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Abstract. SIMD extension is one of the most common and effective
technique to exploit data-level parallelism in today’s processor designs.
However, the performance of SIMD architectures is limited by some con-
straints such as mismatch between the storage and the computational
formats and using data permutation instructions during vectorization.
In our previous work we have proposed two architectural modifications,
the extended subwords and the Matrix Register File (MRF) to allevi-
ate the limitations. The extended subwords, uses four extra bits for
every byte in a media register and it provides additional parallelism.
The MRF allows flexible row-wise as well as column-wise access to the
register file and it eliminates data permutation instructions. We have
validated the combination of the proposed techniques by studying the
performance of some multimedia kernels. In this paper, we analysis each
proposed technique separately. In other words, we answer the following
questions in this paper. How much of the performance gain is a result
of the additional parallelism? and how much is due to the elimination
of data permutation instructions? The results show that employing the
MRF and extended subwords separately obtains the speedup less than
1 and 1.15, respectively. In other words, our results indicate that us-
ing either extended subwords or the MRF techniques is insufficient to
eliminate most pack/unpack and rearrangement overhead instructions
on SIMD processors. The combination of both techniques, on the other
hand, yields much more performance benefits than each technique.

1 Introduction

Multimedia extensions are one of the most common approach to exploit Data-
Level Parallelism (DLP) in multimedia applications on General-Purpose Proces-
sors (GPPs). With this approach, multiple data items are packed into a wider
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media register which can be processed using a Single Instruction and Multiple
Data (SIMD) instruction. These extensions can improve the performance of sev-
eral multimedia applications. Nevertheless, they have some limitations. First,
there is a mismatch between the computational format and the storage format
of multimedia data. Because of this many data type conversion instructions are
used in SIMD implementations. Second, existing SIMD computational instruc-
tions cannot efficiently exploit DLP of the 2D and interleaved multimedia data.
In order to vectorize 2D and interleaved multimedia data, many rearrangement
instructions are needed.

In our previous work, two architectural enhancements, the Matrix Register
File (MRF) and extended subwords techniques have been proposed to overcome
the above limitations [16]. Extended subwords use registers that are wider than
the packed format used to store the data. Extended subwords avoid data type
conversion instructions. The MRF allows to load data stored consecutively in
memory to a column of the register file, where a column corresponds to corre-
sponding subwords of different registers. This technique avoids the need of data
rearrangement instructions. The MMX multimedia extension [12] has been mod-
ified by the proposed techniques that was called the Modified MMX (MMMX)
architecture. The MMMX architecture have been validated by studying the per-
formance of several important multimedia kernels. Our results show that the
performance benefits by employing both proposed techniques is higher than just
using the extended subwords technique. In other words, those multimedia ker-
nels which employ the MRF and extended subwrods techniques obtain more
speedups than just using the extended subwords technique. However, we did
not determine how much of the performance gain is a result of employing the
extended subwords technique and how much is due to the employing the MRF.
Our goal in this paper is to analysis each technique separately.

We make the following contributions compared to other works.

— We have applied the proposed techniques on a wide range of multimedia
kernels.

— In order to determine the performance benefits of each proposed technique,
we analysis each technique separately. In other words, we have enhanced the
MMX architecture with extended subwords (MMX + ES) and with an MRF
(MMX + MRF) separately.

— Our results indicate that using either extended subwords or the MRF tech-
niques is insufficient to eliminate most pack/unpack and rearrangement over-
head instructions. In addition, using the MRF is both unuseful and causes
performance loss. The MMMX architecture that employs both proposed
techniques, on the other hand, yields much more performance benefits.

This paper is organized as follows. In Section Bl we present background in-
formation related to the multimedia extensions and their performance bottle-
necks. In Section Bl we describes the MMMZX architecture that features the
extended subwords and the MRF techniques. We discuss several multimedia ker-
nels selected for performance evaluation in Section Ml followed by performance
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evaluation in Section Bl We analysis each proposed technique separately in
Section [6l Finally, conclusions are given in Section [

2 Background

We present a short explanation of the multimedia extensions in this section.

2.1 GPPs Enhanced with Multimedia Extension

In order to increase the performance of multimedia applications, GPPs vendors
have extended their ISAs. These ISA extensions use the Subword Level Paral-
lelism (SLP) concept [10]. A subword is a smaller precision unit of data contained
within a word. In SLP, multiple subwords are packed into a word and then whole
word is processed. SLP is used in order to exploit DLP with existing hardware
without sacrificing the general-purpose nature of the processor. In SLP, a regis-
ter is viewed as a small vector with elements that are smaller than the register
size. This requires small data types and wide registers.

The first multimedia extensions are Intel’s MMX [12], Sun’s Visual Instruc-
tion Set (VIS) [I7], Compaq’s Motion Video Instructions (MVI) [3], MIPS Digi-
tal Media eXtension (MDMX) [8], and HP’s Multimedia Acceleration eXtension
(MAX) [10]. These extensions supported only integer data types and were intro-
duced in the mid-1990’s. 3DNow [1]] was the first to support floating-point media
instructions. It was followed by Streaming SIMD Extension (SSE) and SSE2 from
Intel [13]. Motorola’s AltiVec [4] supports integer as well as floating-point media
instructions. In addition, high-performance processors also use SIMD processing.
An excellent example of this is the Cell processor [7] developed by a partnership
of IBM, Sony, and Toshiba. Cell is a heterogeneous chip multiprocessor consisting
of a PowerPC core that controls eight high-performance Synergistic Processing
Elements (SPEs). Each SPE has one SIMD computation unit that is referred to
as Synergistic Processor Unit (SPU). Each SPU has 128 128-bit registers. SPUs
support both integer and floating-point SIMD instructions. Table [[] summarizes
the common and distinguishing features of existing multimedia instruction set
extensions [15].

2.2 Performance Bottlenecks

SIMD architectures generally provide two kinds of SIMD instructions. The first
are the SIMD computational instructions such as arithmetic instructions. The
second are the SIMD overhead instructions that are necessary for data move-
ment, data type conversions, and data reorganization. The latter instructions
are needed to bring data in a form amenable to SIMD processing. These instruc-
tions constitute a large part of the SIMD codes. For example, Ranghanathan
et al. [I4] indicated that the SIMD implementations of the MPEG/JPEG codecs
using the VIS ISA require on average 41% overhead instructions such as pack-
ing /unpacking and data re-shuffling. In addition, the dynamic instructions count
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Table 1. Summary of available multimedia extensions. Sn and Un indicate n-bit signed
and unsigned integer packed elements, respectively. Values n without a prefix U or S
in the last row, indicate operations work for both signed and unsigned values. ' Note
that 68 instructions of the 144 SSE2 instructions operate on 128-bit packed integer in
XMM registers, wide versions of 64-bit MMX/SSE integer instructions.

GPP with

Multimedia Extension

ISA Name AltiVec/VMX MAX-1/2 MDMX MMX/ VIS MMX/ SSE SSE2 SPU ISA

3DNow SIMD

Company Motorola/IBM HP MIPS AMD Sun Intel Intel Intel ~ IBM/Sony/Toshiba

Instruction set Power PC PARISC2 MIPS-V  1A32 P. V.9 TA32 TA64 TA64 -

Processor MPC7400 PA RISC R1000 K6-2 Ultra, P2 P3 P4 Cell
PA8000 Sparc

Year 1999/2002 1995 1997 1999 1995 1997 1999 2000 2005

Datapath width 128-bit 64-bit 64-bit 64-bit 64-bit  64-bit  128-bit 128-bit 128-bit

Size of register file 32x128b (31) /32x64b 32x64b  8x64b  32x64b 8x64b  8x128b  8x128b 128x128b

Dedicated or shared with Dedicated Int. Reg. FP Reg. Dedicated FP Reg. FP Reg. Dedicated Dedicated Dedicated
Integer data types:

8-bit, 16 - 8 8 8 8 8 16 16
16-bit 8 4 4 4 4 4 4 8
32-bit 4 - - 2 2 2 2 4 4
64-bit - - - - - - - 2 2
Shift right/left Yes Yes Yes Yes Yes Yes Yes Yes Yes
Multiply-add Yes No No Yes Yes Yes Yes Yes Yes
Shift-add No Yes No No No No No No No
Floating-point Yes No Yes Yes No No Yes Yes Yes
Single-precision 4x32 - 2x32 4x16 - - 4x32 4x32 4x32
2x32
Double-precision - - - 1x64 - - - 2x64 2x64
Accumulator No No 1x192b No No No No No
# of instructions 162 9) 8 74 24 121 57 70 144! 213
# of operands 3 3 34 2 3 2 2 2 2/3/4
Sum of absolute-differences No No No Yes Yes No Yes Yes Yes
Modulo addition/ 8, 16, 32 16 8, 16 8, 16 16,32 8,16 8, 16 8, 16 8, 16
subtraction 32 32, 64 32, 64 32,64 32,64
Saturation addition/ Us, Ul6, U32 U16, S16 S16 U8, U16 No U8,U16 U8, Ul6 U8, Ul6 -
subtraction S8, S16, S32 S8, S16 S8, 816 S8, S16 S8, S16 -

of the EEMBC consumer benchmarks running on the Philips TriMedia TM32
shows that over 23% of instructions are data alignment instructions such as
pack/merge bytes (16.8%) and pack/merge half words (6.5%) [5]. The execution
of this large number of the SIMD overhead instructions decreases the perfor-
mance and increases pressure on the fetch and decode steps.

To illustrate where overhead instructions are needed in the SIMD implemen-
tations of multimedia kernels, we explain it in more detail. Data reordering
and data type conversion instructions are used after loading the input data and
before storing the outputs. For example, in case of the RGB-to-YCbCr color
space conversion, 35 and 6 instructions are needed in each loop iteration to con-
vert 8 pixels from the band interleaved format to the band separated format
and unpack the packed byte data types to packed 16-bit word data types, re-
spectively. In addition, 12 instructions are needed to pack the unpacked results
and store in memory. On the other hand, the number of SIMD computational
instructions is 78. This means that the number of overhead instructions is sig-
nificant compared to the number of SIMD computational instructions. As an-
other example, matrix transposition is a very common operation in multimedia
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applications. 2D multimedia algorithms such as the 2D Discrete Cosine Trans-
form (DCT) consists of two 1D transforms called horizontal and vertical trans-
forms. The horizontal transform processes the rows while vertical transform
processes the columns. SIMD vectorization of the vertical transform is straight-
forward, since the corresponding data of each column are adjacent in memory.
Therefore, several columns can be processed without any rearranging of the sub-
words. For horizontal transform on the other hand, corresponding elements of
adjacent rows are not continuous in memory (in a row-major storage format). In
order to employ SIMD instructions, data rearrangement instructions are needed
to transpose the matrix. This step takes a significant amount of time. For exam-
ple, transposing an 8 x 8 block of bytes, requires 56 MMX/SSE instructions, if
the elements are two bytes wide, then 88 instructions are required. Consequently,
it is important either to eliminate, to alleviate, or to overlap these instructions
with other SIMD computational instructions.

3 MMMX Architecture

The MMMX architecture is MMX enhanced with extended subwords, the MRF,
and a few general-purpose SIMD instructions that are not present in the MMX
and SSE extensions. The employed techniques in the MMMX architecture are
discussed briefly in the following section. More detail about this architecture can
be found in [15].

3.1 Extended Subwords

Image and video data is typically stored as packed 8-bit elements, but interme-
diate results usually require more than 8-bit precision. As a consequence, most
8-bit SIMD ALU instructions are wasted. In the SIMD extensions, the choice is
either to be imprecise by using saturation operations at every stage, or to loose
parallelism by unpacking to a larger format. Using saturation instructions pro-
duces inaccurate results. This is because saturation is usually used at the end of
computation. It is more precise to saturate once at the end of the computation
rather than at every step of the algorithm. For instance, adding three signed
8-bit values 120 + 48 — 10, using signed saturation at every step produces 117
and using signed saturation at the last step produces 127.

SIMD architectures support different packing, unpacking, and extending in-
structions to convert the different data types to each other. For example, the
MMZX/SSE architectures provide packss{wb,dw,wb} and punpck {hbw,hwd,hdq,
1bw,1lwd, ldq} instructions for data type conversions.

To avoid the data type conversion overhead and to increase parallelism, ex-
tended subwords are employed. This means that the registers are wider than the
data loaded into them. Specifically, for every byte of data, there are four extra
bits. This implies that MMMX registers are 96 bits wide, while MMX has 64-bit
registers. Based on that, the MMMX registers can hold 2 x 48-bit, 4 x 24-bit, or
8 x 12-bit elements.
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3.2 The Matrix Register File

The ability to efficiently rearrange subwords within and between registers is cru-
cial to performance. To overcome this problem, a matrix register file is employed,
which allows data loaded from memory to be written to a column of the register
file as well as to a row register. In the MMMX architecture, the MRF provides
parallel access to 12-; 24-, and 48-bit subwords of the row registers that are
horizontally located. This is similar to conventional SIMD architectures, which
provide parallel access to 8-, 16-, and 32-bit data elements of media registers.
In addition, the MRF provides parallel access to 12-bit subwords of the column
registers that are vertically arranged.

Figure[Il(a) depicts a block diagram of a register file with one write port (Port
C) and two read ports (Port A and Port B). The input and output of this block
diagram is based on eight 96-bit registers. Figure[ll(b) illustrates the combination
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Fig. 1. (a) A register file with eight 96-bit registers, 2 read ports, and 1 write port, (b)
the implementation of two read ports and one write port for a matrix register file with
8 96-bit registers as well as a partitioned ALU for subword parallel processing
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of the MRF with a 96-bit partitioned ALU for the MMMX architecture. The
partitioned ALUs have been designed based on the subword adder. Multiplexers
have been used in subword boundaries to propagate or prevent the subword
carries in the carry chain [6]. There are eight 12-bit adders. These adders operate
independently for 12-bit data. They can also be coupled to behave an four pairs
of two adders to perform four 24-bit operations, or combined into two groups of
four adders for two 48-bit format.

3.3 MMMX Instruction Set Architecture

The MMMZX architecture has different load/store, ALU, and multiplication in-
structions, which some of them are discussed in the remainder of this section.
The £1d8u12 instruction loads eight unsigned bytes from memory and zero-
extends them to a 12-bit format in a 96-bit MMMX register. The £1d8s12 in-
struction, on the other hand, loads eight signed bytes and sign-extends them to
a 12-bit format. These instructions are illustrated in Figure [ for little endian.
The £1d16s12 instruction loads eight signed 16-bit, packs them to signed 12-bit

R1

Memory ‘OXFF ‘ 0x13 ‘ OxaB ‘ Ox2a ‘ 0xa7 ‘ 0x01 ‘ 0x02 ‘ 0x03 ‘ ‘ ‘ ‘ ‘

fldgs12 3mx0, (R1)

amx0 [0] 03 o] o2 Jo]ot [F|ar Jo] 2a [F]|aB Jo] 13 [F[ FF |

fld8u12 3mx1, (R1)

amxt  [0] 03 Jo] o2 Jo[ ot Jo] a7 [o] 2a o] aB Jo] 13 Jo] FF |

Fig. 2. The £1d8s12 instruction loads eight signed bytes and sign-extends them to 12-
bit values, while the £1d8ul2 instruction loads eight unsigned bytes and zero-extends
them to 12-bit values

format, and writes in a row register. This instruction is useful for those kernels
that their input data can be represented by the signed 12-bit, while they use
the signed 16-bit storage format. For example, in the DCT kernel, the input
data is the signed 9-bit format. It uses the signed 16-bit storage format, while
it uses the signed 12-bit for computational format. The instruction £1dc8ul2
(“load-column 8-bit to 12-bit unsigned”) is used to load a column of the MRF.

Load instructions automatically unpack and store instructions automatically
pack and saturate, as illustrated for the load instructions in Figure 2 Store
instructions automatically saturate (clip) and pack the subwords. For example,
the instruction fst12s8 saturates the 12-bit signed subwords to 8-bit unsigned
subwords before storing them to memory.

Most MMMX ALU instructions are direct counterparts of MMX/SSE in-
structions. For example, the MMMX instructions fadd{12,24,48} (packed ad-
dition of 12-, 24-, 48-bit subwords) and fsub{12,24,48} (packed subtraction
of 12-, 24-, 48-bit subwords) correspond to the MMX instructions padd{b,w,d}
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mm,mm/mem64 and psub{b,w,d} mm,mm/mem64, respectively. MMMZX, however,
does not support variants of these instructions that automatically saturate the
results of the additions to the maximum value representable by the subword data
type. They are not needed because as was mentioned the load instructions auto-
matically unpack the subwords and the store instructions automatically pack and
saturate. In other words, the MMMX architecture does not support saturation
arithmetic.

In several media kernels all elements packed in a register need to be summed,
while in other kernels adjacent elements need to be added. Rather than providing
different instructions for summing all elements and adding adjacent elements,
it has been decided to support adding adjacent elements only but for every
packed data type. Whereas summing all elements would probably translate to a
multicycle operation, adding adjacent elements is a very simple operation that
can most likely be implemented in a single cycle.

Another operation that has been found useful in implementing of several mul-
timedia kernels such as the (I)DCT kernels is the possibility to negate some or all
elements in a packed register. The instructions fneg{12,24,48} 3mx0, 3mx1,
imm8 negate the 12-; 24-, or 48-bit subwords of the source operand if the corre-
sponding bit in the 8-bit immediate imm8 is set. If subwords are 24- or 48-bit,
the four or six higher order bits in the 8-bit immediate are ignored.

The MMMX architecture supports three kinds of multiplication instructions.
The first are full multiplication instructions fmulf{12,24}. For example, the
fmulf12 instruction multiplies each 12-bit subword in 3mx0 with the correspond-
ing subwords in 3mx1 and produces eight 24-bit results. This means that each
result is larger than a subword. Therefore, the produced results are kept in
both registers. The second kind of multiplication instructions are the partitioned
multiply-accumulate instructions fmadd{12,24}. These instructions perform the
operation on subwords that are either 12- or 24-bit, while the MMX instruction
pmaddwd performs the MAC operation on subwords that are 16-bit. The MAC
operation is an important operation in digital signal processing. This instruc-
tion multiplies the eight signed 12-bit values of the destination operand by the
eight 12-bit values of the source operand. The corresponding odd-numbered and
even-numbered subwords are summed and stored in the 24-bit subwords of the
destination operand.

The third type of multiplication is truncation. Truncation is performed by the
fmul{121,12h,241,24h} instructions. It means that the high or low bits of the
results are discarded. When n-bit fixed point values are multiplied with fractional
components, the result should be n-bit of precision. Specifically, the instructions
fmul12{1,h} multiply the eight corresponding subwords of the source and des-
tination operands and write the low-order (fmul121) or high-order (fmuli2h)
12 bits of the 24-bit product to the destination operand.

4 Multimedia Kernels

Most of the execution time of multimedia applications is spent in multime-
dia kernels. Therefore, in order to evaluate the proposed techniques, some time
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Matrix transpose
Vector/Matrix Multiply
Repetitive Padding

RGB-to-YCbCr
Horizontal DCT

Horizontal IDCT

Vertical DCT

Vertical IDCT
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Table 2. Summary of multimedia kernels

Description

Matrix transposition is an important kernel for many 2D media kernels.
Vector/matrix multiply kernel is used in some multimedia standards.
In this kernel, the pixel values at the boundary of the video object is
replicated horizontally as well as vertically.

Color space conversion, which is usually used in the encoder stage.
Horizontal DCT in used in most media standards to process the rows
of images in order to remove spatial redundancy.

Horizontal Inverse DCT is used in the multimedia standards in order
to reconstruct the rows of the transformed images.

Vertical DCT in used in most media standards to process the columns
of images in order to remove spatial redundancy.
Vertical IDCT is used in the multimedia standards in order to recon-

struct the columns of the transformed images.

The add block is used in the decoder, during the block reconstruction

stage of motion compensation.

The 2 x 2 haar transform is used to decompose an image into four

different bands.

The inverse 2 X 2 haar transform is used to reconstruct the original

image from different bands.

Paeth prediction is used in the PNG standard.

Color space conversion, which is usually used in the decoder stage.

The SAD function, which is used in motion estimation kernel to remove

temporal redundancies between video frames.

SAD function with interpolation =~ The SAD function with horizontal and vertical interpolation is used in
motion estimation algorithm.

SAD function for image histograms The SAD function is used for similarity measurements of image his-

tograms.

The SSD function, which is used in motion estimation kernel to remove

temporal redundancies between video frames.

SSD function with interpolation The SSD function with horizontal and vertical interpolation is used in
motion estimation algorithm.

Add block
2 x 2 Haar transform
Inverse 2 x 2 Haar transform

Paeth prediction
YCbCr-to-RGB
SAD function

SSD function

consuming kernels of multimedia standards have been considered. Table [2 lists
the media kernels along with a small description. In order to clarify which pro-
posed techniques have been used in SIMD implementations of media kernels,
the presented kernels are divided into two groups. First, kernels that use both
extended subwords and the MRF techniques, for instance, the first six kernels.
Second, kernels that just use extended subwords technique, for example, the rest
of the kernels (twelve kernels).

As was mentioned, the 2D transforms such as (I)DCT are decomposed into
two 1D transforms called horizontal and vertical transforms. In order to increase
DLP in SIMD implementation of vertical transform, the extended subwords
technique is used, while in SIMD implementation of horizontal transform both
proposed techniques are needed in order to increase DLP and also to avoid data
rearrangement instructions.

5 Performance Evaluation

In this section we evaluate the proposed techniques by comparing the per-
formance of the SIMD implementations that employ the SIMD architectural
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enhancements to the performance of the MMX and SSE implementations on a
single issue processor.

5.1 Evaluation Environment

In order to evaluate the SIMD architectural enhancements, we have used the
sim-outorder simulator of the SimpleScalar toolset [2]. We have synthesized
MMZX/SSE and MMMX instructions using the 16-bit annotate field, which is
available in the instruction format of the PISA ISA. More detail about our
extension to the SimpleScalar toolset can be found in [9].

The main objective is to compare the performance of the MMX and SSE ex-
tensions without the proposed techniques to the those extensions with the SIMD
architectural enhancements. The main parameters of the modeled processors are
depicted in Table Bl The latency and throughput of SIMD instructions are set
equal to the latency and throughput of the corresponding scalar instructions.
This is a conservative assumption given that the SIMD instructions perform
the same operation but on narrower data types. The latency and throughput
of SIMD multiplier units are set to 3 and 1 respectively, the same as in the
Pentium 3 processor. The latency of SIMD multiplier units in the Pentium 4
processor is 8 cycles.

Three programs have been implemented by C and assembly languages and
simulated using the SimpleScalar simulator for each kernel. Each program con-
sists of three parts. One part is for reading the image, the second part is the
computational kernel, and the last part is for storing the transformed image. One
program was completely written in C. It was compiled using the gcc compiler
targeted to the SimpleScalar PISA with optimization level -O2. The reading and
storing parts of the other two programs were also written in C, but the second
part was implemented by hand using MMX/SSE and MMMX. These programs
will be referred to as C, MMX, and MMMX for each kernel. All C, MMX, and
MMMX codes use the same algorithms. In addition, the correctness of the MMX
and MMMX codes were validated by comparing their output to the output of C
programs.

The speedup was measured by the ratio of the total number of cycles for the
computational part of each kernel for the MMX implementation to the MMMX
implementation. In order to explain the speedup, the ratio of dynamic number
of instructions has also been obtained. These metrics formed the basis of the
comparative study. Ratio of dynamic number of instructions means the ratio
of the number of committed instructions for the MMX implementation to the
number of committed instructions for the MMMX implementation.

5.2 Performance Evaluation Results

Figure[and Figured depict the speedup of MMMX over MMX for media kernels
that either use extended subwords technique or use both proposed techniques,
respectively. The results have been obtained for one execution of media kernels
on a single block on the single issue processor. In addition, these figures show
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Table 3. Processor configuration

Parameter Value

Issue width 1

Integer ALU, SIMD ALU 1

Integer MULT, SIMD MULT 1

L1 Instruction cache 512 set, direct-mapped 64-byte line
LRU, 1-cycle hit, total of 32 KB

L1 Data cache 128 set, 4-way, 64-byte line, 1-cycle
hit, total of 32 KB

L2 Unified cache 1024 set, 4-way, 64-byte line,
6-cycle hit, total of 256 KB

Main memory latency 18 cycles for first chunk, 2 thereafter

Memory bus width 16 bytes

RUU (register update unit) entries 64
Load-store queue size 8

Execution out-of-order

the ratio of committed instructions (MMX implementation over MMMX). Both
figures show that MMMX performs better than MMX for all kernels except SAD.
The speedup in Figure Bl ranges from 0.74 for the SAD kernel to 2.66 for Paeth
kernel. MMMX yields a speedup ranging from 1.10 for the 2D IDCT kernel
to 4.47 for the Transp.(12) kernel in Figure @l The most important reason why
MMMX improves performance is that it needs to execute fewer instructions than
MMX. In the SAD kernel, on the other hand, MMMX needs to execute more
instructions than MMX. As Figure [ shows, the ratio of committed instructions
for the SAD kernel is 0.72.

An Special-Purpose psadbw Instruction (SPI) [13] has been used in the MMX
implementation of the SAD function and the SAD function with interpolation,
while in the MMMX implementation this SPI has been synthesized by a few
general-purpose SIMD instructions. Both MMX and MMMX employ 8-way par-
allelism in the SAD function, while MMMX uses more instructions than MMX.
MMX employs both 4- and 8-way parallelism in the SAD function with inter-
polation, which means that it uses many data type conversion instructions. On
the contrary, MMMX always employs 8-way parallelism in the SAD function
with interpolation kernel. This is the reason that the speedup is almost two for
this kernel.

The speedup obtained for the Paeth kernel in Figure [ is 2.66. The reason
is that intermediate data is at most 10 bits wide and MMMX can, therefore,
calculate the prediction for eight pixels in each loop iteration while MMX com-
putes the prediction for four pixels. The speedups of MMMX over MMX for the
vertical IDCT and 2D IDCT kernels in those figures is less than the speedups for
other kernels. This is because the input data of these kernels is 12-bit and some
intermediate results are larger than 12-bit. Therefore, the MMMX implementa-
tion cannot employ 12-bit functionality (8-way parallel SIMD instructions) all
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Fig. 3. Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use extended subwords technique
on a single block on the single issue processor
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Fig. 4. Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use both proposed techniques on
a single block on the single issue processor

the time but sometimes has to convert to 4 x 24-bit packed data types. The
MMX implementation, on the other hand, is able to use 16-bit functionality all
the time.

The reason why MMMX improves performance by just 20% for the Padding
kernel in Figuredis that the MMX implementation employs the special-purpose
pavgb instruction which computes the arithmetic average of eight pairs of bytes.
More precisely, the pavgb instruction is supported in the SSE integer extension
to MMX. MMMX does not support this instruction because with extended sub-
words it offers little extra functionality since it can be synthesized using the
more general-purpose instructions fadd12 and fsar12 (shift arithmetic right on
extended subwords). Nevertheless, because the matrix needs to be transposed
between horizontal and vertical padding MMMX provides a speedup.

The two kernels for which the highest speedups are obtained are the 8 x 8
matrix transpose on 8-bit (Transp.(8)) and 12-bit data (Transp.(12)). If the ma-
trix elements are 8-bit, MMMX can use the MRF to transpose the matrix, while
MMX requires many pack and unpack instructions to realize a matrix transpo-
sition. Furthermore, if the elements are 12-bit (but stored as 16-bit data types),
MMDMX is able to employ 8-way parallel SIMD instructions, while MMX can only
employ 4-way parallel instructions. As a result, MMMX improves performance
by more than a factor of 4.47.
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The average speedup and ratio of committed instructions for kernels that only
use the extended subwords technique are 1.90 and 2.08, respectively, while for
the kernels that use both proposed techniques are 2.05 and 2.56. The reduction
of the dynamic instruction count in Figure[Blis due to extended subwords and in
Figure[lit is due to extended subwords and the MRF techniques. As a result, the
performance benefits obtained by employing both techniques is higher than just
using the extended subwords technique. Consequently, a part of the performance
benefits is due to extended subwords, which increases DLP and the other part
of the performance improvement is due to the MRF that eliminates the data
rearrangement instructions. In order to clarify how much of the performance
gain is a result of the additional parallelism provided by extended subwords
and how much of it is due to the MRF, we disccuss some examples, horizontal
transform of DCT and 2D DCTin the following section.

6 Analysis of Each Proposed Technique Separately

As already indicated in Table 2] in the SIMD implementations of some kernels
such as the horizontal DCT both proposed techniques have been employed. Con-
sequently, a part of the performance benefits is due to extended subwords, which
increases DLP and the other part of the performance improvement is due to the
MRF that eliminates the data rearrangement instructions. This section discusses
an example, horizontal DCT in order to clarify how much of the performance
gain is a result of the additional parallelism provided by extended subwords and
how much of it is due to the MRF.

6.1 LLM Algorithm to Implement Discrete Cosine Transform

The discrete cosine transform and its inverse are widely used in several image
and video compression applications. JPEG and MPEG partition the input im-
age into 8 x 8 blocks and perform a 2D DCT on each block. The input elements
are often either 8- or 9-bit, and the output is an 8 x 8 block of 12-bit 2’s com-
plement data. In this section, we discuss the LLM [I1] technique to implement
the DCT.

One of the fastest algorithm to compute the 2D DCT is LLM [I1] technique.
This algorithm performs a 1D DCT on each row of the 8 x 8 block followed
by a 1D DCT on each column of the transformed 8 x 8 block. The algorithm
has four stages, the output of each stage is the input of next stage. Figure
depicts the data flow graph of this algorithm for 8 pixels using fixed-point
arithmetic.

Four SIMD implementations of the DCT namely, MMX, MMMX, MMX
enhanced with extended subwords, and MMX enhanced with the MRF us-
ing LLM algorithm are explained and then their performance evaluation are
presented.
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6.2 Four Different SIMD Implementations for Horizontal DCT

In this section different SIMD implementations are discussed.

MMX Implementation: In the MMX implementation of this algorithm, how-
ever, 16-bit functionality (4-way parallelism) has been used because the input
data is either 8- or 9-bit. This means that this kernel needs 16-bit storage format,
while the intermediate results are smaller than 16-bit. Data type conversion in-
structions are not needed because four 16-bit can be loaded from memory to the
four subwords of a media register. Although many rearrangement instructions
are used in this implementation, this implementation exploits 4-way parallelism
in all stages. Figure[6 depicts the MMX/SSE implementation of the first stage of
the LLM algorithm for horizontal DCT. As this figure shows some rearrangement

instructions are required in this implementation.

Inputs x0

+

Stage 1

Stage 3

Stage 4

Outputs X0

-y ﬂ%\

(ad*cl + a7*c2 + r)>>s

(a5*c8 + ab*c4 + r)>>s
(a5*(—c4) + a6*c3 + 1)>>s
(a4*(=c2) + a7*cl + )>>s

b3

(b2*c5

+b3*c6 + r)>>s

(b2*(~c6) + b3*C5 + r)>>s

X2

‘ (d5*C7 + r)>>s .
(d6*c7 + r)>>s

Fig. 5. Data flow graph of 8 pixels DCT using LLM [II] algorithm. The constant

coefficients of ¢, r, and s are provided for fixed-point implementation.

movq
movq

pshufw
pshufw
paddsw

psubsw

Fig. 6. The MMX/SSE code of the first stage of the LLM algorithm for horizontal

DCT

mmO, (dct) ;mm0 =

mn3, 8(dct) ;mm3 =

mml, mm0,27 ;mml =
mm2, mm3,27 ;mm2 =
mmO, mm2 ;mm0 =
mml, mm3 ;mml =

x03
x07
x00
x04

x02
x06
x01
x05

x01
x05
x02
x06

x03+x04 x024-x05 x014-x06
x00-x07 x01-x06 x02-x05

x00
x04
x03
x07

x004-x07
x03-x04
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f1dc16s12 3mxc0, (det) ;3mxcd = o7 06 105 x04 x03 x02 x01  x00
f1dc16s12 3mxcl, 16(dct) ;3mxcl = 417 416 x15 x14 x13 x12 x11  x10
f1dc16s12 3mxc2, 32(dct) ;3mxc2 =  y27 x26 x25 x24 x23 x22 x21  x20
fldc16s12 3mxc3, 48(dct) ; 3mxc3 = %37 x36 x35 x34 x33 x32 x31 %30
f1dc16s12 3mxc4, 64(dct) ; 3mxcd = x47 x46 x45 x44 x43 x42 x41 x40
f1dc16s12 3mxch5, 80(dct) ; 3mxch = xH7 xH6 x55 x54 x53 x52 x51 x50
f1ldc16s12 3mxc6, 96(dct) ; 3mxc6 = x67 x66 x65 x64 x63 x62 x61 x60
f1dc16s12 3mxc7, 112(dct); 3mxc7 = X77 x76 x75 x74 x73 x72 x71 x70
fst12s16s 112(dct), 3mx7 ; (mem) = xX77 x67 x57 x47 x37 x27 x17 x07
x70 x60 x50 x40 x30 x20 x10 x00
X X X X X X X x004+x07
X X X X X X X x00-x07

fmov 3mx7 , 3mx0 ; 3mx7 =
fadd12 3mx0 , 112(dct) ; 3mx0 =
fsub12 3mx7 , 112(dct) ; 3mx7 =

Fig. 7. A part of the MMMX implementation for the horizontal DCT algorithm. “X”
denotes to xi0 4+ xi7, where 0 <7 < 7.

MMMX Implementation: MMMX processes eight rows in one iteration. A
complete 8 x 8 block is loaded into eight column registers. After that row registers
which have eight subwords are processed. Figure [7] depicts a part of the MMMX
implementation of the LLM algorithm. In this figure, “X” refers to xi0 4+ xi7,
where 0 < ¢ < 7. First, eight load column instructions are used to load a complete
8 x 8 block into column registers. After that two fadd12 and fsub12 instructions
are needed to process 16 pixels simultaneously. In MMX, on the other hand, four
instructions (two pshufw instructions, a paddsw, and a psubsw instructions) are
required to process eight pixels.

MMX Enhanced with Extended Subwords: In MMX enhanced with ex-
tended subwords (MMX + ES), there are eight 12-bit subwords in each me-
dia register. In order to bring these subwords in a form amenable to SIMD
processing, new data permutation instructions such as fshuflh12, fshufhl112,
fshufhh12 fshufll12, and frever12 are needed. This is because of the fol-
lowing reasons. First, there is no shuffle instructions in MMX. MMX performs
data permutation using pack and unpack instructions, while these instructions
are not useful for MMX + ES. Second, there is a pshufw (packed shuffle word)
instruction in SSE that is used for rearrangement of four subwords within a
media register, while MMX + ES has eight subwords.

Figure® depicts a part of the horizontal DCT code that has been implemented
by the MMX + ES. In each loop iteration of this implementation eight pixels are
processed, the same as the MMX implementation that was already discussed.

MMX Enhanced with an MRF: In MMX enhanced with an MRF, there are
four 128-bit column registers and eight 64-bit registers the same as MMX. Each
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fld16812 mmO, (dct) ,mmO: X7 X6 X5 X4 X3 X2 Xl XO
frever12 mm2, mm0 ;mm2= x0 x1 x2 x3 x4 x5 x6 X7
fnegl2 mm2, mm2,15;mm2= = x( x1 x2 x3 x4 x5 -x6 -xT7

fadd12 mm0, mm2 ;mm0= x0+x7 x14+x6 x2+x5 x3+x4 x3-x4 x2-x5 x1-x6 X0-X7

Fig. 8. A part of the code for horizontal DCT that has been implemented by MMX
enhanced by extended subwords

fldc16s16 cmmO , (det) ;cmm0 = x07 x06 x05 x04 x03 x02 x01 x00
fldc16s16 cmml , 16(dct); cmml = x17 x16 x15 x14 x13 x12 x11 x10
fldc16s16 cmm2 , 32(dct); cmm2 = x27 x26 x25 x24 x23 x22 x21 x20
£1dc16s16 cmm3 , 48(dct); cmm3 = x37 x36 x35 x34 x33 x32 x31 x30

movq (dct), mm7 ; (mem) = x37 x27 x17 x07
movq mm7 , mmO : mm7 = x30 x20 x10 x00
paddsw mm0 , (dect) ; mm0 = x304+x37x204+x27x104+x17x00+x07

x30-x37 x20-x27 x10-x17 x00-x07

psubsw mm7 , (dect) ; mm7 =

Fig. 9. A part of the MMX + MRF implementation of the horizontal DCT algorithm

column register has eight 16-bit subword. Each subword in a column register
corresponds to a subword in a row register. Each load column instruction can
load eight 16-bit pixels into a column register. In addition, Figure [ depicts a
part of the MMX + MRF implementation of the horizontal DCT algorithm.
There are two loop iterations to process an 8 x 8 block. This means that in each
loop iteration, four rows (32 pixels) are processed.

6.3 Experimental Results

Figure [6.3] depicts the speedup of MMX + ES, MMX + MRF, and MMMZX over
MMX for one execution of an 8 x 8 horizontal DCT on a single issue processor.
In addition, this figure shows the ratio of committed instructions (MMX over
the other architectures). The speedup of MMX + ES is 1.15, while the speedup
of MMX 4 MRF is less than 1. These results indicate that using either extended
subwords or the MRF techniques is insufficient to eliminate most pack/unpack
and rearrangement overhead instructions. In addition, using the MRF is both
unuseful and causes performance loss. The MMMX architecture that employs
both proposed techniques, on the other hand, yields much more performance
benefits. Its speedup is 1.52.

In order to explain the behavior of Figure [6.3] Figure shows the number
of SIMD computation, SIMD overhead, SIMD 1d/st, and scalar instructions for
the four different architectures: MMX, MMX + MRF, MMX + ES, and MMMX
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‘D Speedup [l Ratio of committed instructions ‘
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Fig. 10. Speedup of the MMX + ES, MMX + MRF, and MMMX over MMX as well as
ratio of committed instructions for an 8 x 8 horizontal DCT on a single issue processor
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Fig.11. The number of SIMD computation, SIMD overhead, SIMD 1d/st, and scalar
instructions in four different architectures, MMX, MMX + MRF, MMX + ES, and
MMMX for an 8 x 8 horizontal DCT kernel

for an 8 x 8 horizontal DCT kernel. As this figure shows, the total number of
instructions in the MMX + MRF is almost the same as MMX. This means
that the former architecture cannot reduce the total number of instructions.
The MMX + MRF reduces the number of SIMD overhead instructions, but it
increases the number of SIMD 1d/st instructions. This is because the MMX +
MREF transposes four rows in each iteration and this causes that all eight 64-bit
registers are filled. In order to use some of the filled registers for intermediate
computations, they are stored and loaded in memory hierarchy and this increases
the number of SIMD 1d/st instructions. The latency of SIMD 1d/st instructions
is almost more than the latency of the SIMD overhead instructions. This is the
main reason why the MMX + MRF has a performance penalty. MMX + ES, on
the other hand, reduces the total number of instructions. The ratio of committed
instructions is 1.23 as shown in Figure

The extended subwords technique reduces the number of SIMD computation
and SIMD 1d/st instructions more than the MRF technique, while the latter tech-
nique reduces the number of SIMD overhead and scalar instructions more than
the former technique. Consequently, these experimental results indicate that
using either of these techniques is insufficient to mitigate SIMD computation,
SIMD overhead, SIMD 1d/st, and scalar instructions. The MMMX architecture
that employs both proposed techniques reduces the total number of instructions
much more than MMX + MRF and MMX + ES.
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7 Conclusions

SIMD architectures suffer from the mismatch between the storage and the com-
putational formats of multimedia data and using data permutation instructions
during vectorization. We already proposed two architectural enhancement, the
extended subwords and the Matrix Register File (MRF) to alleviate these limi-
tations. The extended subwords provide additional parallelism by avoiding data
tyep conversion instructions. The MRF eliminates data permutation instruc-
tions. The MMX architecture has been modified by the proposed techniques
that was called the Modified MMX (MMMX) architecture. In this paper, we
validated the MMMX architecture on a wide range of multimedia kernels. In
addition, in order to determine the performance benefits of each proposed tech-
nique, we analysised each technique separately. The results showed that employ-
ing the MRF (MMX + MRF) and extended subwords (MMX + ES) separately
obtain the speedup less than 1 and 1.15, respectively. This is because the total
number of instructions in the MMX + MRF is almost the same as MMX. This
means that the former architecture cannot reduce the total number of instruc-
tions. The MMX + MRF reduces the number of SIMD overhead instructions,
but it increases the number of SIMD 1d/st instructions. MMX + ES, on the
other hand, reduces the total number of instructions. The results indicate that
using either extended subwords or the MRF techniques is insufficient to eliminate
most pack/unpack and rearrangement overhead instructions. The combination
of both techniques should be employed in SIMD implementation.
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