Agent Toolkits for Ad Hoc Grids

Tariq Abdullah, Koen Bertels

Computer Engineering Laboratory, EEMCS, Delft University of Technology,
Mekelweg 4, 2624 CD, Delft, The Netherlands
{m.t.abdullah, k.l.m.bertels}@tudelft.nl

Abstract. Autonomic computing systems can manage themselves by
self-configuration, self-healing, self-optimization, and self-protection. Soft-
ware agents are the promising candidates for making the autonomic sys-
tems a reality due to their characteristics. Different research projects use
software agents for developing autonomic computing applications. Agent
development toolkits address different aspects of the software agents. In
this paper, firstly, we present a categorization of the agent development
toolkits from different aspects of autonomic computing paradigm. Sec-
ondly, recommendations for selecting an appropriate toolkit while devel-
oping an autonomic ad hoc grid will be given. Finally, results of micro
economic based resource discovery in a local ad hoc grid are presented.

1 Introduction

There has been an explosive growth in computation, communication, data stor-
age and integration technologies. At present, there are millions of commercial
and/or research organizations, and trillions of computing devices. All these or-
ganizations establish some form of LAN/WAN for their computational require-
ments. Skilled staff are required to maintain these computational infrastructures
and this requirement increases with an increase in the complexity of these sys-
tems.

Ad hoc grids are dynamic, heterogeneous and have complex infrastructure.

The complexity for running and managing the ad hoc grids is more higher.
Agents with autonomy, mobility, learning, intelligence, reactivity, social-ability,
and pro-activeness are promising candidates for making the autonomic systems a
reality. Different projects [1,2,3] used agents for developing autonomic computing
based applications. Agent development toolkits are needed to develop software
agents and agent based applications. Some studies attempted to compare agent
development toolkits, as discussed in Section 3, with focus on different aspects
of the agent development toolkits.
In this paper, firstly, we discuss how software agents can be used for developing
autonomic computing applications. Secondly, we categorize the agent develop-
ment toolkits from different aspects of autonomic computing paradigm. Thirdly,
recommendations for selecting an agent development toolkit while developing
an autonomic computing application are given. Finally we present results from
our ad hoc grid middleware, which is developed by using the selected agent
development toolkit.

The rest of the paper is organized as follows. Section 2 gives an overview of au-
tonomic computing and describes how different properties of the software agents
can be used for different aspects of autonomic computing. Section 3 describes
agent development toolkits and also describes the agent properties supported
by each toolkit. This section also gives some recommendations for developing
autonomic ad hoc grids by using the surveyed agent development toolkits. The
experimental setup and results are presented in Sections 4 & 5 respectively.
While, Section 6 concludes the paper and describes future research directions.

2 Autonomic Computing & Software Agents

Autonomic Computing (AC) was coined by Paul Horn in 2001, from IBM, when
he suggested to, “build computer systems that regulate themselves much in the
same way as our autonomic nervous system” [4]. Since then the research com-
munity has attempted to define AC, its properties, evaluation criteria and its
integration with other branches of knowledge. There is no unique definition of
AC. It can be defined with the help of its basic properties listed below:

— Self Configuration: This is the ability of a system to automatically and
effectively configure and reconfigure itself under varying and even unpre-
dictable conditions.

— Self Healing: This is the ability of the system to recover from routine
and extra ordinary events. The system must be capable of finding potential
problems by itself and finding alternate ways of using available resources to
reconfigure and thus keep itself functioning smoothly.

— Self Optimization: This is the ability of an AC system to search for ways
of optimizing its operations by monitoring its constituent parts and by fine
tuning them to achieve system goals.

— Self Protection: This is the ability of a system to identify attacks.

Software agents possess certain properties that can be related to AC system
properties. First, we describe the agent properties, and then the properties will
be associated with different aspects of AC systems.

Every agent has a unique identity within a well-defined boundary and interfaces.
Every agent has particular design objectives that are represented implicitly or
explicitly. An agent is autonomous when it has control over its internal state and
its behavior. Every agent needs to be reactive by timely responding to changes
that occur in its environment in order to satisfy its design objectives. An agent
also needs to adopt new goals and take initiative in order to satisfy its design
objectives by being proactive. An agent can be mobile. An agent exhibits weak
mobility when it can only migrate its data from one environment to some other
environment and exhibit strong mobility when it can migrate processes as well
as data. An agent can exhibit social-ability by communicating with other agents.
An agent can learn knowledge from its environment as well as from its past ex-
periences. When an agent applies its knowledge according to its circumstances
in order to fulfill its design objectives, it is called an intelligent agent. An agent

AC Characteristics Agent Characteristics
Self Configuration autonomous, mobile, learning
Self Optimization autonomous, intelligent, learning, reactive
Self Healing intelligent, reactive, mobile, autonomous
Self Protection proactive, reactive, intelligent, secure, mobile

Table 1: Agent Characteristics for Autonomic Computing

needs to be interoperable so that it can communicate and exist in different op-
erating environments.

Agents with autonomy, mobility, learning, reactivity, social-ability, intelli-

gence and pro-activeness are promising candidates for making the autonomic
systems a reality. A number of research projects attempted using software agents
for developing autonomic computing based applications.
Components of AC can be expressed in terms of agent properties. Autonomous,
learning and mobile agents are needed for self-configuration. Intelligent, reactive,
learning and autonomous agents are needed for self-optimization. Intelligent, au-
tonomous, reactive, and mobile agents are needed for self-healing, whereas au-
tonomous, proactive, reactive, intelligent, secure and mobile agents are needed
for self-protection. Table 1 provides an overview of agent characteristics suitable
for different aspects of AC.

3 Agent Development Toolkits

There are several agent development toolkits projects. Some projects are com-
pleted and obsolete while some are continuously evolving. There has been efforts
in the research community for comparing different agent development toolkits
with each other and for their suitability in different applications. For example,
performance evaluation on message transport system in JADE [5], Zeus [6] and
in JACK [7] is focused in [8]. Shakshuki et al. [9] compared Aglets, Voyager,
Odyssey, and Concordia for agent mobility. Vbra et al. [10] compared JADE,
FIPA-OS, ZEUS, and JACK. This comparison focused on interoperability, cost,
security and memory footprints of these Java based platforms. Chmiel et al. [11]
analyzed agent creation, message exchange, database excess, inter/intra con-
tainer communication for JADE.

All the above mentioned studies only compared some aspects of the software
agents in the agent toolkits. However, these only compared one or two toolk-
its with each other. In this section those research (open source) / commercial
agent development toolkits are described in detail, which are in continuous de-
velopment process and support some of the features of autonomic computing. A
summary of these toolkits is given in Table-2.

1. Agent Factory (AF) [12] is a java based, FIPA (Federation of Intelligent
and Physical Agents) [13] complaint, open-source cohesive framework that

supports a structured approach to the development and deployment of agent-
based systems. It has a layered architecture. It includes an agent oriented
programming language for development known as AF-APL (Agent Factory-
Agent-oriented Programming Language). Each AF agent has its own thread
of control and communicates through Agent Communication Language (ACL).
The AF toolkit is used in developing ubiquitous computing, robotics, enter-
prise search and distributed sensor network applications.

. Ajanta [14] is a Java based, non-FIPA compliant, mobile agent programming
system. It supports secure mobile agents and agent based applications over
the Internet. Ajanta supports strong agent mobility. Ajanta mobile agents
travel autonomously from machine to machine on a network to achieve their
design objectives, and communicate via RMI. The Ajanta toolkit is the only
toolkit available for Unix-like platforms and has been used to develop global
file access system and applications for distributed collaboration.

. Agent Development Kit (ADK) [15] is a Java based, FIPA compliant, agent
platform with emphasize on secure mobile agents. An ADK agent is an au-
tonomous piece of code that can carry data and travel the network to per-
form a task for its owner and uses HTTP, HTTP(s) and JMS for agent
communication. It supports strong agent mobility, follows task oriented pro-
gramming model, where tasks are arranged like work-flows. It can run on a
variety of platforms, ranging from IBM zSeries to mobile phones. ADK can
be integrated with J2EE server and is distributed under the LGPL and a
proprietary license. It has been mainly used in several commercial projects
especially for the application integration of legacy systems. DataExplorer
and FROG are some examples that use ADK.

. AgentBuilder (AB) [16] is a commercial, Java based, non-FIPA compliant
agent platform to develop intelligent agents and agent based applications. It
is an integrated toolkit that supports all phases of agent software develop-
ment. It supports KQML, CORBA and TCP/IP for agent communication
and is available in two different versions, namely, AgentBuilder LITE and
AgentBuilder PRO. AgentBuilder LITE is ideal for developing single-agent,
stand-alone applications and small agencies, while AgentBuilder PRO has all
features of AgentBuilder LITE and an advanced suite of tools for testing and
developing intelligent agents and multi-agent systems. It can run on Solaris,
Windows, and Unix/Linux. Applications like mail, auctions and shopping
agents have been developed using AgentBuilder.

. Decentralized Information Ecosystem Technologies (DIET) [17] was devel-
oped as part of EU project. It aims at developing scalable, lightweight, and
robust agent platforms for P2P and/or adaptive distributed applications.
Agents developed in DIET are autonomous and lightweight. Communica-
tion between local agents is via message passing. Projects like DIANE and
SWAN used DIET in their development. The project was completed in 2003
and since then it has been declared an open source project.

. JACK [7] is a Java based, non-FIPA compliant, commercial agent develop-
ment toolkit for developing intelligent agents based on BDI model. JACK
incorporates a set of tools like “design tool”, “plan editor”, and “graphical plan

tracing”. Agents communicate through TCP. It can run on Solaris, Windows,
Unix/Linux and Mac OS. JACK supports CORBA, RMI, J2EE, EJB, .NET,
or DCOM for external package integration. It is used in developing systems
for unmanned aerial vehicles and human-like decision making.

. ZEUS [6] is a Java based, open source, FIPA Compliant, component ori-
ented agent development toolkit. It provides facilities to implement BDI
style agents with reactive rule bases and with intelligent message handling.
The ZEUS agents use FIPA ACL for communication.

. Java Agent DEvelopment Framework (JADE) [5,18,19] is a Java based,

FIPA-compliant, open source agent development framework. It simplifies the
implementation of a Multi Agent System (MAS) through a middleware and
a set of graphical tools. The basic agent functions and behaviors are pro-
vided through its API. The JADE agents communicate through TCP/IP,
and ACL. The JADE agents can be executed on Unix, Windows or on both
platforms. JADE supports weak agent mobility. JADE also support web
services integration and can integrate, JAVA implementation of, JESS rea-
soning engine to make JADE agents intelligent and reactive. JADE has been
used to develop a number of commercial and non-commercial projects. The
projects like MAST at Rockwell automation, BT Exact, Whitestein Tech-
nologies, Singular software, Acklin B.V., Knowledge on Demand, CoMMa,
TeSCHeT and a number of different universities are using JADE for research
projects. We are using JADE in GRAPPA project[20].
Some commonly used extensions of JADE are as follows: JADE-LEAP
(Java Agent DEvelopment Framework-Lightweight Extensible Agent Plat-
form) [21] which enables developers to develop and execute FIPA-compliant
multi-agent systems in mobile devices like cell phones and palm computers.
BlueJADE is JADE extension for J2EE applications under JBoss. JADEX
(JADE extension) [22] is an agent layer on top of JADE that allows easy de-
velopment of rational, intelligent agents with mental attitudes by following
the BDI model.

Name Organization / |Language |[FIPA [Communication|License Mob-
University ility
ADK Tryllian Java yes HTTP(s), JMS Dual yes
Agent Builder [Acronymics Java no KQML, TCP/IP |Commercial |no
Agent Factory|UC Dublin AF-APL2 |yes FIPA ACL Open source |no
Ajanta Uni. of Minnesota |Java no RMI Open source |yes
DIET Consortium Java no Message Passing |Open Source |no
Jack AO Software Java yes TCP Commercial |no
JADE Tilab Java yes TCP/IP Open Source|yes
ZEUS BT Java yes TCP/IP Open Source|no

Table 2: Agent Development Toolkits

This section describes the support for different agent properties provided by dif-
ferent agent development toolkits. We now give some recommendations about
the suitability of different agent development toolkits for autonomic comput-
ing. It can be concluded that the toolkits supporting autonomy, interoperability,
mobility, intelligence, reactivity, pro-activeness and social ability of agents are
suitable for most aspects of AC based systems. AgentBuilder, JACK, ZEUS
and JADE fall in this category. Toolkits supporting autonomy and social abil-
ity of agents are not suitable for autonomic computing based systems. DIET
and AgentFactory fall in this category. Toolkits supporting autonomy, inter-
operability, mobility and social ability of agents are partially suitable for Self-
configuration and Self-healing of AC based systems. ADK and Ajanta fall in
this category. Self-configuration is partially /fully supported by all the surveyed
toolkits. Whereas, self-healing is supported by all the surveyed toolkits, except
AgentFactory and DIET. Self-optimization and self-protection are partially /fully
supported by AgentBuilder, JACK, JADE and ZEUS. JACK and ZEUS support
most aspects partially. However JADE fully supports all aspects of AC.

Auton- . |Interop- |Lightw-| Social
Mobile Learning|Intelligent|Secure|Reactive|Proactive| .

omous erable eight |ability
ADK y y y n n y n n y y
Ajanta y y n n n n n n n y
AB y n y y y n y y n y
JACK| 'y n Y Y y n y Y n y
JADE y y y y y y y y y y
AF y n y n n n n n n y
ZEUS y n y n n n y y n y
DIET y n n n n n n n y y

Table 3: Agent Development Toolkits Supporting Different Agent Characteristics

ADK AB AF Ajanta | DIET JACK |JADE| ZEUS
Self Configuration|Partially |Partially | Partially |Partially |Partially |Partially| Yes [Partially
Self Healing Partially | Partially No Partially No Partially| Yes [Partially
Self Optimization No Yes No No No Yes Yes Yes
Self Protection No Partially No No No Partially| Yes [Partially

Table 4: Supported Aspects of AC by Agent Toolkits

These conclusions are summarized in Tables 3 & 4. Table 3 summarizes the
discussed toolkits and their support for different agent properties and Table 4
summarizes agent toolkits supporting different aspects of autonomic computing.
In the end, we mention that these recommendations are based on the present
feature set of the surveyed toolkits. As majority of these toolkits are in con-
tinuous development, it is recommended to check the latest feature set of any
toolkits before choosing any specific toolkit.

In the next sections, we present the experimental setup and discuss the results of

microeconomic based resource allocation approach, developed on top of JADE,
for a local ad hoc grid.

4 Experimental Setup

An overview of the system components and experimental setup of the proof of
concept application in JADE is described in this section. The proof of concept
application is an agent based middleware for resource allocation in a local ad
hoc grid. The overall architecture of the middleware is represented in Figure 1.
The Index agent (un)registers all node agents. The SQL agent is responsible for
database operations. The Node agent consists of consumer and producer agent.
Each node agent will behave as a consumer or as a producer of resources at any
given time. The consumer agent is responsible for generating a resource request
and submitting the request to the producer agent. The producer agent generates
a resource offer, receives resource requests from consumer agent, initiates auc-
tioneer agent and executes the consumer job. The Auctioneer Agent performs
matchmaking by using Continuous Double Auction (CDA). The details of CDA
and ask/bid prices can be found in [23]. The communication agent handles all
communication between different agents by using TCP/IP and FIPA ACL.
The system works as follows. Each node agent registers with the index agent
while joining the ad hoc grid. The consumer agent retrieves the available pro-
ducer agents from the index agent. The consumer agent prepares and sends a
resource request to all available producer agents. The producer agent receives
resource request(s) from consumer agents during the bidding period. The pro-
ducer agent performs matchmaking for its available resources from the received
resource requests. The auctioneer agent of the producer agent performs match-
making using Continuous Double Auction (CDA). The producer agent informs
the matched consumer agent of the offer. A consumer agent may receive re-
source offers from more than one producer agents. The consumer agent selects
the best offer from all the received resource offers and sends a selection noti-
fication to the selected producer agent. The consumer agent sends its jobs to
the selected producer agent for execution. If no resource request/offer is received
by a producer/consumer agent during the Time To Live (TTL) period of a re-
source request/offer, then that request/offer is declared as unmatched and is
stored in the database by SQL agent. The node agent generates a new resource
request/offer after a successful job execution or after the expiry of TTL of its
previous resource request /offer.

The experiments are executed in balanced and in task intensive network (TIN)
conditions. The task-resource ratio is 50%-50% and 80%-20% in the balanced and
TIN respectively. These experiment are executed with 60 nodes for 25 minutes.

5 Experimental Results & Discussion

In this section we discuss the results of our JADE based middleware in terms of
transaction price and matchmaking efficiency. The transaction price is calculated

System —m Index Agent

Node Agent
Producer Agent

Consumer Agent
o Generate Resource } _
Job Submit — | g
m
B
o ||z ‘ g
[Fustone] EPE ik

580014 "boy ‘soy

l s
|

—
—]
B Communication

SQL Agent J¢———————

Fig.1: Overall System Architecture

as the average of ask price and bid price for a matched request and offer pair.
The matchmaking efficiency is the ratio of the matched messages to the total
message during the simulation. The matchmaking efficiency is 85% and 20% in
the balanced and TIN conditions respectively. Since the task-resource ratio is
80-20% in TIN condition, therefore matchmaking efficiency is only 20%. The
variation in transaction price is dependent on the network condition. Figure
2a shows the pricing behavior in a balanced network condition. Since ratio of
request and offer message is approximately the same, then there is no upward or
downward price variation. Whereas in TIN, resources are scarce and tasks are
in abundance, still there is a competition among tasks for acquiring resources.
The consumer agent(s) keeps on increasing the ask price in order to acquire the
requested resources. Therefore, an increasing trend is observed in transaction
price in TIN condition (Figure 2b).

320

4500

Transaction Price
Transaction Price

276 ‘
A 3750
232 o, ‘ 3000
250
188
1500

144 750

0 100 200 300 400 500 600 700 800

100

0 100 200 300 400 500 600 700 800 900 1000 Messages
Messages

(a) Balanced Network (b) Task Intensive Network

Fig. 2: Experimental Results

6 Conclusions

Actively developed and maintained agent development toolkits that can be used
for developing self-managing ad hoc grids and their applications are reviewed in
this paper. These toolkits are analyzed for the following factors: autonomy, mo-
bility, interoperability, supported agent communication mechanism, development
language, reasoning support, security, FIPA compliance, learning, restiveness,
pro-activeness and minimum requirements to develop the application. Agent-
Builder, JACK, ZEUS and JADE supported maximum aspects of AC paradigm,
therefore, these are most suitable toolkits for AC based applications in general
and the autonomic ad hoc grids specially. The JADE toolkit supported all as-
pects of the AC paradigm due to its extendability with help of add-ons. In future,
we would compare other agent development toolkits for resource allocation in a
local ad hoc grid.

References

1. Li, Z., Parashar, M.: Rudder: An agent-based infrastructure for autonomic com-
position of grid applications. Multiagent Grid Systems 1(3) (2005) 183-195

2. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,
J.O., White, S.R.: A multi-agent systems approach to autonomic computing. In:
Proceedings of the 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS, IEEE Computer Society (2004) 464-471

3. Xiaolin Li, Hui Kang, P.H., Thomas, J.: Autonomic and trusted computing
paradigms. In: Proceedings of the 3rd International Conference on Autonomic
and Trusted Computing, ATC. (2006) 143-152

4. Horn, P.: Autonomic computing: IBM’s perspective on the state of information
technology. Technical report, IBM Corporation (October 2001)

5. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE - a white paper. EXP in
search of innovation (Special Issue on JADE) (2003)

6. Nwana, H.S., Ndumu, D.T.; Lee, L.C., Collis, J.C.: Zeus: a toolkit and approach
for building distributed multi-agent systems. In: Proceedings of the third annual
conference on Autonomous Agents, AGENTS. (1999)

7. Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents -
summary of an agent infrastructure. In: Proceedings of the 5th International Con-
ference on Autonomous Agents. (2001)

8. Shakshuki, E., Jun, Y.: Multi-agent development toolkits: an evaluation. In: Pro-
ceedings of the 17th international conference on Innovations in applied artificial
intelligence. (2004) 209-218

9. Horvat, D., Cvetkovic, D., Milutinovic, V.: Mobile agents and java mobile agents
toolkits. In: Proceedings of the 33rd Hawaii International Conference on System
Sciences-Volume 8, HICSS. (2000)

10. Vrba, P.: Java-based agent platform evaluation. In: Proceedings of the 1st Interna-
tional Conference on Applications of Holonic and Multi-Agent Systems, HoloMAS,
Springer-Verlag (2003) 47-58

11. Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M.: Effi-
ciency of jade agent platform. Scientific Programming 13(2) (2005) 159-172

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, University College Dublin, Ireland (2001)

FIPA online, http://fipa.org/

Tripathi, A.R., Karnik, N.M., Ahmed, T., Singh, R.D., Prakash, A., Kakani, V.,
Vora, M.K., Pathak, M.: Design of the ajanta system for mobile agent program-
ming. Journal of Systems and Software 62(2) (May 2002) 123-140

ADK home page, http://www.tryllian.org/

Acronymics, I.: Agentbuilder: An integrated toolkit for constructing intelligent
software agents. Broucher (2004)

Marrow, P., Bonsma, E., Wang, F., Hoile, C.: DIET: A scalable, robust and adapt-
able multi-agent platform for information management. BT Technology Journal
21 (2003) 130-137

JADE online, http://jade.cselt.it/

Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE-java agent development
framework. Multi-Agent Programming 15 (2005) 125-147

GRAPPA Project, http://ce.et.tudelft.nl/grappa/

Helin, H., Laukkanen, M.: Jade goes wireless gearing up agents for the wireless
future. EXP in search of innovation (Special Issue on JADE) (2003)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI infras-
tructure for jade agents. EXP in search of innovation (Special Issue on JADE)
(2003)

Pourebrahimi, B., Bertels, K., Kandru, G., Vassiliadis, S.: Market-based resource
allocation in grids. In: 2nd IEEE International Conference on e-Science & Grid
Computing. (2006)

