
Conservative Dynamic Energy Management for Real-Time Dataflow Applications
Mapped on Multiple Processors

Anca Molnos1

NXP Semiconductors, The Netherlands
Email: a.m.molnos@tudelft.nl

Kees Goossens
Computer Engineering Department

Delft University of Technology, The Netherlands
NXP Semiconductors, The Netherlands

Email: kees.goossens@nxp.com

Abstract—Voltage-frequency scaling (VFS) trades a linear
processor slowdown for a potentially quadratic reduction in
energy consumption. Complex dependencies may exist between
different tasks of an application. The impact of VFS on the end-
to-end application performance is difficult to predict, especially
when these tasks are mapped on multiple processors that are
scaled independently. This is a problem for real-time (RT)
applications that require guaranteed end-to-end performance.

In this paper we first classify the slack existing in RT
applications consisting of multiple dependent tasks mapped
on multiple processors independently using VFS, resulting in
static, work, and share slack. Then we concentrate on work
and share slack as they can only be detected at run time,
thus their conservative use is challenging. We propose SlackOS,
a dynamic, dependency-aware, task scheduling that conserva-
tively scales the voltage and frequency of each processor, to
respect RT deadlines. When applied to a H.264 application,
our method delivers 22% to 33% energy reduction, compared
to dynamic RT scheduling that is not energy aware.

Keywords-Real-time; DVFS; Multi-processor; Dataflow;

I. INTRODUCTION

Minimizing energy consumption is important for SOCs
in general, and especially for embedded SOCs that operate
on battery power. In such energy-aware SOCs voltage-
frequency scaling (VFS) is often used to trade a linear
processor slowdown for a potentially quadratic decrease in
energy consumption. This trade-off has been exhaustively
addressed for single processors, and for multi-processor
SOCs executing independent applications [1], [2].

However, the applications executed on such platform
have inherent data dependencies among their constituent
tasks. Embedded SOCs often implement real-time (RT)
applications, e.g. (portable) multi-media or automotive ap-
plications. It is crucial to guarantee application performance,
such as throughput and latency, to avoid severe quality
degradations, or deadline misses. Thus, beyond per-task
guarantees, end-to-end application guarantees are required.
To offer such guarantees, worst-case assumptions have to
be made. Nevertheless, during execution, the system might
behave “better” than in the worst case, (e.g. earlier data

1Currently with the Computer Engineering Department, Delft University
of Technology, The Netherlands.

arrival, shorter execution times). Thus the system might be
over-provisioned, so at run-time it has slack. Conservatively
saving energy using this slack is complex because the
data dependencies among application tasks, which may be
mapped on multiple processors. Existing approaches for
energy minimization in such RT applications, using the slack
at run-time, are restricted to static tasks order [3], [4], or
require the processors to synchronize at each VFS action [5].

Dataflow analysis tackles the problem of mapping of
RT applications on multiprocessors [6], [7]. At design-
time, among other system parameters, the dataflow method
calculates the budget allocated to each task in a given time
period on a processor, such that, regardless of the scheduling
order of tasks, no application deadline is missed. To produce
a datum, an application has to perform some work. When
dimensioning these budgets, the worst-case data arrival and
work are considered. At run-time, as long as each task
gets its budget, the end-to-end application performance is
guaranteed. Thus, an Operating System (OS) needs only to
enforce these budgets on each processor, regardless of data
availability, task progress, or execution time.

The problem that we solve in this paper is to find the VF
operating points for each task such that the energy is mini-
mized, while still guaranteeing the end-to-end performance.
First we identify the types of slack potentially existing in
such applications: static, work and share slack. Work and
share slack cannot be determined and conservatively used at
design time. Hence, we propose SlackOS, a dynamic, run-
time RT task scheduling OS as described above, extended
with energy management functionality. SlackOS detects the
slack after it is “produced”, and it allocates it to a task that
is ready for execution (which may result in task reordering).
The processor operating point is scaled down such that at
worst case the scheduled work does not take more than its
original budget plus the slack. This, plus the fact that the
design-time analysis is valid regardless of the task order,
guarantees that, if the original application meets its dead-
lines, the VF-scaled one also will. SlackOS implementation
requires the following extensions to the original OS: (1) each
task signals its progress (to detect early termination), and
(2) tasks can be checked for input data and output space



availability (to determine task readiness). Experimentally
we observed that SlackOS achieves a 22%-33% energy
reduction in a H.264 application running on two processors,
compared with non energy-aware scheduling. This reduction
represents 60% and 94% of the maximum achievable energy
save, obtained when the processors constantly run at the
minimum frequency. However, deadlines are missed, in this
case, whereas our energy-aware scheduler is guaranteed to
never miss a deadline. We compare SlackOS only with a
non energy-aware scheduler because, to our knowledge, no
method exist to save energy conservatively, for real-time
data-dependent applications, with end-to-end deadlines and
run-time task reordering.

In the remainder of this paper, we introduce the dataflow
model of applications and architectures, and the energy
consumption model (Section II). We identify three slack
types: static, work and share slack in Section III. SlackOS is
presented in Section IV, experimental results in Section V,
related work in Section VI, and we conclude in Section VII.

II. BACKGROUND AND MODELS

In this section we model applications and their mapping
on processors as dataflow graphs. The worst-case execution
time of a task is modeled by its worst-case work combined
with the operating point (rate of work) of the processor it
is bound to. The worst-case response time models that fact
that multiple tasks share a resource [6]. Then we present the
energy dissipation model for our SOC, as a function of the
processor’s operating points.

A. Dataflow application model

A static dataflow graph is a directed graph G = (V, E)
consisting of a set nodes v ∈ V known as actors, and a set
of edges d ∈ E, d = (vx, vy) representing dependencies
among actors. The actors synchronize by communicating
tokens, in a FIFO order, following the direction of the edges.
For edge (vx, vy), vx is a predecessor of vy , and vy a
successor of vx. Each dataflow actor fires for an infinite
number of activations, based on its firing rule. A firing rule
specifies, for one activation, for each incoming and outgoing
edge, the number of input tokens required and the number
of tokens produced, respectively. The static dataflow model
naturally describes a streaming application: a task is an actor,
and a task iteration is an actor firing. FIFO communication
between two tasks is represented as a pair of opposing
edges; one modeling the communicated data, and the other
modeling the available inter-task buffer space.

B. Dataflow architecture model

We assume a general architecture template as described
in [8], where tasks share resources (processors, memories,
interconnect) using starvation-free arbiters. We denote the
set of tasks by T and the set of resources by R. In this
paper we focus on the processor resources, leaving the use

of memory and interconnect resources for future work. Each
task ti is statically bound to one processor pk (tasks do
not migrate), by the function bind : T → R. Multiple
tasks may have dependencies as described above, may be
bound to a single resource, but resources are independent.
The application, its resource usage, and arbitration policies
are modeled in dataflow. As a result, after the application is
bound to a platform instance, we can analyze RT properties,
such as end-to-end application throughput, arbiter settings,
and buffer sizes [6], [7]. We illustrate this dataflow model
in Figure 1 that shows an application with 4 tasks (circles)
and three or four processors (squares), bound in two ways:
(A) each task has its own processor, and (B) two tasks share
the same processor. A task’s self-edge expresses that tasks
are not re-entrant, i.e. cannot start a new iteration before
finishing the current one. For clarity, in this example the
inter-task communication buffers are considered infinite, i.e.
task dependencies miss the opposing edge.

Figure 1. Task to processor binding examples.

Each ti requires from its processor pk, in each iteration
j, an amount of work wi,j , measured in cycles. The worst-
case work of ti is wcwi = max

∀j
(wi,j). Traditionally, each pk

is operating at the maximum frequency fmax
k for which the

processor’s hardware is synthesized. Thus the execution time
eti,j of ti’s iteration j depends on the requested work and
the processor’s operating point, eti,j = wi,j/fmax

k . Worst
case wceti = wcwi/fmax

k .
A task ti is ready to execute when its input data and output

space are available, i.e. in the model the actor has enough
input tokens to fire. ti is ready for its jth iteration at time
ri,j and it completes it at ci,j . Typically, multiple tasks share
a processor, therefore each one can use only a fraction of the
processor’s total capacity. Due to serialization, a task cannot
always execute immediately when it is ready, as another task
may be using the processor. Resource sharing is modeled in
the dataflow analysis by using instead of eti,j , the response
time rti,j , defined as the difference between the ready and
the completion time of the task: rti,j = ci,j − ri,j . The
worst-case response time wcrti is a function of wceti, of
the scheduler type and settings, and of the worst-case data
arrival. Note that with no processor sharing (1T:1P binding),
the worst-case response time of a task equals its execution
time (wcrti = wceti), as a task can start immediately when
it is ready, whereas otherwise wcrti ≥ wceti.



In our platform, we use preemptive time-division mul-
tiplexing (TDM) scheduling, with or without static order-
ing [7], but any other starvation-free arbitration could be
used. Figure 2 shows an example of a TDM schedule,
with a repetition period Pk, from which ti has a slice Si

representing a fraction of the available processor capacity.
As visible in Figure 2 the worst data arrival moment is
when the slice of ti just finished and the best case data
arrival moment is when the data is available from the very
beginning of ti’s slice. Thus, in the case data arrives at the
worst case one slice is wasted in the sense that ti cannot be
executed. However, for the real-time analysis the worst-case
data arrival has to be taken into account when deriving the
guaranteed throughput that can be delivered by the system,
thus one extra slice is budgeted. In this case, the worst-case
response time is [6]:

wcrtTDM
i = (Pk − Si)

⌈
wceti

Si

⌉
+ wceti. (1)

Si

timePk Pk

Best case data arrival 

ti starts in current slot

Worst case data arrival

ti starts in next slot

Si

Figure 2. TDM worst/best case data arrival.

General arbitration can invalidate RT guarantees [9], but
the dataflow execution model is monotonic, i.e. starting early
only reduces the worst-case completion time of successors
As a result, the minimum end-to-end throughput can only
increase due to slack.

To analytically determine the minimum end-to-end
throughput that an application mapped on an architecture
can deliver, we use the set of all cycles C in the dataflow
graph. In conventional dataflow analysis, the cycle mean of
a cycle Cl is defined as cm(Cl) = 1

∆l

∑
ti∈Cl

wcrti, where

∆l is the sum of initial tokens on a cycle [10]. The RT
application’s throughput T that can be guaranteed is:

T ≤ 1
max
Cl∈C

(cm(Cl))
. (2)

Aiming to reduce energy, we extend prior dataflow model
work by considering that each processor pk has multiple
independent VF operating points. Each iteration j of task
ti bound to pk can have its own operating point, denoted
by its frequency fk,i,j . Voltage is derived from frequency,
as described in Subsection II-C. Note that a task’s re-
quested work wi,j is independent of the operating point
of the processor, but the execution time eti,j depends on
the requested amount of work wi,j and on pk’s operating
point: eti,j(fk,i,j) = wi,j

fk,i,j
. In the rest of this paper all the

times (eti,j , rti,j , etc.) correspond to the maximum frequency
fmax

k , unless explicitly specified otherwise.

C. Energy dissipation model

The dynamic power depends on the switching activity
α, the capacitance of the physical processor’s circuit C,
the supply voltage V , and the clock frequency f : Psw =
αCV 2f . The energy is Esw = Pswt, where t is the length
of time during which energy is dissipated. Since t = w/f ,
i.e. executing the required work w at operating point f , an
alternative formulation is: Esw = αCV 2w.

We assume a linear dependency between the voltage
and the frequency, as experimentally determined in [11],
with maximum frequency fmax and voltage Vmax of the
circuit. We also assume a minimum voltage Vmin (and a
corresponding fmin) to the voltage scaling, below which the
energy is frequency independent, thus VFS does not save any
energy. Hence a processor’s frequency ranges from fmin to
fmax. The energy is Esw = βf2w, (where β is an adequacy
constant) and VF scaling trades a linear processor slowdown
for a quadratic energy reduction.

In this paper we assume that the VF scaling is imple-
mented as proposed in [12], thus its time penalty is 2̃00ns
(for voltage swing from 1.2V down to 0.6V for an chip in
0.13um CMOS), i.e. negligible at the time granularity of
tasks. Moreover, the VFS energy overhead is assumed to be
zero (as the VF is scaled at most once per task iteration,
as we present in Section IV, and the energy overhead
of the scaling is typically significantly smaller than the
energy spend in an iteration). Therefore, if a multiprocessor
executes N tasks each of which process Mi iterations at
different frequencies fi,j,k, the total dissipated energy is:

Etot =
N∑

i=1

Mi∑

j=1

βf2
bind(ti),i,j

wi,j (3)

In the following section we give a taxonomy for the slack,
the base for our energy management method.

III. SLACK AND ITS USE

In this section we introduce slack, which intuitively cor-
responds to unused capacity of the processors. Then we
formulate the energy minimization problem than we want
to solve in this paper, discuss possible strategies to reduce
energy and their applicability in the RT domain. Finally, we
categorize slack and comment on its effects.

In a platform as the one introduced above, slack exists
because of variations: (1) in the application behavior, (2)
in the environment where the application executes, and (3)
between the model (application, architecture, binding) and
the real life. The application related slack occurs because:
(a) not all cycles in the dataflow graph are equally long and
(b) tasks require less work than the worst-case for which the
system was provisioned. The execution environment related
slack is present when data arrives earlier than assumed when
computing wcrti’s; The modeling slack occurs when (a) the
computation of wcrti and wceti is not tight, and (b) resources



are over-allocated due to discretization, i.e. rounding up to
fixed-size time slices.

In this paper, we tackle the following energy optimization
problem: find the operating points fk,i,j ≤ fmax

k for each
task firing such that the energy Etot is minimized, while still
guaranteeing the throughput T for which the application is
designed (assuming fmax

k ).
When a task completes s time units earlier, the time

available for the next ready task ti on the same processor is
wceti + s. Hence the operating point can be conservatively
scaled down to: fk,i,j(s) = wcwi

wceti+s
, and the throughput

of the application still guaranteed. Considering the relation
among the wceti and fmax

k in Subsection II-B:

fk,i,j(s) = fmax
k

(
1− s · fmax

k

wcwi + s · fmax
k

)
. (4)

The optimization problem above can be solved by em-
ploying an Energy Manager (EM). An EM’s policy can be
categorized using several criteria:

1. Employment phase. The policy can be applied prior to
execution (design time), or during execution (run time).

2. Safety. A policy is conservative if it guarantees dead-
lines are not missed, and non-conservative otherwise. Often,
non-conservative energy management predict and use future
slack, maybe missing deadlines.

3. Slack certitude. In a system, the current proven slack
is the one that it has been generated in the past and it and
not lost (details in Section III-D). Proven slack can be used
conservatively, but for unproven (speculative) slack this only
holds if its lower limit can be computed upfront (e.g. at
design time). The difference between proven and unproven
slack refers only to the point in time when the slack is
considered (namely after or before it was generated).

4. Scope. A local policy uses only information about tasks
on the local processor, avoiding exchange and synchroniza-
tion of information between processors.

We solve the formulated optimization problem by em-
ploying a conservative run-time energy manager, that re-
quires only information local to each processor. The main
justification is that distributed scheduling is more complex,
especially because schedulers on different processors are
not synchronized, and inter-processor state synchronization
is relatively slow. Moreover, to preserve scalability, we
would not like to add extra inter-processor dependencies
and synchronization points. Below, we split this slack in
two main categories the static and dynamic slack; the latter
is split in work and share slack.

A. Static slack

Static slack is present even when all tasks require their
worst case work, because some cycles means cm(Cl) may
be smaller than the inverse of the guaranteed throughput.
Thus the difference between 1/T and cm(Cl) represents the
static slack of each cycle Cl. The fk,i,j can be conservatively

determined at design or run-time, i.e. by ”stretching” all cy-
cles via VFS, until they equal 1/T . This requires knowledge
not local to a task (which task belongs to which cycles) that
however is available at design-time, at no extra energy cost
for an Energy Manager (EM) regardless if it uses the slack
at design- or run-time.

Figure 3(A) presents the static slack for the 1T:1P binding
in Figure 1(A). No processor is not, so wceti = wcrti. Each
task represents a cycle and the longest one in this example
is given by t1. For simplicity we consider that the desired
throughput equals 1/wcet1. In this case tasks t2, t3 and t4
have static slack, as wcet2,3,4 < wcet1 in each iteration.

B. Work slack

In practice not all task iterations require the worst case
amount of work, as the work wi,j is data dependent. The
work slack of a task in an iteration is given by the difference
between wceti and eti,j . We consider the slack due to wceti
inaccurate computation to be included here. In the literature
work slack is typically called dynamic slack, but we use
the term work slack to distinguish it from the share slack
introduced below, that also has a dynamic nature.

Figure 3(B) presents the work slack in addition to the
static slack in Figure 3(A). The throughput is still given
by wcet1, and each task has a slack equal to the difference
between its execution time in each iteration and wcet1.

The work slack can be conservatively utilized at run-
time only if it proven (i.e. after it is produced). A run-time
speculative slack estimation is subject to miss-prediction,
thus may lead to a deadline miss. Hence, past slack can be
used when setting the operating points of future iteration(s)
of the slack recipient(s). To determine the work slack,
an EM has to know wceti (available at design time) and
eti,j(fk,i,j). Determining eti,j(fk,i,j) at run-time requires
tasks to signal to the EM their computation progress (i.e.
start and completion time). To exploit the slack, another
task should be started earlier. To be sure that is possible, the
task’s readiness (i.e. the corresponding actor’s firing rules)
should be checked. On our platform, this information is
locally available to each processor.

C. Share slack

As already mentioned, the binding of multiple tasks on a
single processor is in practice more common than a 1 to 1
mapping, and the response time accounts for the serialization
and arbitration effects. In the TDM case, due to discrete
scheduler quanta or to slices allocation, a task might not
start immediately when its data is available. Thus processing
capacity is budgeted to account for the worst case of these
effects. However, in practice data might arrive earlier than
expected, hence the system has share slack.

Figure 3(C) illustrates the effects of serialization on the
slack in Figure 3(B). The difference among the two figures is
that in (C) t2 and t3 shared the same processor. Furthermore,



an example of share slack is presented for a TDM arbitration
scheme, in Figure 3(D). There t2 cannot start immediately
after its input data is available, as the slice belongs to t3.

wcet3

wcet2

wcet4

wcet1P1:

P2:

P3:

P4:

wcet3

wcet2

wcet4

wcet1

wcet3

wcet2

wcet1 wcet1

et3,1

et2,1

et4,1

et1,1P1:

P2:

P3:

P4:

et3,2

et2,2

et4,2

et1,2

et3,3

et2,3

et1,3

. . .
. . .

. . .
. . .

et3,1et2,1

et4,1

et1,1P1:

P2=P3:

P4:

et3,2 et2,2

et4,2

et1,2

et2,3

et1,3

. . .
. . .et3,3

et3,1et2,1

et4,1

et1,1P1:

P2=P3:

P4:

et3,2et2,2

et4,2

et1,2 et1,3

. . .
. . .

t2t3 t2t3 t3

(A) Static slack

(B) Work slack

(C) Serialization effects on slack

(D) Arbitration (time slicing) effects on slack

work slackstatic slack all slack

Figure 3. Static, work and share slack.

Similar to the work slack, the share slack nature is dy-
namic. However, its amount is known at design time (being
the budget needed to cover for the worst-case data arrival).
Nevertheless its occurrence in time is dynamic, as the actual
data availability is dictated at run-time. Thus, conservative
exploitation of share slack requires information about the
task’s readiness (locally available, as already mentioned) and
it is possible if the slack is proven, same as for work slack.

D. Slack propagation

Regardless of its source, an effect of slack is early task
completion, hence possibly early ready time of its succes-
sors, some perhaps executing on other processors. Hence,
these successors may start early, hence end earlier than the
worst case, causing slack to occur. Therefore slack produced
on one processor, can ”multiply” to other processors. How-
ever, an early task completion does not always result in an
early start of its successors. (i.e. not all slack propagates).
When a task has more than one predecessor, its earliest
starting time is the maximum among the finishing times of
its predecessors, hence the slack of some of its predecessors
is lost when multiple data dependencies ”converge” in a
task. Oppositely, a divergence of dependencies, i.e. multiple
outgoing edges from ti, causes the slack of ti to multiply, in

the sense that all its predecessor are potentially enabled ear-
lier. Slack multiplication actually means that the work slack
of a task causes share slack to another task on a different
processor. In this manner the slack can be ”accumulated” in
the system during several consecutive iterations.

These effects are exemplified in Figure 4 for an iteration
of the task graph in Figure 1(A). Two cases are presented:
the case (A) in which tasks execute in their worst case time,
and the case (B) in which tasks take less than the worst
case time, thus have slack. We can observe that the early
completion of t1 (bound to P1) may cause t2 (bound to P2)
and t3 (bound to P3) to start earlier, thus the slack multiplies
(propagates from P1 to P2 and P3). Moreover, we can see
that the early completion of t2 does not result in an early
start of its successor, t4 (a convergence of dependencies). In
this manner the slack of t2 can be lost (note however that if
more task would have been bound to P2, one of them could
have used this slack). However, in case (B) t4 starts earlier
than in (A) because of t1 and t3 slack that propagates to P4.

wcet3

wcet2

wcet4

wcet1

et1,1

et3

et2

et4

P1:

P2:

P3:

P4:

P1:

P2:

P3:

P4:

Slack multiplied (early completion 

of t1 => early start of t2&t3)

Slack lost due to dependencies 

convergence (early completion of 

t2 lost )

Slack multiplied (early completion 

of t1&t3 => early start of t4)

(A)

(B)

Figure 4. Slack multiplication&loss from a processor to another, along
data dependencies

Above we considered the ideal case when the inter-task
buffers have an infinite size. However, in practice that is
not the case, and the size of the buffers limit the amount of
slack that can be accumulated over consecutive iterations.
We illustrate this effect in Figure 5 using a simple example
of a producer (t1) and a consumer (t2), each bound to a
processor, and communicating via a FIFO. We compare
two cases: the one in which the FIFO can store only 1
token and the one in which its size is 2 tokens. We present
t1’s accumulated slack in several consecutive iterations.
This slack is defined as the time between the last possible
completion of an iteration (without missing a deadline), and
the actual iteration completion. In this example we denote
with slackm

i,j the slack of ti accumulated till iteration j,
when the FIFO has the size m. For simplicity, in this
example we assume that the deadlines of the application
are at the end of each t2 iteration and that only t1 has
slack. t1 can restart its next iteration as long as it has space
in the FIFO. Thus, when the FIFO size is 2, the number
of t1 iterations that can be executed until filling the FIFO
is larger than in case the FIFO size is 1. Regardless its



size, after the FIFO is full the slack does not accumulate
anymore, (for t1, e.g. slack

(1)
1,2 = slack

(1)
1,3 = slack

(1)
1,4 = ...

and slack
(2)
1,4 = slack

(2)
1,5 = ...). We can still use the slack

generated by t1 after FIFO filling, by allocating it to a
different task that is ready for execution. For clarity, in
this example we considered only the static slack, but the
same considerations hold true also for the dynamic slack. In
conclusion, the larger the FIFO the more accumulated slack
(for example slack

(1)
1,3 < slack

(2)
1,3, as visible in Figure 5).

This is an interesting observation for applications for which
an increase in quality of service (QoS) is desired (instead
of VFS), but that extra QoS requires a certain amount of
slack. For such applications the buffer sizes should be large
enough to allow sufficient slack accumulation.

wcet2,1 wcet2,4wcet2,2

wcet2,1 wcet2,4wcet2,3wcet2,2

P1:

slack
(2)
1,2 slack

(2)
1,3

slack
(2)
1,4

slack
(2)
1,5

wcet1,1

slack
(1)
1,2 slack

(1)
1,3 slack

(1)
1,4 slack

(1)
1,5

t1 t2

t1 t2

P1 P2

P1 P2 P2:

P1:

P2:

wcet1,2 wcet1,4wcet1,3 wcet1,5

wcet1,1 wcet1,2 wcet1,4wcet1,3 wcet1,5

wcet2,2

wcet1,6

Figure 5. Slack accumulation for different FIFO sizes

IV. SLACKOS - THE ENERGY AWARE TASK SCHEDULER

In this section, we describe SlackOS, an operating system
extension, to solve energy minimization problem. The focus
of this paper is to exploit the dynamic slack, thus static slack
is not discussed further. However, this is not a limitation,
because the static slack can also be used at run-time, as
mentioned in Subsection III-A.

As a starting point we have an existing task scheduler run-
ning on each core of a multiprocessor. This scheduler comes
in two flavors: (1) pure Time Division Multiplexing (TDM)
and (2) TDM mixed with static task ordering (TDM+SO).
In TDM+SO a group of tasks are executing, sequentially,
always in the same order, in a single time slice, the advantage
being that it may decrease the worst-case response times
(hence increase the achievable guaranteed throughput). For
TDM+SO we regard such group of tasks as a single task.
For both these flavors we assume that the schedule repetition
period Pk and each task slice Si are computed at design-
time [6], [7]. The instantaneous frequency of a processor pk

is shortly denoted with fk.
In both scheduling schemes, due to time slicing, the slack

is not contiguous, i.e. it is also sliced. When a task ti finishes
earlier, its unused budged is distributed among one or more
of the ti slices, thus a ti produced slack is:

si,j = csi,j + nSi · Si (5)

where csi,j is the slack present in the current slice, and nSi is
the number of slices left for ti to finish the current iteration.
An example of this slack is visible in Figure 6, where we
assume that in the worst case a ti iteration execution time
equals the size of the slice Si. In this example ti has both
its data available earlier, and its iteration shorter than in the
worst case, thus its slack is si,j = csi,j + Si.

timePk Pk

Best case data arrival Early ti finish

Si Si

eti,j csi,j Si,j

Figure 6. Example slack ti, si,j = csi,j + Si.

Subsequently, the energy management policy has to de-
cide along the following dimensions for which several
choices are possible:

1. VFS decision points: at an iteration end, at the begin-
ning of a slice and/or at a point inside of an iteration.

2. Slack recipients number: at a decision point, the entire
proven slack can be given to one or more recipient tasks. The
advantage of having more slack recipients is that it offers
a finer granularity management which may lead to higher
energy savings. However, intuitively, giving slack to more
than one recipient requires a larger administration overhead.

3. Identity of slack recipient(s) (slack balancing): at a
given point more tasks might be available to use the slack. A
simple order in which to pick the available recipient would
be the scheduling order. However, it might not always enable
slack multiplication, as introduced in Section III-D.

4. VFS granularity: VFS can be performed once, at the
beginning of a task iteration, or several times, also in the
middle of the iteration. If VFS is performed only once per
task iteration some slack occurring later in the system might
be left unused. However, scaling several times per iteration
assumes either support for measuring the inside iteration
computation progress or that the iteration execution time
varies linearly with its required work over every iteration
part, and not only over the entire iteration.

5. Idle slice management: if at the beginning of a slice
no task is ready, SlackOS can decide to idle the entire slice
or check again for tasks’ readiness with a given periodicity.
If the slices are large, it is likely that periodic checking for
slack recipients decreases the energy consumption, however
one has to keep in mind that each such check costs energy.

In this approach, SlackOS makes VFS decisions both at
the end of an iteration and slice, gives the slack to a single
recipient, searching for ready tasks in scheduling order, and
scales only once, at iteration start. We leave the investigation
of the other options and the slack balancing as subject for
future research.

The SlackOS functionality requires extending the TDM
as follows:



1. tasks’ states; Task states are required to determine
whether a task is executing or not, if it can start an iteration,
etc. Hence a task can be: (a) RUNNING while executing
an iteration on a processor, (b) PREEMPTED, when it is
already started an iteration, has not finished it yet, but was
preempted from the processor, and (c) BLOCKED when it
has no input/output to progress.

2. ready tasks check; SlackOS can conservatively perform
VFS only if it knows that the slack recipient can immediately
start. Hence SlackOS administrates a table accounting for
each task’s input/output data/space, thus it can check the
task’s readiness. Being ”ready” does not need to be an ex-
plicit task state, as immediately after checking the data/space
availability the task goes either into the RUNNING or
BLOCKED state.

3. computation progress; SlackOS has to be aware of each
iteration end, thus the tasks or an underlying library have to
signal the iteration progress (i.e. its end) to SlackOS.

The proposed energy manager changes the processor’s
frequency using Equation 4, as presented in Algorithm 1.
We do not explicitly distinguish among the work and share
slack, as it makes no difference for VFS. The slack slices
nSi accounting required to calculate the slack is done at ti’s
iteration end (increase nSi) and at ti’s slice end (decrease
nSi), to calculate the slack according to Equation 5. When
an iteration ends, if the slack csi is larger than MINSLACK
(the slack threshold), csi,j > MINSLACK, there is a potential
for energy saving in that slice, by starting a task earlier
and scaling down VF. SlackOS first checks if the next
iteration j + 1 of the same task can be started (continuing
the same task is cheaper than switching tasks, due to the
task switching overhead). If that is the case, ti starts its
next iteration, and fk is set considering the entire ti’s slack
si,j . If not, the SlackOS searches for a ready task, tx, in
TDM schedule order. If one is found, the fk is changed
considering only csi,j . This choice can cause slack waste,
and it is subject for future work. However, passing slack
that occurs in future periods complicates the scheduler, i.e.
to ensure no deadline is missed, it has to check if the future
slack does not occur after the latest moment when the slack
recipient should complete its iteration. If no ready task is
available to use the slack, the remainder of the slice is
left idle. MINSLACK is a constant that reflects the break
even point among the potential savings and the overhead of
calculating and switching the operating point.

At the beginning of ti’s slice, if ti is the PREEMPTED
state, it simply resumes execution. Otherwise, if ti is the
BLOCKED state, SlackOS checks if it cannot start, i.e.
checks for data. If so, ti is started, and if moreover, ti is
having slices left from its previous iteration (nSi 6= 0), the
frequency is scaled accordingly. When ti is not ready, and
another task tx can start earlier, tx is scaled using ti’s current
slice and possibly its own left slices (Si+nSx ·Sx). Otherwise
the slice is left idle. Note that we do not aim to reduce the

Algorithm 1: SlackOS energy manager.
// At end iteration j, task ti;
nSi + +;
if (ti is ready) then

fk = fk,i,j+1(csi,j + nSi · Si);
ti → RUNNING;

else
if (found tx ready) then

fk = fk,x,h(csi,j + nSx · Sx));
tx → RUNNING;

else idle slice;

//At end slice, iteration j, task ti;
nSi −−;
if (ti is RUNNING) then ti → PREEMPTED;
else ti → BLOCKED;

//At start slice of iteration j, task ti;
if (ti is PREEMPTED) then

ti → RUNNING;
else

if (ti is ready) then
fk = fk,i,j(nSi · Si);
ti → RUNNING;

else
if (found tx ready) then

fk = fk,x,h(Si + nSx · Sx);
tx → RUNNING;

else idle slice;

energy dissipated while the processors are running idle; this
can be done by simply turning them off when idle.

We would like to stress the fact that SlackOS is not limited
to platforms modeled as dataflow. From the application and
platform model SlackOS has to know only the budget and
the worst case execution time for each iteration of each task.
Hence the energy-managed platform misses no deadline if
the initial design meets them, and the system is monotonic
(giving more budget to a task does not delay its completion).
Summarizing, the novelty of SlackOS resides in the fact that
it conservatively scales VF and allows reordering of tasks at
run-time, in shared multi-processors executing RT tasks with
complex dependencies, requiring only local information.

V. EXPERIMENTAL RESULTS

In this section, we first briefly introduce the experimental
platform and then we compare the energy consumption of
an existing real-time multiprocessor as it is, with the same
one but this time managed by SlackOS.

The simulation platform follows the tiled template of the
predictable multiprocessor in [8], and has 2 ARM processors
connected by a NoC [14], and sharing an external DDR
memory, as visible in Figure 7. Each ARM has a local
memory to store local data as well as FIFOs data and
administration structures. The data communication outside
a tile is controlled by a Communication Assist, CA (with a
functionality similar with Direct Memory Access (DMA)).
For instance when a task writes data into a FIFO, it actually



writes it in the local tile memory, and the CA forwards the
data to the local memory of the FIFO consumer. This ensures
that the computation and communication can be performed
in parallel, and the processor performance is not heavily
penalized by long latency accesses to remote memories.

ARM
Local 

Mem

CA

ARM
Local 

Mem

NoC

Mem

CA
Tile 1 Tile 2

Figure 7. Multi-processor experimental platform

On the platform briefly presented above we execute an
H.264 decoder application with 10 tasks [13], first scheduled
using TDM, then using TDM+SO. The H.264 is presented in
Figure 8 (for readability, we omit the self-edges, and each
arrow represents a FIFO, corresponding to a pair of data-
flow edges). The entropy decoder, the loop filters and the
frame buffer tasks are mapped on the first ARM processor
and the transform decoders are mapped on the second one.
As the H.264 is a large application, and the freely available
ARM instruction-set simulator (i.e. SWARM [15]) is a slow
one, in order to be able to exercise input data streams with
a large number of frames (72 in this paper) we utilize a
fast simulation method. This method requires an initial step
of gathering the execution times of each task iteration eti,j
running at fmax

k . The wceti is calculated for each task as the
maximum eti,j . This step is a slow one, but it is performed
only once. Then, whenever we experiment with an energy
saving policy we accurately simulate only the inter-task
FIFO communication, and the SlackOS code. To speed-up
the simulation we only account for the tasks execution time
(the equivalent of a SystemC ”wait()”). In case VFS is apply
during an task iteration, the time that iteration takes is scaled
accordingly, eti,j(fk,i,j) = eti,jfk,i,j

fmax
k

(as it can be inferred
from Section II).

In both scheduler cases, TDM and TDM+SO, the param-
eters (size of the time slices, TDM repetition period, tasks
order) are determine at design-time using dataflow methods
as mentioned in Section II, and the scheduler performs task
switching at fixed points in time. We augment this scheduler
with SlackOS features, as described in the previous section.

We consider that the maximum frequency of the ARM
cores is 200MHz and the frequency below which the voltage
does not scale anymore is 91MHz [11]. We carried out
experiments for the following three cases: (WCET) each
task requesting its worst-case work wcwi, and no VFS,
(ACET) each task requesting its actual work wi,j , and no
VFS, and (SlackOS) each task requesting its actual work and
the energy managed as in the section above. The energy is

Figure 8. H.264 experimental application

presented cumulatively, per frame, normalized to the highest
energy consumption experimented (i.e. the ACET energy
consumption of the 72nd frame). We compare the energy
consumed when using SlackOS only with the one of an
energy unaware multiprocessor. The reason is that, to our
knowledge, no method exist to save energy conservatively,
for real-time data-dependent applications, with end-to-end
deadlines and task reordering.

In the following we present: (1) the energy savings
obtained when applying our strategy, and (2) the average
processors utilization (the higher the processor utilization,
the smaller the slack left unused). The results include the
time and energy spent in the execution of the SlackOS’s
code, and do not include the energy spent when ARMs
are idle (if the idle energy would have been included
the differences between ACET and SlackOS would be
even larger as the energy-managed platform is idle for
less time). We investigate the processors utilization over
a large range of minimum processor frequencies fmin ∈
{200, 125, 91, 50, 33, 25}MHz. Note that under 91MHz the-
oretically the energy can not be reduced anymore, however
here we want to measure SlackOS potential to use the slack.

For an H.264 decoder scheduled with TDM, the SlackOS
reduces the energy consumption with 22% when compared
with the energy spent in ACET (Figure 9). The ideal energy
saving achieved when the processors run constantly at fmin

is 37%, when compared to ACET. Note however that when
the processors run continuously at fmin, deadlines can be
missed. SlackOS saves 60% from the maximum possible
energy reduction, while guaranteeing zero deadline misses.
As visible in Figure 10, the processor utilization numbers for
the SlackOS saturate after an fmin = 91MHz, and do not
reach the values of WCET utilization. This suggests that, in
the case of TDM scheduled H.264, SlackOS does not fully
utilize the slack. The underlying reasons are: (1) SlackOS
exploits only the intra-slice slack csi when passing it among
tasks, and (2) when no task is ready to use the slack the
entire rest of the slice is spent in idle. (3) the frequency is
set once per iteration, thus the slack cannot be passed to



a PREEMPTED task. Moreover, we observed that for the
H.264 case most of the times the slack could be passed
only inter-task, as the next iteration of the current task was
typically not available.

0.5

0.6

0.7

0.8

0.9

1

Normalized cumulative energy consumption
ACET SlackOS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Frames

Normalized cumulative energy consumption
ACET SlackOS

Figure 9. H.264 normalized energy, cumulative, per frame (TDM)

Average processor utilization

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

20012591503325

Minimum Processor Freq. (MHz)

WCET

SlackOS

Figure 10. Avg. procs. utilization (TDM)

In the case of TDM+SO, the energy saving when the
ARMs run constantly at fmin

k is 35%, when comparing
with the energy spent in ACET. Here our policy achieves
very close to ideal savings while keeping the throughput
guaranteed (the energy dissipated using SlackOS is 33%
from ACET’s energy, as visible in Figure 11). The processor
utilization, as observed in Figure 12, goes very soon close to
the WCET case. This suggest that in this case SlackOS uses
the entire slack. The difference with the pure TDM based
policy is that in the TDM+SO case a ready slack recipient
was always found, thus the slack was not lost.

VI. RELATED WORK

A good overview of low power techniques is presented
in [2]. Most of the existing techniques for energy reduction
in multi-processors differ from ours because tackle use static
slack, at design-time. One of the first methods to handle de-
pendent tasks [16], performs simultaneous task assignment
and scheduling. The authors of [17] introduce power-aware
static slack distribution and priority adjustment. In [18] they
propose an optimal solution for combined supply voltage

0.5

0.6

0.7

0.8

0.9

1

Normalized cumulative energy consumption ACET

SlackOS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Frames 

Normalized cumulative energy consumption ACET

SlackOS

Figure 11. H.264 normalized energy, cumulative, per frame (TDM+SO)

Average processor utilization

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20012591503325

Minimum Processor Freq. (MHz)

WCET

SlackOS

Figure 12. Avg. procs. utilization (TDM+SO)

and body bias selection for multiprocessor systems executing
applications with time constraints. The work in [19] tackles
acyclic task graphs. In [20] the switching and leakage
power is minimized via VFS and adaptive body biasing,
under time constraints, by iteratively scaling the task that
are likely to save the most power. Manzak et al. [21]
propose a distribution of slack among the nodes in the
data-flow graph. The distribution procedure approximates
the minimum energy relation iteratively derived using the
Lagrange multiplier method. In [22] a scheme for propor-
tional static slack distribution taking parallelism into account
is presented. The method in [23] calculates the task ordering
and voltage assignment for a platform with one scalable
processor and multiple I/O devices. As these methods bring
interesting energy improvements, however they do not utilize
the dynamic slack conservatively.

Moreover, two design and run time methods for dealing
with static slack exist. The method in [24] calculates off-line
the Pareto operating points corresponding to task running on
different resources. An energy-performance optimal point is
chosen at runtime, depending on the tasks and resources
in the system. Shin et al. [25] present a DVFS method
for conditional task graphs. At design time an initial task
ordering and stretching is determined, and further refined at
run-time depending on the actual data arrival.

Furthermore, several approaches using work slack are



proposed and deliver promising energy reductions. Ruggiero
et al. [26] select the optimal number of (symmetric) proces-
sors and their VF points, to minimize system power under
throughput constraints. Simunic et al. [27] propose a closed
control-loop energy regulation that assumes exponential ar-
rival times and offers globally optimal control. In [28] the
power utilization of application’s consisting of task graphs
running on systems with rechargeable batteries is maxi-
mized. However all these methods are non-conservative.

The approaches closest to our work are [1], [3], [4], [5].
Maxiaguine et al.[1] propose a DVFS strategy in two phases:
worst-case off-line bounding and improving these bounds at
runtime, conservatively. The method is based on network
calculus and can trade buffer sizes for energy savings, but
it does not support resource sharing. The methods in [3]
and [4] deal with acyclic task graphs. In [3] a new VF point
is determined based on the amount of work left for each
task, involving complex book-keeping. In [4] static and work
slack is conservatively exploited for statically scheduled task
graphs, hence task reordering is not possible at run-time. In
[5] a conservative slack reclamation that deals with depen-
dent tasks is proposed. However this method requires extra
synchronization among the processors at each reclamation
action. Moreover, preemption and task reordering are not
supported, limiting the slack usage possibilities.

VII. CONCLUSIONS

In this paper, we investigated conservative energy man-
agement for real-time (RT) applications with multiple de-
pendent tasks, mapped on multiple independent processors.
Using dataflow models we classified different slack types,
which can be used to reduce dynamic energy: static, work
and share slack. For work and share slack we proposed
SlackOS, a run-time, dependency-aware, task scheduler that
conservatively scales down the processors’ voltage and
frequency, to reduce energy while meeting the application
throughput constraints. Its implementation extended on an
existing MPSoC platform with dependencies and energy-
awareness features, and uses only information local to the
processor to compute new processor operating points (en-
abling SlackOS’s scalability with the number of processors).

When applied to an H.264 decoder SlackOS saves 22%
and 33% energy in comparing to a non-energy-aware exe-
cution, for a task scheduler based on TDM and a TDM and
static order, respectively. At a cost of missing deadlines,
an execution with the processors constantly running at
the minimum frequency would only achieve 37% energy
savings, when compared to a non-energy-aware execution.
Thus SlackOS delivers 60% and 94% energy reduction,
while guaranteing zero deadline miss.

REFERENCES

[1] A. Maxiaguine et al., “DVS for buffer-constrained architectures with
predictable QoS-energy tradeoffs,” in CODES ISSS, 2005.

[2] V. Venkatachalam et al., “Power reduction techniques for micropro-
cessor systems,” ACM Computing Surveys, 2005.

[3] R. Mishra et al., “Energy aware scheduling for distributed real-time
systems,” in IPDPS, 2003.

[4] D. Roychowdhury et al., “A voltage scheduling heuristic for real-time
task graphs,” in DSN, 2003.

[5] C. Shen et al., “Resource reclaiming in multiprocessor real-time
systems,” IEEE Transactions on Parallel and Distributed Systems,
1993.

[6] M. Bekooij et al., “Dataflow analysis for real-time embedded multi-
processor system design,” in Dynamic and Robust Streaming in and
between Connected Consumer Electronic Devices, 2005.

[7] O. Moreira et al., “Scheduling multiple independent hard-real-time
jobs on a heterogeneous multiprocessor,” in EMSOFT, 2007.

[8] M. Bekooij et al., “Predictable embedded multiprocessor system
design,” in SCOPES, 2004.

[9] J. Reineke et al., “A Definition and Classification of Timing Anoma-
lies,” in WCET, 2006.

[10] R. Reiter, “Scheduling parallel computations,” Journal of the ACM,
1968.

[11] A. Burchard et al., “Complex SoC power characterization,” in NXP-
R-TN 2007/00005, 2007.

[12] M. Meijer et al., “On-chip digital power supply control for system-
on-chip applications” in ISLPED, 2005.

[13] P. de With et al., “On the design of multimedia software and future
system architectures,” in Embedded Processors for Multimedia and
Communications, 2004.

[14] K. Goossens et al., “The thereal network on chip: Concepts, archi-
tectures, and implementations”, IEEE Design and Test of Computers,
2005.

[15] M. Dales. SWARM - Software ARM. [Online]. Available:
http://www.cl.cam.ac.uk/ mwd24/phd/swarm.html

[16] F. Gruian, “System-level design methods for low-energy architectures
containing variable voltage processors,” in Workshop on Power-Aware
Computer Systems, 2001.

[17] B. Gorji-Ara et al., “Fast and efficient voltage scheduling by evolu-
tionary slack distribution,” in ASP-DAC, 2004.

[18] A. Andrei et al., “Overhead-conscious voltage selection for dynamic
and leakage energy reduction of time-constrained systems,” in DATE,
2004.

[19] H. Kimura et al., “Emprical study on reducing energy of parallel
programs using slack reclamation by DVFS in a power-scalable
high performance cluster,” IEEE International Conference on Cluster
Computing, 2006.

[20] L. Yan et al., “Combined dynamic voltage scaling and adaptive body
biasing for heterogeneous distributed real-time embedded systems,”
in ICCAD, 2003.

[21] A. Manzak et al., “A low power scheduling scheme with resources
operating at multiple voltages,” IEEE Transactions on VLSI Systems,
2002.

[22] S. Shaoxiong et al., “Power minimization techniques on distributed
real-time systems by global and local slack management,” in ASP-
DAC, 2005.

[23] P. Rong et al., “Power-aware scheduling and dynamic voltage setting
for tasks running on a hard real-time system,” in ASP-DAC, 2006.

[24] P. Yang et al., “Energy-aware runtime scheduling for embedded-
multiprocessor socs,” IEEE Design and Test of Computers, 2001.

[25] D. Shin et al., “Power-aware scheduling of conditional task graphs
in real-time multiprocessor systems,” in ISLPED, 2003.

[26] M. Ruggiero et al., “Application-specific power-aware workload
allocation for voltage scalable MPSoC platforms,” in ICCD, 2005.

[27] T. Simunic et al., “Managing power consumption in networks on
chips,” IEEE Trans. VLSI Syst., 2004.

[28] J. Suh et al., “Dynamic power management of multiprocessor sys-
tems,” in IPDPS, 2002.


