
Scalar Processing Overhead on SIMD-Only Architectures

Arnaldo Azevedo, Ben Juurlink
Computer Engineering Group

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Delft, The Netherlands

Email: {A.P.PereiradeAzevedoFilho, B.H.H.Juurlink}@tudelft.nl

Abstract—The Cell processor consists of a general-purpose
core and eight cores with a complete SIMD instruction set.
Although originally designed for multimedia and gaming, it is
currently being used for a much broader range of applications.
In this paper we evaluate if the Cell SPEs could benefit signif-
icantly from a scalar processing unit using two methodologies.
In the first methodology the scalar processing overhead is
eliminated by replacing all scalar data types by the quadword
data type. This methodology is feasible only for relatively
small kernels. In the second methodology SPE performance
is compared to the performance of a similarly configured PPU,
which supports scalar operations. Experimental results show
that the scalar processing overhead ranges from 19% to 57%
for small kernels and from 12% to 39% for large kernels.
Solutions to eliminate this overhead are also discussed.

Keywords-Computer architecture; Datapath; SIMD process-
ing; SIMD overhead;

I. INTRODUCTION

The industry has moved towards multicore architectures
as increasing instruction-level parallelism (ILP) has yield
diminishing returns. Multicore processors are an efficient
way to increase performance while avoiding the power wall,
since less power is wasted on extracting and exploiting
ILP. The efficient use of multicores, however, relies on
the presence of explicit thread-level parallelism (TLP) in
applications.

Multimedia as well as other applications typically exhibit
significant amounts of data-level parallelism (DLP). DLP
can be exploited in a power-efficient manner by means of
Single-Instruction Multiple-Data (SIMD) operations. SIMD
units have been used by high-end processors to accelerate
multimedia applications. The Sony-Toshiba-IBM (STI) Cell
processor brought this concept further and introduced a
multi-core processor with 8 SIMD-only cores. To perform a
scalar operation on the Cell Synergistic Processing Elements
(SPEs), the scalar operands have to be shifted to the so-
called preferred slot and the scalar result has to be merged
with the rest of the vector.

Although originally designed for multimedia and gaming,
the Cell processor has also been used as a basic block
of high-performance and supercomputers. For example, it
is part of the first supercomputer to run Linpack at a
sustained speed in excess of 1 Pflop/s [1]. The computational
performance and power efficiency of the Cell processor

make it a suitable option to accelerate a wide range of
applications.

Unfortunately, not every parallelizable application benefits
significantly from SIMD processing. Sorting, information
retrieval (e.g. histogram), and other kernels do not exhibit
substantial amounts of DLP. These kernels, however, be-
long to important applications that cannot be neglected.
Furthermore, even if a kernel is vectorizable using SIMD
instructions, it often contains scalar operations.

In this paper we present an evaluation of the SPEs
for parallelizable kernels/applications that do not benefit
significantly from SIMD processing. The objective of this
work is to identify the overhead introduced by the lack of
scalar operations and the situations that cause this overhead.
In other words, the goal is to evaluate if the SPE (or SIMD-
only processors in general) would profit significantly from a
scalar datapath. We study the impact of compiler-managed
scalar and unaligned data for different applications. If sig-
nificant overhead is incurred, it can justify modifications to
the SPE architecture. The performance degradation for scalar
computations can justify the area overhead of a scalar unit
or other support for scalar operations.

The main contributions of this paper are:
• to the best of our knowledge, we are the first to quantify

the overhead caused by the lack of hardware support
for scalar operations on SIMD-only architectures such
as the Cell SPE,

• we identify the sources of this overhead,
• we discuss possible solutions with low area overhead.
Previous work mainly focused on SIMD overhead, i.e., the

overhead needed for bringing the data in a form amenable to
SIMD processing. Ranganathan et al. [2] found that on av-
erage 41% of all instructions are SIMD overhead. Compiler
techniques to reduce overheads related to data permutations,
strided accesses, and alignment constraints were presented in
[3], [4], and [5], respectively. Hardware techniques to reduce
packing/unpacking and data rearrangement overhead were
proposed in [6]. Alvarez [7] measured overhead of unaligned
access for video processing and proposed splitting the
memory bank into two to support unaligned data accesses.
All these works, however, focused in SIMD overhead, not
the overhead related to scalar processing on SIMD-only
architectures.

2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors

1063-6862/09 $25.00 © 2009 IEEE

DOI 10.1109/ASAP.2009.12

183

This paper is organized as follows. Section II discusses the
architecture of the Cell SPE, focusing on the characteristics
that introduce scalar processing overhead. In Section III the
methodologies applied to determine the scalar processing
overhead are presented. It is followed, in Section IV, by
a brief description of the evaluated kernels/applications.
Experimental results are presented in Section V and con-
clusions are drawn in Section VI.

II. CELL PROCESSOR ARCHITECTURE

The Cell Broadband Engine [8][9] is a heterogeneous
multi-core processor designed for multimedia and game
processing. It consists of one Power Processor Element
(PPE) and eight Synergistic Processing Elements (SPEs)
connected by four 16B-wide data rings.

The PPE is a simplified version of the PowerPC processor
family. It is based on IBM’s 64-bit Power Architecture [10]
with 128-bit vector media extensions. It is fully compliant
with the 64-bit Power Architecture specification and can
run 32-bit and 64-bit operating systems and applications.
The PPE is dual-threaded and has a two-way in-order
execution pipeline unit with 23 stages. The PPE supports
a conventional two-level cache hierarchy with 32KB L1
instruction and data caches and a 512KB unified L2 cache.

The SPEs are tailored for multimedia processing and are
single-threaded, non-preemptive, two-way in-order proces-
sors. One issue slot can contain fixed- and floating-point
operations and the other can contain loads/stores, and byte
permutation operations, as well as branches. Branches are
hinted by software and miss-predicted branches have a
penalty of 18 cycles. The register file contains 128 128-bit
wide registers. All instructions are SIMD and they operate
on 128-bit vectors with varying element width, i.e. 2 × 64-
bit, 4 × 32-bit, 8 × 16-bit, 16 × 8-bit, or 128 × 1-bit. Data
should be 128-bit aligned and there is no hardware support
for scalar operations.

SPEs can only access data and code stored in its 256KB
Local Store (LS). The LS is mapped onto the main memory
address space to allow LS-to-LS communication, but this
memory (if cached) is not coherent in the system. Data
and instructions are transferred, in packets of at most 16
KB, between the LS and main memory by explicit DMA
commands, executed by the SPEs’ DMA unit. Data com-
munication can be performed in parallel with computation.
A double buffering technique can be employed to hide the
DMA transfer latency.

All DMA transfers and LS access are aligned to 128 bits.
This design decision of not supporting scalar and unaligned
operations was taken to reduce the control complexity and
to eliminate several stages from the critical memory access
path [9]. To manage scalar and unaligned data, the compiler
inserts shuffle and shift instructions to align or allocate
the data in the preferred slot. The preferred slot is the
leftmost word in a 128-bit quadword. The SPE compiler

manages scalar operations by first moving both operands
to the preferred slot of a register. Next, the SIMD operation
corresponding to the scalar operation is performed, and then
the result is merged with the original content of the register.
The shuffle moves the result to the destination slot and
writes the data back to the register file. For instance, memory
addresses for loads and stores, branch conditions and branch
addresses for register-indirect branches are placed in the
preferred slot.

Note that for operations that involve only scalar variables,
the compiler can place these variables in memory locations
congruent with the preferred slot, at the price of wasting
memory. If, however, the scalar is an element of a vector,
then reorganization overhead is required.

III. METHODOLOGY

In this section, the methodologies to evaluate the scalar
processing overhead are described. Since implementing an
architectural model would require too much effort for an ini-
tial evaluation, a Large-Data-Type methodology is presented
to study the effects of the compiler-generated overhead
for support scalar operations. This methodology, however,
is feasible only for relatively small kernels. To evaluate
larger kernels, a second methodology called SPE-vs-PPE is
presented.

A. Large-Data-Type Methodology

The Large-Data-Type (LDT) methodology highlights the
differences between the current SPE and an SPE with sup-
port for scalar and unaligned operations. No influence from
the DMA transfers will be considered in the performance
measurements. The main micro-architectural resources that
are the focus of this methodology are the register file, its
communication with the Local Store (LS), and the execution
datapath. To allow this, the workload should fit in the SPE
LS.

The main overhead when processing scalar data is shuf-
fle/shift instructions. Without such instructions, the behavior
of the architecture is equivalent to a processor with support
for scalar operations. To simulate the behavior of a scalar
unit, the kernels have been modified as follows. First, the
processing data types are modified to 128-bit wide vectors.
In order to avoid shuffles and shifts, the actual data is
stored in the preferred slot. Comparisons are performed
using SIMD intrinsics to make the code compilable.

The methodology is illustrated using the functions de-
picted in Figure 1. The function adds the vector A to
the reversed vector B and saves the result in vector C.
Figure 1 (left) depicts the regular function. The regular SPE
implementation requires that every position of the vectors
A and B are aligned by shuffling before processing them.
This is performed by the rotqby and shufb instructions
and causes considerable overhead. The compiler-generated
assembly code for C[i] = A[i]+B[size−1− i]; is depicted

184

Regular_Implementation(int A[], int B[], | LDT_Implementation(vector int A[],
int C[], int size){ | vector int B[], vector int C[], int size){

for (i=0; i < size; i++) | for (i=0; i < size; i++)
C[i] = A[i] + B[size - 1 - i]; | C[i] = spu_add(A[i],B[size - 1 - i]);

} | }

Figure 1. Example of compiler-managed scalar computation (left) and Large-Data-Type methodology (right)

// $8 : i | // $7 : i
// $11: address of A | // $8 : address of A
// $4 : address of B + size - 1 - i | // $4 : address of B + size - 1 - i
// $5 : address of C | // $5 : address of C

|
a $2,$8,$11 //Adds i to A to calc |

distance from pref slot |
lqx $3,$8,$11 //Load A[i] | lqx $2,$7,$8 // Load A[i]
lqd $10,0($4) //Load B[size - 1 - i] | lqd $3,0($4) // Load B[size - 1 - i]
lqx $7,$8,$5 //Load C[i] |
cwx $9,$8,$5 //Generate control for |

inserting C[i] |
rotqby $3,$3,$2 //Rotate A to pref slot |
rotqby $2,$10,$4 //Rotate B to pref slot |
a $3,$3,$2 //Add A and B | a $2,$2,$3 // Add A and B
shufb $7,$3,$7,$9 //Shuffles result into |

final position of C |
stqx $7,$8,$5 //Store C | stqx $2,$7,$5 // Store result in C[i]

Figure 2. Generated assembly from scalar computation (left) and Large-Data-Type methodology (right)

in Figure 2 (left). The LDT methodology is depicted in Fig-
ure 1 (right). The spu add intrinsic adds two aligned vectors.
This way, the compiler generates only the core instructions
without any shuffling, with the same behavior as an SPE
with scalar support would have. The generated assembly for
LDT methodology is depicted in Figure 2 (right).

This methodology, however, increases the data footprints
of the kernels, as the scalars are now four times larger. This
could increase the pressure on the register file (RF) and the
amount of data transferred over the LS-to-RF communica-
tion channel. Increasing the register pressure could mean
that more variables need to be spilled to memory, while
this would not be needed in an SPE with scalar support. To
analyze the effect of this, we will compare the number of
registers used in the LDT-emulated versions of the kernels
to the number of registers needed in the original kernels.
The effects on the LS-to-RF channel will be verified using
the number of load/store stalls.

B. SPE-vs-PPE

The focus of the SPE-vs-PPE methodology is to evaluate
large kernels and the effects of the compiler-managed scalar
operations on a large piece of application. While the LDT
methodology focuses on specific overheads, this methodol-
ogy focuses on the regular case.

To compare the SPE against a regular processor, a natural
choice is the Cell PPE. The PPE runs at the same clock
frequency, and it has the same simplified organization of
the SPE. There are fundamental architectural differences
between the PPE and the SPE, however. The PPE is designed
for control, while the SPE is designed for multimedia
and game processing. The PPE has a traditional memory
hierarchy, while the SPE accesses data and code in its LS.
However, because both are in-order, dual-issue processors
running at the same frequency with a 23-stage pipeline
that commits fixed point operations every two cycles, a
comparison between them can be made. Comparing the
performance of SPE with the PPE on large kernels reveals
the scalar (in)efficiency of the processors. To concentrate the
comparison on the computational part of the processor, the
data set of the kernels are limited to 32KB, the size of the
L1 data cache.

IV. KERNELS

This section describes the kernels used in this study. The
selection criteria for the kernels are that they should present
scalar, hard to vectorize sections, but be parallelizable at the
same time. These criteria are to match the type of applica-
tions likely to be ported to the Cell processor. There are two
sets of kernels, “Small Kernels” and “Large Kernels”. Small

185

saxpy(int x[], int y[], int scalar,
int size){

for (i = 0; i < size; i++)
y[i] = scalar*x[i] + y[i];

}

Figure 3. Pseudocode for SAXPY

for (i = ORDER-1; i < SIZE+ORDER-1; i++){
accum=0;
for (j = 0; j < ORDER; j++)

accum += coefficients[j] * input[i-j];
output[i-(ORDER-1)] = accum;

}

Figure 4. Pseudocode for FIR filter

Kernels are the kernels used to highlight a particular char-
acteristic of the SPE that causes scalar processing overhead,
using the LDT methodology. The Large Kernels are used to
compare the performance of the SPE with that of the PPE,
using the SPE-vs-PPE methodology.

A. Small Kernels

The small kernels highlight characteristics of the SPE
that introduce overhead for scalar computation. They access
unaligned data, process scattered data, and make use of
indirect addressing. For each characteristic two kernels were
selected. Pseudo-C codes are listed for each kernel to allow
the reproducibility of the experiments.

1) Saxpy: Basic Linear Algebra Subprograms (BLAS)
is a linear algebra application programming interface. It is
used for scientific computation and part of the LINPACK
benchmarks. BLAS level 1 provides functionalities of the
form y = α × x + y, where x and y are vectors and α a
scalar, called the SAXPY kernel. This kernel was chosen
to highlight the overhead of shuffle/rotate instructions used
to move the data to the preferred slot. Its pseudocode is
listed in Figure 3. A SIMD implementation of this kernel
is possible, but requires some programming effort, because
the vectors may not be aligned in memory.

2) FIR: Finite Impulse Response (FIR) filters are imple-
mented by a convolution of the signal with the coefficients.
It requires unaligned accesses to both the coefficient and
input values, which requires more shuffle/rotate instructions
than the previous kernel. Its pseudocode is listed in Figure 4.

3) QuickSort: Sorting algorithms are an important class
of algorithms that are part of many applications. Sorting
requires many comparisons, and aligned data accesses are
hard to guarantee. QuickSort is one of the best known sorting
algorithms. It works by recursively choosing a pivot and

quickSort (int a[], int lo, int hi) {
int i=lo, j=hi, h;
int x=a[(lo+hi)/2];

do{
while (a[i]<x) i++;
while (a[j]>x) j--;
if (i<=j) {

h=a[i]; a[i]=a[j]; a[j]=h;
i++; j--;

}
} while (i<=j);

// recursion
if (lo<j) quickSort(a, lo, j);
if (i<hi) quickSort(a, i, hi);

}

Figure 5. Pseudocode for Quick Sort

void Merge(int a[], int b[], int c[],
int m, int n){

int i = 0, j = 0, k = 0;
while (i < m && j < n){
if (a[i] < b[j])c[k++] = a[i++];
else c[k++] = b[j++];

}
while (i < m) c[k++] = a[i++];
while (j < n) c[k++] = b[j++];

}

void merge_sort(int key[], int n){
int *w;
for(i = 1; i < n; i *= 2){

for(j = 0; j < (n - i); j += 2 * i)
Merge(key + j, key + j + i,

w + j, i, i);
for (j = 0; j < n; j++) key[j] = w[j];

}
}

Figure 6. Pseudocode for Merge Sort

separating the values that are larger and smaller than the
pivot. QuickSort pseudocode is listed in Figure 5.

4) MergeSort: Conceptually, a merge sort works as fol-
lows: Divide the unsorted list into two sublists of about
half the size. Sort each sublist recursively by re-applying
merge sort. Merge the two sorted sublists into one sorted
list. Figure 6 depicts the MergeSort pseudocode.

5) Image Histogram: An image histogram is a type of
histogram which acts as a graphical representation of the
tonal distribution in a digital image. It plots the number
of pixels for each tonal value. The horizontal axis of the
graph represents the tonal variations, while the vertical axis
represents the number of pixels in that particular tone. This

186

for (i=0; i < img_height; i++)
for (j=0; j < img_width; j++)

histogram[img[i][j]]++;

Figure 7. Pseudocode for Image Histogram

for(i=1; i < img_height-1; i++)
for (j=1; j < img_width-1; j++)
{

GLCM[img[i][j]][img[i-1][j-1]]++;
GLCM[img[i][j]][img[i-1][j]]++;
GLCM[img[i][j]][img[i-1][j+1]]++;

GLCM[img[i][j]][img[i][j-1]]++;
GLCM[img[i][j]][img[i][j+1]]++;

GLCM[img[i][j]][img[i+1][j-1]]++;
GLCM[img[i][j]][img[i+1][j]]++;
GLCM[img[i][j]][img[i+1][j+1]]++;

}

Figure 8. Pseudocode for GLCM

kernel highlights the overhead for indirect index calculation.
The pseudocode is depicted in Figure 7.

6) Gray-Level Co-occurrence Matrices: Gray-Level Co-
occurrence Matrices (GLCM) is a tabulation of how often
different combinations of pixel brightness values (gray lev-
els) occur in an image. Second order GLCM considers the
relationship between groups of two (usually neighboring)
pixels in the original image. It considers the relation between
two pixels at a time, called the reference and the neighbor
pixel. In this study, all 9 neighboring pixels are examined, as
depicted in the pseudo-code in Figure 8. This kernel exposes
the indirect index calculation overhead for matrix.

B. Large kernels

The large kernels are used to compare the performance
of the SPE to the performance of the PPE. The chosen
kernels are the Deblocking Filter of the H.264 video codec
and the Viterbi decoder. These applications have a more
regular behavior than the small kernels, mixing control and
computation. It represents the impact of the SIMD overhead
for scalar computation over an entire application.

1) Deblocking Filter: The H.264 Deblocking Filter (DF)
improves the appearance of the decoded pictures by smooth-
ing the block edges. The DF is highly adaptive and has
different filter strengths depending on the block type. The
DF kernel consists of almost 400 lines of C-code and 15
functions. First, it filters the left edges of the macroblock
(MB) and then filters the vertical internal edges of its 16 4×4
blocks. This process is repeated for the horizontal edges.

The strength of the filter is determined dynamically and
depends on the current quantizer, the coding of the neighbor-
ing blocks, and the gradient of the image samples across the
boundary. There are five Boundary Strengths (BS) which the
filter can apply, ranging from 0 (no filtering) to 4 (strongest
one).

2) Viterbi Decoder: The Viterbi Algorithm [11] (VA) is
an error-correction scheme for transmission through a noisy
channel. It is used for decoding convolutional codes used
in both CDMA and GSM digital cellular, dial-up modems,
satellite, deep-space communications, and 802.11 wireless
LANs. It is now also commonly used in speech recognition,
keyword spotting, computational linguistics, and bioinfor-
matics.

A formal description of the VA is that given a sequence Z
of observations of a discrete-time finite-state Markov process
in memoryless noise, the VA finds the state sequence X
for which the posteriori probability P (X/Z) is maximal,
and thus it is optimal in that sense. Therefore, the VA is a
solution to the problem of Maximum A Posteriori (MAP)
estimation, which tracks the state of a stochastic process with
a recursive method. The MAP sequence estimation problem
is formally identical to the problem of finding the shortest
route through a certain graph.

In this study the Zero-Tail (ZT) technique [12] is used. It
consists of beginning the encoding with the contents of the
shift register initialized to all zeros. The Zero Tail technique
works as follow. For a positive integer L, we take as the code
words in our block code all sequences of length (L + m)n
produced by inputting into the encoder a binary sequence
of length L followed by m zeros. The resultant code is an
((L + m)n, L) block code of rate (1/n)(L/(L + m)) =
(1/n)(1 − (m)/(L + m)) . The term m/(L + m) is called
the rate loss and is due to the zero tail.

V. EXPERIMENTAL RESULTS

In this section, the experimental results are presented and
analyzed.

A. Large-Data-Type

The LDT methodology highlights specific SPE character-
istics that are known to introduce overhead. These kernels
spend a significant part of their execution time on operations
that require compiler-generated shuffles. Because of this, the
effects of the overhead required to process scalar data can be
measured. For analyzing the results the IBM cycle-accurate
simulator was used as it provides kernels execution details.
The simulator reports statistics such as the number of cycles
spent by a specific area of the code, the number of single
and double issued instruction cycles, the number of stalls,
etc. This detailed information is necessary to evaluate all
effects of the proposed methodology.

Figure 9 depicts the execution times of the LDT-emulated
kernels normalized to the execution times of the original

187

kernels. It also breaks down the execution time into cycles
spent on actual computation, NOPs, and stalls. The stalls are
further divided into load/store (L/S) stalls, stalls waiting for
the shuffle unit to become available, and stalls waiting for
other functional units.

Overall, the LDT-emulated versions are 19% (merge sort)
to 57% (FIR) more efficient than the original versions. This
performance increase comes from several sources. Without
the shuffle instructions, the kernels have less operations to
perform and less stalls due structural hazards on the shuffle
unit. This is represented by the decrease in computation
cycles and by the elimination of shuffle stalls. The LDT
methodology sometimes also affects the number of branch
miss stalls and other stalls.

Analyzing only the variation in computation cycles, all
emulated kernels reduce the number of cycles. For the
sorting kernels, QuickSort and MergeSort, the number of
computation cycles are reduced by 21% and 27%, respec-
tively. SAXPY present a reduction of about 40% and the
remaining kernels approximately 50%. The stall breakdown
shows that the stalls on the shuffle pipeline are transferred to
the Load/Store pipeline when going from the original to the
emulated version of the kernels. On average, for the original
versions, the stalls due to shuffle account for 19% of the
total number of stalls, while the Load/Store stalls account
for 12%. For the emulated versions, the Load/Store stalls
account for 30% of the total number of stalls. The relative
increase in the number of Load/Store stalls are because of
two factors. First is the increase in performance of the kernel.
As the kernel spends less time computing, the proportion of
loads and stores increases. The second effect is the increased
number of loads and stores. As data are not compacted in
quardwords, there are more loads and stores.

While for the most kernels the percentage of branch
misses does not change significantly, for the sorting kernels
there is are a considerable variation. For QuickSort there is a
decrease of 49% in the number of branch miss stalls while
there is an increase of 37% for MergeSort. The compiler
could increase the branch hints for the LDT version of
QuickSort in comparison with the regular version. This
explains the decrease in branch miss for that kernel. For
MergeSort the opposite happened. The number of branch
hint instructions decreased. In [13] a SIMDimized sorting
algorithm for the Cell SPE is presented. Details of its
performance are not presented, however.

Because of the small number of computations performed
in each kernel, there are less than 36 live registers at any
moment. For all kernels, except MergeSort, the number
of used registers decreases in the emulated version. This
decrease is the result of reducing the number of intermediate
steps necessary to calculate the result. MergeSort has the
same number of registers in both versions, FIR decreases
the number of live registers by 14%, and the other kernels
by 33%. These results show that the LDT methodology does

not increase the pressure on the register file.
The results show the importance of scalar support for

SIMD-only processors. The performance of every kernel
increases when applying the Large-Data-Type methodology,
which reveals the overhead of scalar processing on SIMD-
only cores.

B. SPE-vs-PPE

In this section, the results for the SPE-vs-PPE methodol-
ogy are presented and analyzed. Each kernel is executed 10
times and the first run is discarded as it is used to warm-
up the cache. 10 runs are performed to minimize external
influences on the execution times, such as operating system
preemption. The average execution time of the late 9 runs
is reported.

To evaluate the performance of the kernels, the real
Cell processor has been used, because the IBM Simulator
does not accurately model the PPE. Performance results
are acquired using hardware counters. Hardware counters
have a precision of approximately one microsecond. The
execution times of the kernels are considerably larger than
this precision.

1) Deblocking Filter: The input used for testing the
Deblocking Filter consists of the first eight frames of the
Lake Wave video sequence in the QVGA (320×240 pixels)
resolution. Only the 8×8 upper left MBs are filtered as a
larger area would not fit in the L1 data cache. The presented
results are the average of the runs with eight frames each.
As previously mentioned the PPE version only takes into
consideration the measurements with the input data already
present in L1 data cache. For the SPE version, it does not
take into account the DMA transfer time.

The scalar version running on the SPE takes 300 μs to
filter the frame area, on average. The scalar version running
on the PPE is 12% faster, the required time to filter a frame
area is 265 μs, on average.

The Deblocking Filter is an example of a well behaving
multimedia kernel. The kernel operates on a predictable
data set, which simplifies the data transfer to Local Store.
The data processing loops have static boundaries, reducing
loop overhead and making the branch hints more effective.
The control loops and function calls do not incur additional
overhead on the SPE. The compiler-managed overhead is
dispersed by these operations, and therefore the overhead
obtained with the SPE-vs-PPE methodology is smaller than
that found with the LDT methodology.

In [14] a SIMDimized DF is presented with speedups of
2.6 over the scalar implementation. However, these results
are obtained including the latency of memory accesses.

2) Viterbi Decoder: The execution time of the used
Viterbi decoder is not dependent on the input data. Because
of this characteristic and to avoid data transfer impact on
performance, a constant input is used. The input is 100
blocks of 160 symbols long each.

188

Figure 9. Execution times of the LDT-emulated kernels normalized to the execution times of the original kernels

The required computation time for the SPE was 10.6 ms
while the PPE spent 6.5 ms for the same calculation. This
result show that the PPU is 39% faster than the SPE for this
application. This result is similar with the results found with
the LDT methodology, because the Viterbi decoder is very
computational intensive. In contrast to the DF, it spends most
of its execution time in operations affected by compiler-
managed scalar support overhead. The supported bandwidth
for the PPU version is 2.45 Mb/s.

VI. CONCLUSIONS

In this paper the need for scalar processing support on
SIMD-only architectures such as the Cell SPE is analyzed.
Two methodologies are presented for this analysis, the
Large-Data-Type and SPU-vs-PPE methodologies. The first
simulates the behavior of a scalar unit by replacing all
data types by the quadword data type, thereby eliminating
the overhead required for processing scalars. This method-
ology can be used to evaluate small kernels. The second
methodology compares the performance of the SPE to the
performance of the PPE for large kernels.

The experimental results show that scalar support would
provide considerable performance improvement for scalar
data kernels. Results of the LDT methodology show that
the scalar processing overhead on SIMD-only architectures
ranges from 19% to 57%. For the considered large kernels,
the Deblocking Filter and the Viterbi decoder, the overhead
is 12% and 39The overhead is mainly caused by the addi-
tional shuffle instructions that need to be executed to move
the scalar to the preferred slot and stalls waiting for the
shuffle unit to become available.

To reduce the scalar processing overhead, a scalar unit
could be added to the SPE. This, however, would require
a complete re-engineering of the core including a separate
register file and control logic to support another instruction
set. The resulting area and power overhead goes against
the reasons given in [15] for power efficient processors.
Furthermore, adding a scalar unit would be beneficial only
if the area increase would be less than the performance
improvement. For example, if adding a scalar unit would
double the area requirements, then it would be profitable
only if single-core performance more than doubles the
performance, since half as many cores can be placed on
a single chip. Adding scalar instructions could also reduce
power. Since the SIMD units are used to execute them, the
unused parts can be turned off to reduce switching activity.
It is reported in [9], however, that it was attempted during
the development phase of the processor without consistent
results.

To add support for scalar operations without sacrificing
area, we propose special Load and Store instructions. These
new instructions would load/store data directly into/from the
preferred slot. The Cell SPE can load/store only quadwords.
For the Load an extra layer of 4× 1 multiplexers would be
necessary to select the right word. The same applies to the
Store instruction, but it would also require a masked write
to the Local Store. With this masked write, only part of
the quadword would be written to its final slot. With these
additional instructions the performance of the Cell SPU for
scalar and hard-to-SIMDimize applications would increase.
We intend to evaluate these new instructions in future work.

189

ACKNOWLEDGMENT

This work was partially supported by the European Com-
mission in the context of the SARC integrated project
#27648 (FP6) and the European Network of Excellence on
High-Performance Embedded Architecture and Compilation
(HiPEAC).

REFERENCES

[1] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho, “Entering the Petaflop Era: the
Architecture and Performance of Roadrunner,” in SC ’08:
Proc. of the 2008 ACM/IEEE Conf. on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–11.

[2] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of
Image and Video Processing with General-Purpose Proces-
sors and Media ISA Extensions,” SIGARCH Comput. Archit.
News, vol. 27, no. 2, pp. 124–135, 1999.

[3] G. Ren, P. Wu, and D. Padua, “Optimizing Data Permutations
for SIMD Devices,” in PLDI ’06: Proc. of the 2006 ACM
SIGPLAN Conf. on Programming Language Design and
Implementation. New York, NY, USA: ACM, 2006, pp.
118–131.

[4] D. Nuzman, I. Rosen, and A. Zaks, “Auto-Vectorization of
Interleaved Data for SIMD,” in PLDI ’06: Proc. of the 2006
ACM SIGPLAN Conf. on Programming Language Design and
Implementation. New York, NY, USA: ACM, 2006, pp. 132–
143.

[5] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for
SIMD Architectures with Alignment Constraints,” SIGPLAN
Not., vol. 39, no. 6, pp. 82–93, 2004.

[6] A. Shahbahrami, B. Juurlink, D. Borodin, and S. Vassiliadis,
“Avoiding Conversion and Rearrangement Overhead in SIMD
Architectures,” Int. J. Parallel Program., vol. 34, no. 3, pp.
237–260, 2006.

[7] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “Per-
formance Impact of Unaligned Memory Operations in SIMD
Extensions for Video Codec Applications,” in Performance
Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
Inter. Symp. on, 2007, pp. 62–71.

[8] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy, “Introduction to the Cell Multiprocessor,” IBM
Journal of Research and Development, vol. 49, no. 4, pp.
589–604, 2005.

[9] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkins, Y. Watan-
abe, and T. Yamazaki, “Synergistic Processing in Cell’s
Multicore Architecture,” IEEE Micro, vol. 26, no. 2, pp. 10–
24, 2006.

[10] “Power Architecture Version 2.02.” [Online]. Available:
http://www-106.ibm.com/developerworks/eserver/library/es-
archguide-v2.html

[11] A. Viterbi, “A Personal History of the Viterbi Algorithm,”
Signal Processing Magazine, IEEE, vol. 23, no. 4, pp. 120–
142, 2006.

[12] H. Ma and J. Wolf, “On Tail Biting Convolutional Codes,”
Communications, IEEE Transactions on, vol. 34, no. 2, pp.
104–111, 1986.

[13] B. Gedik, R. R. Bordawekar, and P. S. Yu, “CellSort: High
Performance Sorting on the Cell Processor,” in VLDB ’07:
Proc. of the 33rd Inter. Conf. on Very Large Data Bases.
VLDB Endowment, 2007, pp. 1286–1297.

[14] A. Azevedo, C. Meenderinck, B. Juurlink, M. Alvarez, and
A. Ramirez, “Analysis of Video Filtering on the Cell Proces-
sor,” in Proc. of Inter. Symp. on Circuits and Systems (ISCAS),
May 2008, pp. 488–491.

[15] H. Hofstee, “Power Efficient Processor Architecture and the
Cell Processor,” in High-Performance Computer Architecture,
2005. HPCA-11. 11th Inter. Symp. on. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 258–262.

190

