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Abstract

Beamforming is a signal processing technique that improves
the signal strength received from a specific location. It is
already used for many decades in telecommunications, while
over the last years, it has been adopted by the audio research
society, mostly to enhance speech recognition. In this paper, we
propose a scalable organization for a hardware time-invariant
beamformer that can be used in small handheld devices and
complete 3D-audio systems. Our design can be configured
according to the number of input channels. Furthermore, all
critical internal modules, such as decimators, FIR filters and
interpolators can be adjusted to support various input sampling
rates. We developed a hardware prototype in VHDL targeting
the Xilinx ML410 board incorporating Virtex4 FX60 FPGA.
Following a constrained approach regarding FPGA resource
utilization, our hardware prototype occupies 21% of the afore-
mentioned FPGA when instantiating 16 beamforming modules,
and consumes approximately 2 Watts of power. Furthermore,
our design achieves a speedup of 28 compared to an OMP-
annotated software implementation running on a Pentium D at
3.4 GHz. We also compared our design against prior related
work. Results suggest that it can extract an audio source
up to 11 times faster compared to a reconfigurable adaptive
beamformer, and up to 19 times faster compared to DSP
implementations.

1. Introduction

Beamforming is a technique that is widely used over the
last decades in many application fields, like the SOund Navi-
gation And Ranging (SONAR), RAdio Detection And Ranging
(RADAR), telecommunications and biomedical [1]. Over the
last years, the beamforming technique has been also adopted
from the audio research society, mostly to enhance speech
recognition. As an example, NXP’s ”LifeVibes”1 software solu-

1. http://www.software.nxp.com

tions are utilized in various handheld devices to enhance voice
communications. In the audio domain, the antennas array is
replaced by a microphone array that captures the audio environ-
ment. Generally, there are two different types of beamforming,
non-adaptive (or time-invariant or non-blind) and adaptive (or
blind) [2], [1]. Non-adaptive methods are based on the fact that
the spatial environment is already known and tracking devices
are used to enhance speech recognition. In contrast, adaptive
approaches do not utilize tracking devices to locate the sound
source. In fact, the received signals from the microphones are
used to calibrate properly the beamformer, in order to improve
the quality of the extracted source.

In most microphone array applications, there is a variable
number of audio sources that move freely inside a certain
area and they have to be tracked and identified, thus requiring
a large amount of data to be processed. Related work on
audio systemsthat exploit the beamforming techniques, reveals
that many systems are implemented using desktop PCs [3],
[4]. However, such approaches, when adaptive beamforming
is applied to extract multiple audio sources, introduce pro-
cessing bottlenecks because the algorithm may not converge
fast enough [5]. Furthermore, embedded systems that apply the
beamforming technique, require constrained resource utilization
and reduced power budget. Thus, a PC-based approach cannot
be considered as a suitable solution for embedded systems
such as handheld devices. DSP-based approaches proposed
in the literature provide a suitable solution regarding power
consumption [6], but they also introduce processing bottlenecks
when there is an increased number of input channels.

Related work onaudio systemsthat utilize the beamforming
technique mapped on hardware (e.g. [7], [8]) mainly focuses
on designing hardware accelerators that calculate in real-time
the impulse responses of the beamformer filters (adaptive
beamformers). A major advantage of adaptive beamforming
is that there is no need to take into account the acoustical
properties of the environment [6]. However, in cases when
there is no need for real-time calculation of the beamformer



filters (e.g. small conference rooms), such advanced approaches
increase the hardware complexity and power consumption.
Furthermore, they constrain the maximum number of modules
that can be instantiated in parallel, because a considerable
amount of hardware resources is occupied by the real-time filter
coefficients recalculation circuit.

In this paper, we consider a design scenario, where adap-
tive beamforming is not needed. Thus, at the cost of small
acceptable reduction of the signal quality, we present a hard-
ware implementation of a non-adaptive beamformer where all
possible filter coefficients are precalculated according to Parra’s
approach described in [9] and stored to on-chip memory. This
way, we save valuable hardware resources that can be used
to instantiate additional beamforming modules at the expense
of extra on-chip memory. Parra’s approach considers wideband
frequency-invariant beamforming and the microphones array
configuration can be arbitrary. Furthermore, it can produce
better results even with fewer microphones comparing to other
approaches, a fact that is very important especially for embed-
ded systems.

The advantages of the design we propose are as follows:
• Flexibility: We propose a reconfigurable organization for a

hardware beamformer that can be parameterized according
to the number of input channels, the sampling rate and the
number of source apertures;

• A compact, real hardware prototype: We designed a
hardware prototype instantiating up to 16 beamforming
modules and mapped it onto a Xilinx Virtex4 FX60 FPGA.
In contrast to PC-based related work ([3], [4]) that requires
in the order of 100 Watt power, our prototype, requires
approximately 2 Watts, according to Xilinx XPower;

• Improvements over related work: We compared our proto-
type with an OMP-annotated C software implementation
running on a Pentium D at 3.4 GHz. Experimental results
suggest an application speedup of up to 28 compared to the
software implementation. Furthermore, we compared our
design against related work that utilizes adaptive beam-
forming approaches mapped onto a FPGA [8] and DSP
([10], [6]). Results suggest that our prototype can extract
audio sources up to 12 and 19 times faster respectively.

The remainder of the paper is organized as follows: Section 2
provides a brief theoretical background on the beamforming
technique and discusses some related work. In Section 3, we
present our proposed design. In Section 4, we describe our
hardware prototype and compare it against related work, while
Section 5 concludes the paper.

2. Background, Related Work and Problem State-
ment

In this section, we provide a short theoretical background
of the beamforming technique. Furthermore, we discuss some
related work on the audio domain that utilizes beamforming.

Figure 1. A filter-and-sum beamformer.

Theoretical background: The term of beamformer refers to
a processor that performs spatial filtering, in order to estimate
a signal arriving from a particular location. Thus, even in
the case where two signals contain overlapping frequencies, a
beamformer is able to distinguish each one of them, as long
as they originate from different locations. Figure 1 depicts a
schematic overview of a beamformer utilizing the filter and
sum approach [1]. As we can see, the system consists of an
array of microphones sampling the propagating wavefronts.
Each microphone is connected to a FIR filterHi(z), while
all filtered signals are summed up to extract the desired audio
source. Normally, the input data channels are downsampled by
a factorD in order to reduce the data rate:

xDi[n] = xi[n ∗D] (1)

wherexi is the input signal,xDi is the downsampled signal,
i=0...C-1 andC is the number of input channels (microphones).
Each downsampled signal is filtered using a particular coeffi-
cients set based on the source location:

yDi[n] =
L−1∑

j=0

hi[j] ∗ xDi[n− j] (2)

where L is the number of filter taps andh are the filter
coefficients. The beamformer output is given by the summary
of all yDi signals:

yD[n] =
C−1∑

i=0

yDi[n] (3)

where yD is the downsampled extracted source. Then,yD is
upsampled by the same factorD according to equation (4) to
acquire the upsampled extracted sourcey:

y[n] =
{

yD[ n
D ] , if n

D ∈ Z
0 , otherwise

(4)



The idea behind this structure is to use the FIR filters as delay
lines that compensate for the introduced delay of the wavefront
arrival at all microphones [11]. The combination of all filtered
signals will amplify the desired one, while all interfering signals
will be attenuated. However, in order to succeed on extracting
the desired signal, we have to know a priori its direction-of-
arrival (DOA). For example, in Figure 1, the desired sound
source is in the aperture defined by the angleθ2 − θ1. For
this reason, a tracking device can provide the source location
and accordingly reconfigure the FIR filter coefficients (normally
referred to as ”beamsteering”).

In the current C software implementation, all input channels
are sampled at 48 KHz for 0.512 sec, thus in total there are
48000 samples/sec * 0.512sec = 24576 16-bit signed audio
samples. However the audio streams are downsampled by 4
before they are forwarded to the beamsteeringHi(z) FIR filters,
in order to reduce the data volume that will be processed.
Consequently, once the beamformer extracts the desired audio
signal, the latter is again upsampled by 4. Both the decimator
and the interpolator have 242 taps. Each one of the beamsteering
Hi(z) FIR filters has 128 taps. All calculations in the considered
software implementation are done in IEEE 754 floating point
single precision format.

Related work: In [3] the authors present a 3D-audio system
oriented to future communication applications. It consists of
12 linearly placed microphones connected to an NI-4772 VXI
board acquisition hardware board mounted on a standard PC.
The sound source is tracked through audio and video tracking
algorithms. Once its location is known, the beamformer is
steered accordingly. The audio signal is extracted through
beamforming and encoded using the MPEG2-AAC or G722
encoders. The encoded signal is received from a second remote
PC and the audio signal is rendered using the Wave Field
Synthesis (WFS) technology through a 10 loudspeaker array.

Another 3D-Audio system is presented in [4] where the
authors describe a real-time immersive audio system that ex-
ploits the beamforming technique and the WFS technology. The
system performs sound recording from a remote location A,
transmits it to another one B, and renders it through a speaker
array utilizing WFS. In order to preserve the original sound
exact coordinates, face and acoustic tracking algorithms are
employed. A beamformer records the sound source and steered
according to the source location inside the listening area. The
WFS rendering unit receives this information and the result
is the same sound source being rendered exactly at the same
position in the remote location B. The complete system consists
of 4 PCs, out of which one used for the WFS rendering and
one for the beamforming.

However, non-adaptive beamformers are mostly used for
handheld devices, like cell-phones and Personal Digital As-
sistants (PDAs). Such embedded systems introduce many con-
straints regarding computational resources and power consump-
tion, so intensive adaptive beamforming approaches that utilize

an increased number of inputs cannot be considered. As an ex-
ample, in [12], the authors design a time-invariant beamformer
tailored to small devices that consist of two microphones.
According to the paper, results suggest a SNR improvement
of 14.95 dB when using two microphones, instead of one.

A DSP implementation of an adaptive subband beamforming
algorithm, known as the Calibrated Weighted Recursive Least
Squares (CWRLS) beamformer, is presented in [6]. The authors
utilize an Analog Devices ADSP21262 DSP processor to per-
form CWRLS-based beamforming over a two microphone array
setup. According to the paper, results indicate that there is an up
to 14 dB SNR improvement, but the computational load of the
DSP processor can be up to 50% with two input channels. The
presented implementation is also very energy efficient, since it
was predicted to have an operation time of up to 20 hours.

The authors of [8] present a hardware accelerator that utilizes
microphones array algorithms based on the use of calibrated
signals together with subband processing. The proposed design
utilizes a frequency domain modified recursive least squares
adaptive algorithm and the maximization of signal-to-noise ratio
beamforming algorithm. The FPGA implementation runs up
to 175 MHz and achieves a speedup of up to 6x compared
to their software implementation on a Pentium 4 at 3.2 GHz.
Furthermore, up to 7 instances of the proposed design can fit
in a Virtex4 SX55 FPGA, achieving a speedup of up to 41.7x
compared to the software implementation.

Problem statement: As we can see, time-invariant beam-
forming approaches that are implemented on embedded sys-
tems, have alimited number of input channelsdue to the lack of
sufficient computational resources. We address these problems,
by proposing a hardware design that requires limited power
and provides enough processing resources, so evencompact
devicescan integrate an increased number of input channels.
Furthermore, we aim at a minimal design that can be configured
to support different sampling rates and angular regions. As we
will show in Section 4, a prototype with 16 input channels and
19 aperture regions has a memory footprint of approximately
270 KBytes and consumes only 2 W of power.

3. Proposed Design

This section presents our complete BeamForming Fabric Co-
processor Module (BFFCM)2 that accelerates the beamform-
ing algorithm considered, following a bottom-up description.
Figure 2 presents the BFFCM internal organization; it con-
sists of theprimary controller and two modules, thebuffers-
decimatorsand thebeamformer-interpolator. The primary con-
troller is a Finite State Machine (FSM) , explained in detail in
Section 4. Our design is parameterizable regarding the number
of input channelsC that can process and the numberN of source
apertures. Although the software implementation employs the

2. We follow Xilinx terminology.
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Figure 2. BF FCM organization.

IEEE 754 single precision format, we followed a fixed point
approach for all of our calculations. Accuracy evaluation, pre-
sented in Section 4, suggests that such an approach guarantees
sufficient signal quality.

The buffer-decimator module: As we mentioned in Sec-
tion 2, each microphone signal (input channel) is downsampled
from 48 KHz to 12 KHz (eq. 1). For this reason, thebuffer-
decimator(BD) module consists of thesamples buffer(SB), a
decimator by 4 and thelocal buffer-decimator controller(BDC),
as illustrated in Figure 3. The latter is responsible for storing
1024 16-bit signed audio samples to theSB that were captured
by the corresponding microphone. The externalcontroller1(C1)
initiates copying samples to theSB through thewrite samples
signal. Once all samples are copied, theBDC acknowledges the
C1 through thedone writing samplessignal. Furthermore, the
C1 instructs theBD module to start downsampling through the
downsamplesignal. TheBDC controls the samples streaming
to the decimator using theD nd (new data) andD rfd (ready
for data) signals. Once the decimator generates an output, it is
forwarded to the correspondingH(z) beamsteering FIR filter,
which is acknowledged through theD rdy (ready) signal. We
assumed that all captured samples from the microphones are
already stored in an on-chip memory and can be read from the
data from on-chip memorysignal.

The buffers-decimators top module:As we mentioned in
Section 1, our design can be reconfigured to support variable
number of inputC channels. In order to exploit the fact that all
captured signals can be downsampled concurrently, we designed
the controller1 (C1) that can efficiently connectC number of
BD modules, as illustrated in Figure 4. As soon as the external
primary controllerinstructs theC1 to start copying samples, the
latter initiates the data transfer to each one of theBD modules
through thewrite samplessignal. Depending on the available
memory bandwidth, theC1 can be configured to initiate the
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data transfer serially in eachBD module or concurrently to all
of them. In either case, once allBD modules acknowledge the
C1 (through thedone samples writingsignal) that all samples
are written, the latter concurrently instructs allBD modules
through thedownsamplesignal to start downsampling. EachBD
module forwards the downsampled signal to the corresponding
beamsteering FIR filterH(z).

The H(z) beamsteering FIR filter: The H(z) FIR filter is
based on the traditional multiply and add approach (eq. 2). As
depicted in Figure 5, its inputs are the source aperture that is
recorded from the source tracking device and theD out and
D rdy signals from the corresponding decimator. Once there
is an output generated from the decimator, it is forwarded
to the H(z) filter, which is acknowledged through theD rdy
signal. Based on the recorded aperture, theH(z) uses the
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appropriate set among theN available 128-coefficient sets to
filter the downsampled signal. The filtered signal is forwarded
to the externalcontroller2 (C2). TheH rdy signal is used to
acknowledge theC2 that there are new available data.

The beamformer-interpolator module: As we mentioned
in Section 2, once the source is extracted from the filtered
signals, it is again upsampled from 12 KHz to 48 KHz. Based
on that, thebeamformer-interpolator(BI) module integrates all
H(z) beamsteering FIR filters, an accumulator (eq. 3) and an
interpolator by 4 (eq. 4), as is illustrated in Figure 6. The
controller2 (C2) can efficiently connectC number of H(z)
modules that process concurrently the downsamples signals.
Since all of them are structurally identical, it suffices to have
only oneH rdy signal to acknowledge theC2 each time there
is a new sample ready. AllH(z) outputs are forwarded to the
accumulator, in order to calculate the extracted source. Once all
samples are accumulated, theC2 acknowledges the interpolator
through theI nd signal and the result is forwarded to it. Finally,
as soon as the interpolator generates new data, it acknowledges
the externalprimary controller through theI rdy signal. The
upsampled signalI dout is stored back to the on-chip memory
through the externalprimary controller.

4. Experimental Results

In this section we describe a hardware prototype that was
built based on the design organization described in Section 3.
To build the complete system, we used a Xilinx ML410 board
with a V4FX60 FPGA on it, which integrates two PowerPC
processors. We utilized one of them just to transfer audio sam-
ples between the SDRAM and the on-chip PLB memory. Our
beamforming accelerator was designed in VHDL and synthe-
sized using the Xilinx Integrated Synthesis Environment (ISE)
10.1.03 and the Xilinx Synthesis Tool (XST). The complete
embedded system was designed using the Xilinx Embedded
Development Kit (EDK) 10.1.03. All decimators, beamsteering
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FIR filters and the interpolator were designed using the Xilinx
LogiCore generator.

Experimental setup: We utilize a PowerPC as host GPP
for our beamforming application. The PowerPC utilizes a 32-
Kbytes instruction memory connected to the Processor Local
Bus (PLB) through its PORTA. A second memory of 128
Kbytes is used by the PowerPC for temporal storage of on-chip
data through its PORTA. For this reason the latter is connected
to the PLB, while PORTB is connected directly to the BFFCM.
This shared memory implementation allows the BFFCM to ac-
cess memory more efficiently compared to accessing it through
the PLB. A 64-Mbytes DDR SDRAM is used to store audio
samples, which can be accessed from PowerPC again through
the PLB. The BFFCM is connected directly to the PowerPC
through its Auxilary Procesor Unit (APU) interface [13]. In our
case, we configured it to decode one User Defined Instruction
(UDI) that would start the BFFCM. In order also to monitor
the correct functionality of our system, we connected the FPGA
board through an RS232 module to a standard PC.

Beamforming Hardware Accelerator: In each loop, the
PowerPC copies 1024 16-bit audio samples (from each channel)
from the SDRAM to the on-chip PLB memory. When samples
storing is done, the BFFCM execution is initiated via our UDI,
as shown in the following pseudocode snippet:

For all audio samples in SDRAM
{

copy 1024 samples from SDRAM to BRAM;
UDI (source angle, samples address);
copy samples from BRAM to SDRAM;

}

As soon as a UDI is detected, the primary controller acknowl-
edges the PowerPC through the APU interface. It also reads the
source aperture and the starting address of the audio samples
stored in the on-chip PLB memory. Both parameters are stored



Table 1. FPGA resource utilization of decimator, H(z) FIR
filter and interpolator.

Decimator H(z) Interpolator
rdy (cc) 268 268 31
rfd (cc) 67 268 268

DSP48/MEM 1/2 1/5 2/1

in local registers. The sourceaperture parameter is used to
select the appropriate coefficients set for the beamsteering
filters Hi(z), where i=0,. . . ,C-1. The primary controller initiates
copying the first 1024 samples from allC channels (using
the start writing samplessignal) to local samples buffers,
instantiated in the buffers-decimators module. Once all audio
samples are transferred, the latter downsamples the signal from
all channels by 4. The downsampled signaldecimatori dout
from decimatori is forwarded to the beamformer-interpolator
module, where it is filtered from the FIR filterHi(z). In the
same module, all filtered signals are accumulated and the result
is upsampled by 4. The primary controller stores back the
upsampled signaldout to the on-chip PLB memory, whenever
the rdy signal indicates that a new sample is processed. Once
the BF FCM has finished, all processed samples are written
back to the SDRAM and 1024 new audio samples (again from
all C channels) are fetched from the SDRAM to the on-chip
PLB memory for processing. We should note that, since there
are many data transfers between the SDRAM and the on-chip
PLB memory, a Direct Memory Access (DMA) controller and
double buffering can be employed to improve the data-transfer
rate.

FPGA resource utilization: In our current prototype, we
cascaded as manyBD and H(z) modules as the maximum
number of available input channels (C=16). Furthermore, the
H(z) coefficient sets supportN=19 different source apertures.
However, we followed a constrained approach regarding the
decimator,H(z) and interpolator implementation. More specif-
ically, we choose to map all of them onto DSP48 slices and
utilize the minimum required amount of them. Table 1 shows
the specifications of each module.Rdy indicates after how
many cycles a sample is ready, whilerfd indicates after how
many cycles the corresponding module can accept new data to
process. We have to clarify however that the proposed design
is independent from these specifications, meaning that if these
modules are substituted by others with different timings (but
of course with the same interface), the BFFCM will be again
completely functional. Table 2 shows the Virtex4 FX60 FPGA
resource utilization from the BFFCM. As it is expected, more
than 50% of the available on-chip memory is dedicated to
store all coefficient sets for the decimators,H(z) filters and the
interpolator.

Performance evaluation:As we mentioned in Section 3, in
each iteration 1024 audio samples captured from each channel
are copied to theSBs inside theBD modules. In our current

Table 2. BF FCM resource utilization.
XtremeDSP Slices 35 27%

RAMB16s 130 56%
Total Slices 5384 21%

Maximum frequency (MHz) 250 N/A
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Figure 7. Tasks scheduling in SW and HW implementa-
tions of the beamforming application.

prototype, the memory bandwidth supports reading up to 4 16-
bit audio samples per cycle. Thus,C1 spends 256 cycles per
channel to store all audio samples in eachSB. In total, we need
256*16+2=4134 clock cycles to copy all data to theSBs(the 2
additional cycles are spent on starting and stopping the samples
reading). Once all data are stored in theSBs, the BF FCM
requires 68871 clock cycles to process all 1024 samples for
all channels, since all of them are processed concurrently. In
order to estimate the number of sources that can be extracted
in real-time, we use the following formula:

#ofSources = b samples segment

cc ∗ clk period ∗ fs
c (5)

where cc=256*C+2+68871 (the number of clock cycles re-
quired to process all data),C is the number of input channels,
samplessegmentis the number of samples that are processed
in each iteration (1024 in our implementation),clk period is
the clock period of the design andfs is the sampling rate.
We consider the Virtex4 FX60 FPGA, which has in total 522
Kbytes of on-chip memory. If we subtract 160 Kbytes that
are used from the PowerPC as data and instruction memories
respectively, there are 362 Kbytes left available to our design.
The memory footprint for C=21 input channels is 355 Kbytes,
thus this is the maximum number of inputs that can be employed
when using the current FPGA. Furthermore, sincefs=48000
samples/sec, by substituting these data in eq. (5), we calculate
that up to 71 sources can be extracted in real-time from our
design when employing 21 input channels.



Table 3. Comparison among all designs.

design channels speedup sources fs(Khz) power(W)
SWOMP 16 28x 3 48 ∼100

[10] 16 19x 16 11.025 ∼1.7
BF FCM-16 16 1x 73 48 2

[6] 2 19x 4 48 ∼0.825
BF FCM-2 2 1x 76 48 0.89

[8] 4 11x 19 16 N/A
BF FCM-4 4 1x 76 48 0.9

Table 4. Software and hardware comparison.
channels SW(ms) SWOMP (ms) HW(ms) SPEEDUP SPEEDUPOMP

8 661 383 14 47x 27x
12 904 580 21 43x 28x
16 1152 774 28 41x 28x

Table 3 summarizes the comparison of our proposed design
against other related work. We categorize the comparison based
on the input channels of each system and compare it with
a prototype of our design (BFFCM) that employs the same
number of input channels. We compared our design against
a software version of the beamforming algorithm running on
a Pentium D at 3.4 GHz. As we mentioned in Section 2,
the software processes 24576 samples/channel and there are
4 different sources. It is also written in a way to exploit
OMP pragma annotations for a more efficient execution in
more than one processors. Figure 7 illustrates the different
tasks (downsampling, beamforming and upsampling) between
the software and hardware implementations. The PC-based im-
plementation processes serially each channels data, thus leading
in an increased total execution time compared to the parallel
hardware implementation. Table 4 shows the comparison of the
proposed design against the software with and without the OMP
pragma annotations under different number of input channels.
Values in the second, third and fourth columns indicate times
of processing in msec. With the OMP pragma annotations, the
software performance was increased by 1.5x comparing to when
they are disabled. The last two columns in Table 4 show the
achieved speedup under the different number of input channels.
As we can see, even with the OMP annotations, our hardware
prototype can accelerate the application up to 28x. The time for
the software implementation to extract 0.512 sec of a source
signal when there are 16 input channels is 0.154 sec. Thus,
up to b0.512/0.154c=3 sources can be extracted in real-time.
In contrast, by using eq. (5), we calculate that our hardware
prototype can support up to 73 real-time sources for 16 input
channels.

We also compared our prototype against the designs pre-
sented in [8], [6] and [10]. As we mentioned in Section 2, in
contrast to our approach, the proposed design of [8] calculates
in real-time the beamforming coefficients. In order to perform
a fair comparison between the two designs, we consider the
number of input audio samples that can be processed per

second. According to the paper, up to 7 instances of the
proposed beamformer can fit into the largest Virtex4 SX family.
Since each one of them can process 43463 samples/sec, we
assume that the largest amount of data that can be processed are
43463*7=304241 samples/sec at 175 MHz. Consequently, since
fs = 16 KHz, it means that up tob304241/16000c=19 sources
can be extracted in real-time. Assuming C=7 also for our
design, our prototype will require cc=256*7+2+68871=70663
clock cycles to process 1024 samples, or 3662532 samples/sec
at 250 MHz, which is 11 times faster than the design proposed
in [8]. Furthermore, according to eq. (5) our proposed design
can support up to 76 sources for 16 input channels.

Regarding the real-time DSP implementation in [6], accord-
ing to the paper, the proposed adaptive beamformer utilizes up
to 50% of the DSP processor, which uses afs = 48 KHz with
two input channels. Based on these data, we can assume that
up to 48000 samples/sec/input * 2 inputs = 96000 samples/sec
can be processed when the DSP utilization is 50%. Thus, the
proposed beamformer can roughly process 192000 samples/sec
when the DSP is utilized at 100%. On the other hand, assuming
also a prototype that utilizes our proposed design with C=2, it
would require 256*2+2+68871=69385 clock cycles to process
1024 samples, or 3689558 samples/sec, which is 19 times faster.
Consequently, the design described in [6] could support up
to b192000/48000c=4 sources atfs = 48 KHz, while our
prototype could support up to 76 sources being extracted in
real-time at the samefs for 4 input channels. We should note
that the proposed beamformer of [6] does not consider moving
sound sources.

In [10] the authors utilize 16 input channels atfs = 11.025
KHz. Thus, we assume that their design can process up to
11025*16=176400 samples/sec, which is approximately 19
times slower comparing to our prototype that utilizes also 16 in-
put channels. Consequently, the beamformer of [10] could sup-
port up tob176400/11025c=16 sources atfs = 11.025KHz,
while our prototype could support up to 73 sources being
extracted in real-time atfs = 48 KHz for 16 input channels.

As we can see, the number of sources that can be extracted
from our design in real-time, changes only slightly, despite
the different number of input channels that are employed.
Thus, it provides a versatile solution that can be applied under
different scenarios. For example, small devices could employ
an increased number of microphones comparing to the one
or two that have up to now, to enhance speech recognition.
Furthermore, our design could also be integrated to high-end
video-teleconferencing systems. Such systems can exploit the
increased processing power and number of available inputs,
since under these circumstances there are many speakers inside
large rooms that require an increased number of microphones
to be employed.

Energy efficiency: Another benefit of our FPGA design is
that it requires significantly less power than systems based
on high-end CPUs. We used Xilinx XPower to analyze the



complete system power consumption, which is shown in the last
column of Table 3. In contrast, high-end CPUs that are utilized
in similar approaches like [3] and [4], when not in idle mode,
normally require tens of Watts, which in essence is an order or
two of magnitude difference in favor of our design. Moreover,
our design approaches the power figures of DSPs, which are
typically designed as low power devices. In order to make an
estimation of power consumption of the design proposed in
[10], we referred to the TMS320C6201 power summary [14],
in which it is stated that a typical power requirement is 1.7 W. In
[6] the authors mention that their design does not consume more
than 250 mA. Thus, since the voltage supply of ADSP21262 is
3.3 V [15], we can assume that the design power requirement
is approximately P=3.3*0.25=0.825 W.

Results accuracy:In order to evaluate our hardware proto-
type, we used the same input audio data with the ones that were
used with the software version of the beamforming algorithm.
Results suggest that the signals generated from our hardware
prototype could follow the software ones with an accuracy of
up to three decimal digits.

5. Conclusions

In this paper, we proposed a reconfigurable architecture for a
hardware beamformer. Our design is parameterizable regarding
the supported source apertures, while it can be easily cascaded
in order to process an arbitrary number of input channels. We
built a hardware prototype using VHDL and mapped it onto
a Virtex4 FX60 FPGA, providing a speedup of 28 compared
to the OMP-enabled software implementation in a Pentium
D. We also compared our design against related work that
utilizes the beamforming technique and maps in onto DSPs and
FPGA. Results suggested that our proposed design can extract
sources in real time up to 11 and 19 times faster respectively.
Furthermore, our prototype requires approximately 2 Watts
of power which is two orders of magnitude less than PC-
based solutions. Ultimately, if a larger FPGA is available, then
additional BF FCMs can be cascaded to concurrently extract
more than one sound sources.
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