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Abstract—In this paper, we investigate Residue Number System
(RNS) to decimal conversion for moduli sets with common factors.
First, we propose a new RNS to decimal converter for the moduli set
{2n+2, 2n+1, 2n} for any integer n > 0, which is a generalization
of a recently proposed reverse converter for this moduli set. Second,
we provide a general 4-moduli RNS conversion scheme and then
present a compact form of multiplicative inverses, valid for odd-n,
for the moduli set {2n+3, 2n+2, 2n+1, 2n}. This extended moduli
set increases the dynamic range and the processing parallelism
enabling efficient conversion.

Index Terms—Residue Number System, RNS-Decimal Conver-
sion, Moduli Set With Common Factors, Multiplicative Inverses,
Chinese Remainder Theorem.

I. INTRODUCTION

The Residue Number System (RNS) is an integer system
which speeds up arithmetic computations by spliting them into
smaller parts in such a way that each part is independent
of the other. RNS has the following interesting inherent
features: parallelism, modularity, fault tolerance, and carry
free operations [4]. These features make RNS to be widely
used in Digital Signal Processing (DSP) applications such
as digital filtering, convolution, fast Fourier transform, and
image processing [1]. For successful application of RNS, data
conversion must be very fast so that the conversion overhead
doesn’t nullify the RNS advantages. In view of this, data
Conversion, which is usually based on either the Chinese
Remainder Theorem (CRT) [3], [6], [8] or the Mixed Radix
Conversion (MRC) [2] has been actively investigated. The
RNS for a three moduli set has been studied for a long time
with {2n + 1, 2n, 2n − 1} being the most popular one [6].
However, the moduli set {2n + 2, 2n + 1, 2n} is a strong
alternative candidate for decimal numbers which fall beyond
the range specified by the {2n + 1, 2n, 2n − 1} moduli set
resulting in the use of next higher index for n [6], [7], and [8].
The moduli set {2n+ 2, 2n+ 1, 2n} is desirable because the
numbers are consecutive, enabling nearly equal width adders
and multipliers in the hardware implementation. Based on the
weight concept, the decoding of RNS numbers for the moduli
set {2n+2, 2n+1, 2n} has been presented in [8]. The dynamic
range provided by the three moduli sets is in some cases
insufficient for high performance DSP applications requiring
a large dynamic range. In view of that, in [5], the moduli set
{2n+ 2, 2n+ 1, 2n} was extended by adding (2n+3) in order
to obtain the 4-moduli superset {2n+ 3, 2n+ 2, 2n+ 1, 2n}.

In this paper, we first propose a new RNS to decimal
converter for the moduli set {2n + 2, 2n + 1, 2n} for any
integer n > 0. This eliminates the restriction in the reverse
converter proposed in [4]. Second, we provide a general 4-
moduli RNS conversion scheme and then present a compact
form of multiplicative inverses (valid for n-odd) for the moduli
set {2n+ 3, 2n+ 2, 2n+ 1, 2n}. This again also removes the
restriction in the converter presented in [5].

The rest of the article is organised as follows: Section II
presents the necessary background. In Section III, for both n-
even and odd, we present a reverse converter for the moduli set
{2n+ 2, 2n+ 1, 2n}. We describe a reverse conversion algo-
rithm, valid for n-odd, for the {2n+ 3, 2n+ 2, 2n+ 1, 2n}
moduli set in Section IV, while the paper is concluded in
Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime moduli
set {mi}i=1,t such that gcd(mi,mj) = 1 for i 6= j, where gcd
means the greatest common divisor of mi and mj , while M =∏t
i=1mi, is the dynamic range. The residues of a decimal

number X can be obtained as xi = |X|mi thus X can be
represented in RNS as X = (x1, x2, x3, ..., xt), 0 ≤ xi < mi.
This representation is unique for any integer X ∈ [0,M − 1].
We note here that in this paper we use |X|mi to denote the
X mod mi operation.

For a moduli set {mi}i=1,t with the dynamic range M =∏t
i=1mi, the residue number (x1, x2, x3, ..., xt) can be con-

verted into the decimal number X , according to the Chinese
Reminder Theorem, as follows [9]:

X =

∣∣∣∣∣
t∑
i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
M

, (1)

where M =
∏t
i=1mi, Mi = M

mi
, and M−1

i is the multi-
plicative inverse of Mi with respect to mi. We note here
that the moduli set {mi}i=1,t must be pairwise relatively
prime for Equation (1) to be directly used. The moduli set
{2n+ 2, 2n+ 1, 2n} has a common factor of 2. This implies
that to utilize Equation (1) in the conversion this moduli set
must be first mapped to a set of relatively prime moduli. If
a moduli set is not pairwise relatively prime, then not every
residue set (x1, x2, x3, ..., xt) corresponds to a number and
this results into inconsistency. As discussed in [9], a set of
residues is consistent if and only if |xi|k = |xj |k where
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k = gcd(mi,mj) for all i and j. If this holds true the decimal
equivalent of (x1, x2, x3, ..., xt) for moduli set which are not
pairwise relatively prime can be computed as follows:

|X|ML
=

∣∣∣∣∣
t∑
i=1

αixi

∣∣∣∣∣
ML

, (2)

where ML is the Lowest Common Multiple (LCM) of
{mi}i=1,t, the set of moduli sharing a common factor, X is
the decimal equivalent of {xi}i=1,t, αi is an integer such that
|αi|ML

µi

= 0 and |αi|µi = 1, and {µi}i=1,t is a set of integers

such that ML =
t∏
i=1

µi and µi divides mi. It should be noted

that αi may not exist for some i. In [3], Equation (2) has
been represented as:

|X|ML
=

∣∣∣∣∣
t∑
i=1

βi
∣∣β−1
i

∣∣
µi
xi

∣∣∣∣∣
ML

, (3)

where ML = LCM {mi}ti=1 =
t∏
i=1

µi, βi = ML

µi
,
∣∣β−1
i

∣∣
µi

is

the multiplicative inverse of βi with respect to µi.

III. A CONVERSION ALGORITHM FOR THE
{2n+ 2, 2n+ 1, 2n} MODULI SET

Given the RNS number (x1, x2, x3) with respect to the
moduli set {m1 = 2n + 2,m2 = 2n + 1,m3 = 2n}, the
proposed algorithm computes the decimal equivalent of the
RNS number based on a further simplification of the well-
known traditional CRT. We show that the computation of the
multiplicative inverses can be eliminated for this moduli set. It
should be noted that Equation (1) cannot be directly used for
the conversion since in the moduli set {2n + 2, 2n + 1, 2n},
the moduli 2n + 2 and 2n share a common factor of 2. The
moduli set must be first mapped into a set of relatively prime
integers. In [8], it has been demonstrated that such a mapping
can easily be done and that the set of relatively prime moduli
for {2n + 2, 2n + 1, 2n} moduli set, for any even and odd
integer n > 0, respectively, are given by {n+ 1, 2n+ 1, 2n}
and {2n+ 2, 2n+ 1, n}, meaning that the new moduli set,
respectively, are

{
m1
2 ,m2,m3

}
and

{
m1,m2,

m3
2

}
.

Theorem 1: Given the moduli set {m1,m2,m3} with m1 =
2n + 2,m2 = 2n + 1,m3 = 2n for any even integer n, the
following hold true:∣∣∣(m1

2
m2)−1

∣∣∣
m3

= n+ 1, (4)∣∣(m2m3)−1
∣∣
m1
2

=
n

2
+ 1, (5)∣∣∣(m1

2
m3)−1

∣∣∣
m2

= 2n− 1. (6)

Proof:
This has been proved in [4].
Theorem 2: Given the moduli set {m1,m2,m3} with m1 =

2n + 2,m2 = 2n + 1,m3 = 2n for any odd integer n, the

following hold true:∣∣∣(m1m2)
−1
∣∣∣
m3
2

=
n+ 1

2
, (7)∣∣∣∣(m2

m3

2

)−1
∣∣∣∣
m1

= n+ 2, (8)∣∣∣∣(m1
m3

2

)−1
∣∣∣∣
m2

= 2n− 1. (9)

Proof: If it can be shown that
∣∣∣ (n+1)

2 × (m1m2)
∣∣∣
m3
2

=

1, then (n+1)
2 is the multiplicative inverse of (m1m2) with

respect to m3
2 .
∣∣∣ (n+1)

2 × (m1m2)
∣∣∣
m3
2

is given by: |(n+1)(n+

1)(2n+1)|n = |(n2 +2n+1)(2n+1)|n = |2n3 +5n2 +4n+
1|n = ||2n3|n+ |5n2|n+ |4n|n+ |1|n|n = |0+0+0+1|n = 1,
thus Equation (7) holds true.

In the same way, if
∣∣(n+ 2)×

(
m2

m3
2

)∣∣
m1

= 1, then (n+
2) is the multiplicative inverse of

(
m2

m3
2

)
with respect to m1.∣∣(n+ 2)

(
m2

m3
2

)∣∣
m1

is given by: |(n+2)(2n+1)(n)|2n+2 =
|(n+2)(2n2+n)|2n+2 = |2n3+n2+4n2+2n|2n+2 = |2n3+
2n2 +n2 +n(2n+2)|2n+2 = |(n2 +n)(2n+2)+n2|2n+2 =
||(n2 + n)(2n+ 2)|2n+2 + |n2|2n+2|2n+2 = |0 + 1|2n+2 = 1,
thus Equation (8) holds true.

Again, if |
(
(2n− 1)×m1

m3
2

)
|2n+1 = 1, then 2n −

1 is the multiplicative inverse of m1
m3
2 with respect to

m2. |
(
(2n− 1)×m1

m3
2

)
|2n+1 is given by |(2n − 1)(2n +

2)(n)|2n+1 = |(2n−1)(2n2+2n)|2n+1 = |4n3+4n2−2n2−
2n|2n+1 = |4n3+2n2−2n|2n+1 = |2n2(2n+1)−2n|2n+1 =
||2n2(2n + 1)|2n+1 + | − 2n|2n+1|2n+1 = |0 + 1|2n+1 = 1,
thus Equation (9) holds true.

As stated in Section II, for moduli sets with a common
factor, not all remainder sets are valid numbers. The following
proposition states the condition for a 3-residue set to represent
a valid number.

Proposition 1: For RNS with the moduli set {m1,m2,m3}
sharing a common factor, (x1, x2, x3) represents a valid num-
ber if and only if (x1 + x3) is even.

Proof: This proposition has been proved in [6].
The following theorem introduces a simplified way to com-

pute the decimal equivalent of the RNS number (x1, x2, x3)
with respect to the moduli set {m1,m2,m3} in the form
{2n+ 2, 2n+ 1, 2n} for both even and odd integer n > 0.

Theorem 3: The decimal equivalent of the RNS number
(x1, x2, x3) with respect to the moduli set {m1,m2,m3} in
the form {2n+ 2, 2n+ 1, 2n} for any integer n > 0 is given
by:

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

, (10)

where ML = m1m2m3
2 .

Proof: Given that Equation (10) was proved to be true
for n-even in [4], we only need to prove it for n-odd.
For t = 3, Equation (1) becomes:

X =

∣∣∣∣∣
3∑
i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
ML

. (11)
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By substituting Equations (7), (8), and (9) into Equation (11)
we obtain the following:

X =
∣∣∣(m2

m3

2

)
(m1 + 2)x1 +

(
m1

m3

2

)
(m2 − 2)x2

+(m1m2)
(m3 + 2)

4

∣∣∣∣
ML

=
∣∣∣m1m2m3

4
x1 +

m2m3

2
x1 +

m1m2m3

2
x2

−m1m3x2 +
m1m2m3

4
x3 +

m1m2

2
x3

∣∣∣
ML

=
∣∣∣(m2m3

4

)
x1(m1 − 2) +m2m3x1 +MLx2

−m1m3x2 +
m1m2

4
x3(m3 + 2)

∣∣∣
ML

Further simplifications give:

X =

∣∣∣∣∣
∣∣∣∣ML

2
(x1 + x3)

∣∣∣∣
ML

+
∣∣∣(m2m3

2
)x1

∣∣∣
ML

−|m1m3x2|ML
+
∣∣∣(m1m2

2
)x3

∣∣∣
ML

∣∣∣∣
ML

(12)

Since each of the terms m2m3
2 x1, m1m3x2, and m1m2

2 x3 in
Equation (12) is positive and less than ML and also from
Proposition I, (x1 + x3) must always be even, which implies
that,

∣∣(x1 + x3)ML

2

∣∣
ML

= 0. Equation (12) therefore reduces
to:

X =
∣∣∣m2m3

2
x1 −m1m3x2 +

m1m2

2
x3

∣∣∣
ML

(13)

Thus, Equation (10) holds true for both n-even and odd.
Therefore, the following simplification for Equation (10)

proposed in [4] for any even integer n also holds true for any
odd integer n.

Theorem 4: The decimal equivalent of the RNS number
(x1, x2, x3) with respect to the moduli set {m1,m2,m3} in
the form {2n+ 2, 2n+ 1, 2n} for both even and odd integer
n > 0 is computed as follows:

X = (x2 − x1)m1 + x1

+m1m2

∣∣∣∣ (x1 + x3)
2

− x2

∣∣∣∣
m3
2

(14)

Proof: Equation (14) has been proved in [4] for n-even
starting from the expression in Equation (10). Given that, as
proved in Theorem 3, Equation (10) holds true for n-even,
Equation (14) holds true for that case too.

Given that larger dynamic range is of practical interest, we
present an efficient reverse converter for the moduli set {2n+
3, 2n + 2, 2n + 1, 2n}, which is an extension of the {2n +
2, 2n+ 1, 2n} moduli set in the next section.

IV. A CONVERSION ALGORITHM FOR THE
{2n+ 3, 2n+ 2, 2n+ 1, 2n} MODULI SET

Given the RNS number (x1, x2, x3, x4) with respect to the
moduli set {m1 = 2n+ 3,m2 = 2n+ 2,m3 = 2n+ 1,m4 =
2n}, the decimal equivalent of the RNS number is computed

based on a further simplification of the well-known traditional
CRT. However, it should be noted that Equation (1) cannot be
directly used for the conversion since the moduli 2n+2 and 2n
share a common factor of 2. In [5], it has been shown that the
set of relatively prime moduli for {2n+3, 2n+2, 2n+1, 2n}
moduli set are {2n+ 3, n+ 1, 2n+ 1, 2n} and {2n+ 3, 2n+
2, 2n+ 1, n} respectively, for n even and odd.

Theorem 5: For a moduli set {mi}i=1,4, m1 > m2 >
m3 > m4, the decimal equivalent X of the residues
(x1, x2, x3, x4) can be computed by using mod-m4 (the small-
est modulus) instead of the large mod-M operations as:
X = (x1 + x2 + x3) +m1m2m3|k1x1 + k2x2

+k3x3 +
∣∣M−1

4

∣∣
m4

x4|m4 , (15)

where M−1
4 is the multiplicative inverse of M4,

k1 =

(
M1|M−1

1 |m1
−1

)
m1m2m3

,

k2 =

(
M2|M−1

2 |m2
−1

)
m1m2m3

and k3 =

(
M3|M−1

3 |m3
−1

)
m1m2m3

.
Proof: It has been proved in [5].

Next, we show that the compact forms of multiplicative
inverses do exist for the moduli set {2n+3, 2n+2, 2n+1, 2n}
using the following theorems:

Theorem 6: Given the moduli set {m1,m2,m3,m4} with
m1 = 2n + 3,m2 = 2n + 2,m3 = 2n + 1,m4 = 2n, the
following hold true:∣∣M−1

2

∣∣
m2

=
n

2
+ 1, (16)∣∣M−1

3

∣∣
m3

= 2n. (17)

Proof: This has been proved in [5]
The multiplicative inverses of M1 and M4 can be computed

as demonstrated by the following theorems:
Theorem 7: For odd numbers of the form

{5, 11, 17, 23, 29, 35, ...}, represented by n = {6k −
1}k=1,2,3,... ∣∣M−1

1

∣∣
m1

= 4k, (18)∣∣M−1
4

∣∣
m4

= k, (19)

Proof: From the Theorem, |M−1
1 |m1 = 4k = 4(k).

Thus, |M−1
1 |m1 = 4|M−1

4 |m4 , then we shall show the proof
of |M−1

1 |m1 only. M1 = m2m3
m4
2 , meaning that M1 =

(2n + 2)(2n + 1)(n), for different values of n, |M1M
−1
1 |m1

will be given by: n = 5, when |M−1
1 |m1 = 4, and also

|4(2n + 2)(2n + 1)(n)|2n+3 = |16n3 + 24n2 + 8n|2n+3

= ||8n2(2n+ 3)|2n+3 + |8n|2n+3|2n+3 = |0 + 1|2n+3 = 1.
Similarly, when n = 11, |M−1

1 |m1 = 8, and |8(2n +
2)(2n+1)(n)|2n+3 = |32n3+48n2+16n|2n+3 = ||16n2(2n+
3)|2n+3 + |16n|2n+3|2n+3 = |0 + 1|2n+3 = 1.

Again, when n = 17, |M−1
1 |m1 = 12, and |12(2n +

2)(2n+1)(n)|2n+3 = |48n3+72n2+24n|2n+3 = ||24n2(2n+
3)|2n+3 + |24n|2n+3|2n+3 = |0 + 1|2n+3 = 1. Hence, if it is
true for n = 5, 11, 17, then it will be true for any odd integer
n in this category.
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Theorem 8: For odd numbers of the form
{7, 13, 19, 25, 31, ...}, represented by n = {6k + 1}k=1,2,3,...∣∣M−1

1

∣∣
m1

= 8k + 3, (20)∣∣M−1
4

∣∣
m4

= 5k + 1, (21)

Proof: We first show that |M−1
1 |m1 is valid as follows:

M1 = m2m3
m4
2 = (2n+ 2)(2n+ 1)(n), for different values

of n, |M1M
−1
1 |m1 will be given by: n = 7, when |M−1

1 |m1 =
11, and also |11(2n+ 2)(2n+ 1)(n)|2n+3 = |44n3 + 66n2 +
22n|2n+3 = ||22n2(2n + 3)|2n+3 + |22n|2n+3|2n+3 = |0 +
1|2n+3 = 1.

Similarly, when n = 13, |M−1
1 |m1 = 19, and |19(2n +

2)(2n + 1)(n)|2n+3 = |76n3 + 114n2 + 38n|2n+3 =
||38n2(2n+ 3)|2n+3 + |38n|2n+3|2n+3 = |0 + 1|2n+3 = 1.

Again, when n = 19, |M−1
1 |m1 = 27, and |27(2n+2)(2n+

1)(n)|2n+3 = |108n3 + 162n2 + 54n|2n+3 = ||54n2(2n +
3)|2n+3 + |54n|2n+3|2n+3 = |0 + 1|2n+3 = 1. Hence, if it is
true for n = 7, 13, 19, then it will be true for any odd integer
n in this category.
We then show the validity of |M−1

4 |m4 as follows: M4 =
m1m2m3 = (2n+3)(2n+2)(2n+1), for different values of
n, |M4M

−1
4 |m4 will be given by: n = 7, when |M−1

4 |m4 = 6,
and also |6(2n+3)(2n+2)(2n+1)|n = |6(8n3+24n2+22n+
6)|n = ||6(8n2 + 24n+ 22)(n)|n + |36|n|n = |0 + 1|n = 1.

Similarly, when n = 13, |M−1
4 |m4 = 11, and |11(2n +

3)(2n + 2)(2n + 1)|n = |11(8n3 + 24n2 + 22n + 6)|n =
||11(8n2 + 24n+ 22)(n)|n + |66|n|n = |0 + 1|n = 1.

Again, when n = 19, |M−1
4 |m4 = 16, and |16(2n+3)(2n+

2)(2n + 1)|n = |16(8n3 + 24n2 + 22n + 6)|n = ||16(8n2 +
24n+ 22)(n)|n + |96|n|n = |0 + 1|n = 1. Hence, if it is true
for n = 7, 13, 19, then it will be true for any odd integer n in
this category.

Putting m2 = 2n + 2 and m4 = 2n in Equations (16)
and (17), respectively, we obtain:∣∣M−1

2

∣∣
m2

=
m2 + 2

4
,
∣∣M−1

3

∣∣
m3

= m4. (22)

Using Equation (22) and by proper substitutions in Theorem
5, we can particularize it for 4-moduli RNS sharing a common
factor as follows:

Corollary 1: For the moduli set
{2n+ 3, 2n+ 2, 2n+ 1, 2n}, the decimal equivalent X of the
residues (x1,x2, x3, x4) can be computed as follows:

1) (Using Theorem 7):
X = (x1 + x2 + x3) +m1m2m3|k1x1 + k2x2

+k3x3 + kx4|m4 , (23)

where k1 = (4km2m3m4−1)
m1m2m3

,

k2 = (m1m3m4(m2+2
4 )−1)

m1m2m3
, and

k3 = (m1m2m4(m4)−1)
m1m2m3

2) ( Using Theorem 8):
X = (x1 + x2 + x3) +m1m2m3|k1x1 + k2x2

+k3x3 + (5k + 1)x4|m4 , (24)

where k1 = (m2m3m4(8k+3)−1)
m1m2m3

,

k2 = (m1m3m4(m2+2
4 )−1)

m1m2m3
and

k3 = (m1m2m4(m4)−1)
m1m2m3

Proof: Trivial with proper substitutions for the values
of
∣∣M−1

2

∣∣
m2

and
∣∣M−1

3

∣∣
m3

together with
∣∣M−1

1

∣∣
m1

and∣∣M−1
4

∣∣
m4

, which are obtained from Theorems 7 and 8.
In terms of both area and delay, the reverse converter

proposed in here for the moduli set {2n+3, 2n+2, 2n+1, 2n}
and the one in [5] are the same. However, we show here that
for n-odd, this moduli set can still be utilized whereas the
applicability of this moduli set was only demonstrated in [5]
for n-even.

V. CONCLUSIONS

In this paper, we first demonstrated that for the {2n+2, 2n+
1, 2n} moduli set, the computation of multiplicative inverses
can be eliminated and proved that for n even or odd, the
hardware realization is the same eliminating the restriction in
the reverse converter proposed in [4]. Second, we provided a
general 4-moduli RNS conversion scheme and then presented
a compact form of multiplicative inverses for the moduli set
{2n+3, 2n+2, 2n+1, 2n}. This increases the dynamic range
and the processing parallelism enabling efficient conversion.
Moreover, the proposed schemes operate on smaller magnitude
operands, requiring less complex adders and multipliers, which
potentially result in faster and smaller implementations.
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