obtained using the simulator described in Section 3 and used in the
previous sections.
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The results show that if CABAC decoding is not accelerated, then the speedup
is limited to 7.5, no matter how many cores are employed. Quadrupling the speed
of the CABAC accelerator improves the overall performance by a similar factor,
achieving a speedup of almost 30 on 64 cores. When CABAC decoding is accel-
erated by a factor of 8, the speedup of 53.8 on 64 cores is almost the same as the
results presented previously which did not consider CABAC. There are several
proposals [16] that achieve such a speedup for CABAC decoding. This shows
that the CABAC processing does not pose a limitation on the scalability of the
3D-Wave technique. We remark that the 3D-Wave also allows employing multi-
ple CABAC accelerators, since different slices/frames can be CABAC decoded
in parallel, as entropy-decoding dependencies do not cross slice/frame borders.



6 Conclusions

Future CMPs will contain dozens if not hundreds of cores. For such systems,
developing parallel applications that can harness them is the key challenge. In
this paper we have contributed to this challenge by presenting a highly scalable
parallel implementation of H.264 decoding. While a many-core is not necessary
to achieve real-time FHD video decoding, it is likely that future video coding
standards will be computationally more intensive and will be similarly block-
oriented motion-compensation-based. Furthermore, decoding is part of encoding
and real-time encoding is still a challenge. In addition, emerging applications
such as 3D TV are likely to be based on current video coding standards.

While the idea behind the 3D-Wave was presented in our previous work, in
this paper we have contributed by providing an actual implementation and by
providing exhaustive simulation results. Implementing the 3D-Wave required,
for example, developing a subscription mechanism where MBs are subscribed to
a so-called Kick-off List associated with the MBs in the reference frame(s) they
depend on. Several optimizations have been performed to reduce the overhead
of this mechanism. For example, vector prediction is skipped if it has already
been performed and if two reference MBs are in the same reference frame, only
the one that will be decoded last is added to the list.

The simulation results show that the 3D-Wave implementation scales almost
perfectly up to 64 cores. More cores could not be simulated due to limitations of
the simulator. Furthermore, one of the main reasons why the speedup is slightly
less than linear is that at the beginning and at the end of decoding a sequence
of 25 frames, not all the cores can be used because little TLP is available. In a
real sequence these periods are negligible. The presented frame scheduling and
priority policies reduce the number of frames in flight and the frame latency. By
applying these policies, the frame latency of the 3D-Wave is only 0.1 ms (about
1%) longer than that of the 2D-Wave.

We also measured the amount of data traffic shared L2 and the private L1
data caches. Obviously, increasing the number of cores increases the L2-L1 data
traffic, since the cores have to communicate via the L2 cache. 64 cores generate
approximately the same amount of L2-L1 traffic as 32 cores, however, and both
produce roughly twice as much traffic as a single core. To our initial surprise,
the original 3D-Wave generates the least amount of L2-L1 data traffic. This
is because the original 3D-Wave exploits the data reuse between a MB and
its reference MBs, more so than the 2D-Wave and the 3D-Wave with frame
scheduling and priority.

Next we have analyzed the impact of the memory latency and of the L1 cache
size. While increasing the average memory latency (AML) hardly affects the
scalability (i.e., the speedup of the 3D-Wave running on p cores over the 3D-Wave
running on a single core), it of course reduces the performance. Doubling the
AML from 40 to 80 cycles reduces the performance on 64 cores by approximately
25%. The results for different L1 data cache sizes show that a 64KB data cache
is necessary and sufficient to keep the active working set in cache. Smaller L1
data caches significantly reduce the performance, while larger L1 data caches



provide little improvement. The reason is that a single line of MBs is 45KB for
FHD and, therefore, caches larger than 45KB can exploit the data reuse between
a MB line and the next MB line.

In addition, we have analyzed the impact of the parallelization overhead by
artificially increasing the time it takes to submit/retrieve a task to/from the
task pool. The 3D-Wave exploits medium-grain TLP (decoding a single MB
takes roughly 5000 cycles on the TM3270), so task submission/retrieval should
not take too much time. Because of the tail submit optimization, however, not
for every MB a task is submitted to the task pool. The results show that even
when the parallelization overhead is 50% of the MB decoding time (about 2500
cycles), the speedup on 64 cores is still higher than 41 for FHD. For SD, because
it exhibits less TLP and therefore submits more tasks per MB, the effects are
more dramatic.

Finally, we have analyzed the performance required of a CABAC accelerator
so that CABAC decoding does not become the bottleneck that limits the scala-
bility of the 3D-Wave. The results show that if CABAC decoding is performed
by a core with the same speed as the other cores, then the speedup is limited to
7.5, no matter how many cores are employed. If CABAC decoding is accelerated
by a factor of 8, however, the speedup for 64 cores is almost the same as when
CABAC decoding is not considered but performed beforehand.

Future work includes the development of an automatic frame scheduling tech-
nique that only starts to decode a new frame if some cores are idle because of
insufficient TLP, the implementation of the 3D-Wave on other platforms such as
the Cell and GPGPUs, and the implementation of the 3D-Wave in the encoder.
A 3D-Wave implementation of the encoder would provide high definition, low
latency encoding on multicores.
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