
Residue-Based Code for Reliable Hybrid Memories

Nor Zaidi Haron1,2 Said Hamdioui1

1. Computer Engineering Laboratory, Delft University of Technology, The Netherlands

2. Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia

{N.Z.B.Haron1,2, S.Hamdioui1}@tudelft.nl, zaidi@utem.edu.my1,2

Abstract— Hybrid memories, structured from scaled CMOS

and non-CMOS devices, are novel memory architectures that of-

fer trillion-capacity of data storage. In spite of that, the reliability

of such memories is questionable because of (i) imprecise and

immature fabrication processes and (ii) unreliable devices. This

paper introduces the concept of Residue Number System (RNS),

mainly used in digital signal processing and communication, to

the realization of reliable hybrid memories. An error correction

code based on RNS to mitigate cluster faults in hybrid memories

is proposed; such code is referred to as Six Moduli Redundant

Residue Number System (6M-RRNS) code. The experimental

results show that 6M-RRNS code can achieve competitive error

correction capability as the conventional RRNS (C-RRNS) and

Reed-Solomon (RS) codes, yet at lower cost. E.g., for hybrid

memories with word size of B=32 bits, the 6M-RRNS code

requires 88 bits to encode the data, whereas C-RRNS and RS

codes require 106 and 96 bits, respectively. It means that for a

fixed memory size and given correction capability, the total data

that can be stored when using 6M-RRNS coding is 20.4% and

9.1% larger as compared with C-RRNS and RS, respectively.

Moreover, the speed at which 6M-RRNS decodes the data is 5.6

times faster than when using C-RRNS; hence allowing for higher

performance.

Index Terms — Reliability, hybrid memories, error correction

codes, residue number system

I. INTRODUCTION

Hybrid memories, the future concept of data storage, are

foreseen to extend the storage capacity offered by current

CMOS-based memories. Structured from non-CMOS nanode-

vices (e.g., nanowires, single electron junctions, molecules)

and nanoscale CMOS transistors, these kind of memories

are predicted to provide up to 1 Tbit per centimeter square

chip area [1]. Numerous hybrid memory circuits have been

suggested such as CMOL memory [1], molecular memory [2],

[3], and carbon nanotube memories [4]. In spite of trillion-

capacity potential, such memories are more susceptible to non-

permanent faults causing reliability challenges. The immature

fabrication techniques (e.g., self-assemble, nanoimprint) might

introduce latent defects like loose nanowires, poor CMOS/non-

CMOS interface pins, etc. These defects are not detected by

manufacturing testing, but they will cause faults some time

during the operation of the memories. Reducing the operating

voltage might save the total power, yet decreasing the noise-

to-signal ratio. A small magnitude of particles energy could

disturb the internal state of such nanodevices. Not only that,

the influence of these faults might disturb adjacent cells in the

memory array causing a cluster of faults.

In combating these reliability challenges, researchers have

applied fault tolerance techniques to increase the reliability

in hybrid memories. Techniques like error correcting codes

(ECCs) [1], [5], [6], [7], [8], [9], [10], hardware redundancy

[5], and defect-map [10] have been utilized to improve defect

and fault tolerance of hybrid memories. Among these tech-

niques ECCs is the most used due to their dynamic correction

capability and lower cost compared to the others. The ECCs

are such as Hamming [1], [5], Bose-Chaudhuri-Hocquenghem

(BCH) [6], [7], Euclidean Geometry (EG) [8], and Low-

Density Parity-Check (LDPC) [9]. Nevertheless, these con-

ventional ECCs are based on either weak or random faults but

not for cluster faults. Therefore, a new type of error correction

is necessited to tolerate cluster faults in having reliable hybrid

memories.

This paper presents the concept of Redundant Residue

Number Systems (RRNS) as an error correction scheme for

hybrid memories. It proposes a modified version of RRNS,

which is suitable for the realization of reliable hybrid mem-

ories; it allows detection and correction of cluster faults. The

proposed modified RRNS code is referred to as Six Moduli

Redundant Residue Number System (6M-RRNS) as it based

on six relatively co-prime moduli in generating a set of

redundant residues. The experimental results show that 6M-

RRNS code achieves competitive results, in terms of reliability

improvement as compared to the conventional RRNS (C-

RRNS) and Reed-Solomon (RS) codes, but then at lower cost

and minimal impact on the performance.

The rest of the paper is organized as follows. Section II

reviews the fundamental concept of hybrid memories. Section

III discusses the basic theory of RRNS codes. Section IV

introduces the 6M-RRNS code suitable for mitigating high

degree of cluster faults. Section V presents an experimental

analysis of the proposed 6M-RRNS including the comparison

with RS and C-RRNS codes. Finally, Section VI draws the

conclusion.

II. FUNDAMENTAL CONCEPT OF HYBRID MEMORIES

Figure 1 shows an example of a generic structure of hybrid

memory constructed by integrating non-CMOS circuit on top

of CMOS circuit [1]. The non-CMOS circuit consist of two

perpendicular planes of nanowires and reconfigurable two-

terminal nanodevices, e.g, single electron junction, organic

molecule and phase change material [11], that form the

memory cell array where data is stored. The reconfigurable

two-terminal nanodevices embedded at each nanowire

junction function as a single memory cell. Nanoscale CMOS

devices build up peripheral circuits, e.g., encoding/decoding,

27978-1-4244-4958-3/09/$25.00 c©2009 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Generic structure of hybrid CMOS/nanodevices circuits.

sensing global interconnecting, etc.

A specific memory cell can be accessed by activating the

two perpendicular nanowires. Immediately after the access, a

sufficient voltage (depending on the type of the two-terminal

nanodevice being used) is biased to the memory cell (i.e.,

the two-terminal nanodevice) to change its internal state

(resistance) for writing, or to supply appropriate current flow

for reading.

Immature bottom-up fabrication technique (e.g., self-

assembly) used to fabricate the nanodevices is potential to

contribute to latent defects, for instance, loose nanowires

and poor nanowire crossbar/CMOS interface, which lead to

intermittent faults. Latent defects might escape manufacturing

test but will cause reliability problem during operation

lifetime of the device. In addition to that, as scaled CMOS

and tiny non-CMOS devices operate using low voltage, the

probability for these devices to be impacted by transient

faults is high. At low voltage, charged-based devices like the

one used in hybrid memories tend to have low signal-to-noise

ratio [11]. A small energy strike of soft error is adequate

to upset the logic state hold by these tiny devices. Also,

the impact of intermittent and transient faults might affect

several adjacent memory cells causing a cluster of faults. For

instance, a loose nanowire will disturb several two-terminal

non-CMOS devices connected to it. According to [14], based

on the incident angle and the level of a particle flux, many

nanoscale CMOS devices may suffer from transient faults.

In order to mitigate these latent defects and faults, and

cnsequently to improve the overall reliability error correction

circuit is included in hybrid memories. Fig. 2 exhibits the

block diagram of the fault tolerance architecture considered

in this paper.

Fig. 2. RRNS Encoder and decoder in hybrid memories.

Prior to writing, input data must be encoded to RRNS

codeword. The RRNS codeword is then stored in the memory

cell array. When reading, the desired codeword is decoded

before data can be read out. The decoding process will ensure

read data is fault-free, provided the faults are still within

the correction capability of RRNS decoder. In this work, the

RRNS decoder are perceived to be ideal, where intermittent

and transient faults can occur in RRNS encoder and memory

cell array.

III. REDUNDANT RESIDUE NUMBER SYSTEMS CODE

In this section a concept of RRNS code is presented. This

is followed by encoding and decoding procedure of this code.

A. Theory of RRNS code

RRNS code is a derivation of residue number system (RNS),

which is usually found in high speed arithmetic operation ap-

plications (e.g., digital signal processing, cryptography, com-

munication). RRNS code offers fast and built-in self-checking

computation [12]. These advantages open a new direction in

fault tolerance area, especially for error correcting codes, to

improve the reliability of memory.

A RRNS codeword is constructed from a set of encoded

numbers called residues. An input data of d bits will be

encoded into n symbols codeword, which is divided into two

set of residues (see Fig. 3): (i) non-redundant residues, xi,

consisting of k symbols dataword, and (ii) redundant residues,

xj , consisting of (n−k) symbols checkword (parity); 1≤i≤k

and k+1≤j≤n. The bit length of k symbols maybe larger than

the d bits input data (k≥d) to have residue number system

representation of the d bits. Note that, each residue is in the

form of symbols, which resemble the codeword in RS code.

Fig. 3. Structure of RRNS code.

Each non-redundant residue is generated by performing

modulo operation on the input data, say X , to a set of non-

redundant moduli, mi. Equivalently, redundant residues are

generated by performing the same operation on X but then

by using redundant moduli mj instead of mi. Note that the

modulo operation finds the residue (remainder) of division of

one number by another. These operation can be mathematically

represented as the following equation [12].

xi = |X|mi
, xj = |X|mj

(1)

The binary representation of xi and xj has bit length of

�log2(mi)� bits and �log2(mj)� bits, respectively. Thus, the

bit length of a RRNS codeword is the summation of these

two bit lengths.

Example 1. An 8 bits input data can be encoded

into RRNS codeword based on the moduli set e.g.,

{m1, m2, m3, m4, m5}={5, 7, 8, 9, 11}; the first three moduli

are non-redundant moduli, mi, and the last two moduli are

redundant moduli, mj . The RRNS codeword for input data

X=234 will be:

28 2009 IEEE/ACM International Symposium on Nanoscale Architectures

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

xi = {|234|5, |234|7, |234|8, |234|9, |234|11}
xi = {4, 3, 2, 0, 3}

Note that the input data is represented by (i) a dataword con-

sisting of three non-redundant residues 0, 6, 5, which are each

represented by three bits (�log2(5)�=�log2(7)�=�log2(8)�=
3), and (ii) a checkword consisting of two redundant residues

8, 4 with a total length of 8 bits. Therefore, the 8 bits input

data is encoded into 17 bits RRNS codeword.

For a RRNS codeword to be consistently decoded (i.e., to

prevent different codewords to be decoded into the same output

data), the moduli must satisfy three rules; (i) a pair of any

two moduli, say ma and mb with a �=b, must be co-primes

such that their greatest common divisor gcd(ma, mb)=1; (ii)

the integer value for succeeding modulus is greater than

the preceding modulus, i.e., m1<...<mk<mk+1<...<mn; and

(iii) The product of moduli Mi, is sufficient to represent all

numbers in the legitimate range of [0,Mi−1] [12].

In additional to the three rules, the redundant moduli are

chosen arbitrarily such that (i) they ensure the desired error

correction capability; and (ii) their product is sufficient to

represent all the numbers in legitimate range.

Note that each modulus in RRNS code can have different

bit length depending on the chosen moduli. Hence, choosing

appropriate moduli can reduce the total bit length of codeword.

This characteristic is not possessed by RS code, where all

symbols have fixed lengths.

B. RRNS encoding

RRNS encoding is straightforward; it is based on perform-

ing modulo operations on input data to a moduli set as ex-

plained before. The resulted residues from modulo operations

are obtained simultaneously; i.e., the operations are executed

in parallel by corresponding modulo circuits. The residues are

then concatenated to be a RRNS codeword before it is stored

in memory cells. Similar to RS code, the correction capability

of RRNS is defined by t= (n−k)
2 [12], [13] (see Figure 3).

E.g., to correct one erroneous residue in a RRNS codeword,

two residues of checkword must be appended to dataword.

C. RRNS Decoding

Decoding of RRNS codeword has two phases: (i) detection

and (ii) correction of errors. Detection of errors must be

applied to any read codeword from the memory. A codeword

is valid if its decoded value is within the legitimate range,

thus no error correction is needed. In opposition, invalid data

is determined when the value of a decoded codeword is larger

than legitimate range, hence error correction is needed.

During correction phase a systematic calculation is con-

ducted exhaustively to search for values that are within the

legitimate range. This exhaustive search will be performed

until the valid data is recovered; it requires Cn
t iterations. In

each iteration, t number of residues are discarded, and the

calculation is executed based on the remaining (n−t) residues.

Ideally, from all recovered integer values, there will be at least

one unique value fall within the legitimate range, which is the

correct data.

In some cases, however, more than one recovered values

are within the legitimate range. This ambiguity can be solved

using maximum likelihood decoding scheme [16], which will

determine the actual correct data between the recovered values.

The idea behind the scheme is the closest Hamming distance

between among the values fallen within the legitimate range

and the read codeword.

Two algorithms can be used in the decoding process: (i)

Chinese Remainder Theorem (CRT) and (ii) Mixed-Radix

Conversion [12]. In this work, MRC is used because it deals

with smaller integers; this facilitates the simulation work.

MRC is based on the following equation.

Xr =
n∑

s=1

vsws (2)

where vs is calculated as

v1 = |X|m1
= x1 (3)

vs =
∣∣(((xs − v1) × m1s) − v(s−1)

)
× m(s−1)s

∣∣
ms

(4)

where xs=|X|ms
and m(s−n)s is the multiplicative inverse of

m(s−n) with respect to ms defined as |m(s−n)m
−1
(s−n)|ms

=1;

s ∈ {2, 3, ..., n} and n ∈ {1, 2, 3, ..., n − 1}. Whereas ws is

w1 = 1, ws =
n−1∏

s=2

ms (5)

Example 2. Assume that the fourth residue of the codeword

in Example 1 (i.e., 0) is corrupted during the storing, which

results in x={4, 3, 2,8, 3}. Decoding the codeword using

MRC requires the calculation of multiplicative inverses. E.g.,

m12=|m−1
1 |m2

=3 because |m1×m−1
1 |m2

=|5×3|7=1. In a

similar way, the other multiplicative inverses are calculated:

m13=5, m23=7, m14=2, m24=4, m34=8, m15=9, m25=8,

m35=7, m45=5. The legitimate range for this codeword is

Mi=5×7×8=280.

Based MRC equations above, the validity of the codeword is

checked.

v1=4, v2=|(3 − 4)(3)|7=4,

v3=|((2 − 4) × 5 − 4) × 7|8=6,

v4=|(((8 − 4) × 2 − 4) × 4) − 4) × 8|9=8,

v5=|((((3 − 4) × 9 − 4) × 8) − 4) × 7 − 8) × 5|11=4

Xr =
∑n

s=1 vsws

= (4 × 1) + (4 × 5) + (6 × 5 × 7) + (8 × 5 × 7 × 8)

+(4 × 5 × 7 × 8 × 9)

Xr = 12554 > 280 (error detected)

Error correction is invoked since the codeword is invalid. A

systematic iterative calculation that discards a residue in each

iteration is performed. There are C5
1 iterations since t= 5−3

2
(see Section III.C). This exhaustive search produces the integer

values as shown in Table II. Since only Xr′

4
<280, the correct

data X=234 is recovered.

2009 IEEE/ACM International Symposium on Nanoscale Architectures 29

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I

CODEWORD PARAMETERS FOR 16- AND 32 BITS RS, C-RRNS, AND 6M-RRNS CODES.

ECC Moduli Sets, ma Number of Residues/Symbols
Data Types Non-Redundant Redundant Dataword Checkword Codeword ∗Bits/Codeword

RS – – 4 8 12 48
16 bits C-RRNS 64,63,65 67,71,73,79,83,89 3 6 9 61

6M-RRNS 257,256 127,63,31,17 2 4 6 40

RS – – 4 8 12 96
32 bits C-RRNS 2047,2048,2049 2051,2053,2057,2059,2063,2069 3 6 9 106

6M-RRNS 65537,65536 32767,16383,8191,4097 2 4 6 88

*Bits/Codeword=�log2 ma�; 1≤a≤n

TABLE II

RESULT OF CORRECTING SINGLE ERRONEOUS RESIDUE.

Iteration, i 1 2 3 4 5

Discarded Residue, xi x1 x2 x3 x4 x5

Recovered Data, Xr′

i
1466 3594 2159 234 2474

IV. RRNS CODES FOR HYBRID MEMORIES

A. Conventional RRNS Code

Conventional RRNS code termed as C-RRNS is based on

{2n−1, 2n, 2n+1} restricted non-redundant moduli, which

can be realized in small and fast hardware [17]. Unre-

stricted redundant moduli are commonly appended to the non-

redundant moduli in generating a RRNS codeword. Unre-

stricted redundant moduli are selected from any number of

pairwise relatively prime positive integer, which have larger

integer values than those of the restricted non-redundant

moduli. Here, unrestricted means that the selected moduli are

not based on a set of generic equation but they can be any

values satisfying the RRNS criteria.

For 16 bits memory word, the integer value for restricted

non-redundant residues {2n−1, 2n, 2n+1} must be selected

such that their product is at least 216−1. To satisfy this

criterion, the minimum value of n=6 is chosen to alleviate

the area and performance overhead; this results into the non-

redundant moduli mi={64, 63, 65}, with legitimate range of

Mi=262080; see Table I. The redundant moduli is chosen

to be mj={67, 71, 73, 79, 83, 89} where the product of the

redundant moduli is obviously more than 216−1. The six-

residue checkword is needed to ensure the protection of three-

residue dataword, i.e., t=3. The length of this codeword is∑n

s=1 �log2ms�=61 bits where ms are the moduli used to

generate the codeword.

For 32 bits memory word, the minimum value of n that

produces the required legitimate range is n=11, resulting

into mi={2047, 2048, 2049}. For the same reason as for 16

bits memory word, the redundant moduli is chosen to be

mj={2051, 2053, 2057, 2059, 2063, 2069}. The bit length of

this codeword is 106 bits.

B. Modified RRNS Code

RS code is also used as ECC for memories (e.g., flash

memories). Table I shows the required number of bits for 16

and 32 bits memory word when RS coding is used. Note that

the length of RS codeword is shorter than that of C-RRNS in

both cases. However, RS code has lower correction capability

than C-RRNS.

To reduce the length of C-RRNS codeword while providing

a competitive correction capability, a modified version of C-

RRNS will be introduced. The basic ideas behind this are:

• For non-redundant moduli

1) The number of moduli set can be kept small,

provided that their product is at least equal to the

legitimate range (see Section III.A),

2) Smaller number of moduli set requires smaller num-

ber of redundant moduli for error correction (see

Section III.B).

• For redundant moduli

1) The integer values for all redundant moduli can be

made smaller than that of non-redundant moduli

as long as the product is sufficiently larger than

legitimate range.

The modified version of C-RRNS is referred to as Six-

Moduli RRNS (6M-RRNS); it is based on six residues: (i) two

are non-redundant moduli and (ii) four are redundant moduli.

The non-redundant moduli set is {2n+1, 2n}, while redundant

moduli set is {2n−1−1, 2n−2−1, 2n−3−1, 2n−4+1}. Note that

in case of 6M-RRNS both moduli are restricted, while for C-

RRNS this is only the case for the non-redundant moduli.

These generalized six moduli are adopted to realize simple

hardware implementation.

For 16 bits memory word, the smallest number n that

satisfies the requirement that the product of non-redundant

moduli {2n+1, 2n} is larger than the legitimate range is n=8.

This results in mi={257, 256} and mj={127, 63, 31, 17}.

Although the moduli consist of smaller integer values than

that of redundant moduli, the product Mj=4216527 is clearly

more than legitimate range of 16 bits. The benefit of using two

non-redundant moduli in 6M-RRNS code instead of three as in

C-RRNS is the reduction of the total length of the codeword.

In a similar way the required n for 32 bits mem-

ory word can be calculated. This results in n=16; hence

mi={65537, 65536} and mj={32767, 16383, 8191, 4097}.

V. EVALUATION AND ANALYSIS

A. Simulation Setup

To evaluate the 6M-RRNS code, a comparison with C-

RRNS and RS was performed; such comparison is relevant

because both codes are designed for correcting multiple bit

30 2009 IEEE/ACM International Symposium on Nanoscale Architectures

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10
96

96.5

97

97.5

98

98.5

99

99.5

100
Correction capability of RRNS variants and RS codes for 16−bit memory

Fault rate (%)

C
or

re
ct

ab
le

 m
em

or
y

lo
ca

tio
ns

 (
%

)

C−RRNS
6RM−RRNS
RS

0 1 2 3 4 5 6 7 8 9 10
96

96.5

97

97.5

98

98.5

99

99.5

100
Correction capability of RRNS variants and RS codes for 32−bit memory

Fault rate (%)

C
o

rr
e

ct
a

b
le

 m
e

m
o

ry
 lo

ca
tio

n
s

(%
)

C−RRNS
6RM−RRNS
RS

Fig. 4. Simulation results for 16 and 32 bits memory word.

TABLE III

COMPARISON ON BIT LENGTH FOR 16-AND 32 BITS RS, C-RRNS, AND 6M-RRNS CODES.

ECC Bit Length
Data Type Dataword Checkword Codeword (Codeword Differences)(%)

bki
b(n−k)i

bni (compared to RS) (compared to C-RRNS)

RS 16 32 48 – -21.3
16 bits C-RRNS 19 42 61 +27.1 –

6M-RRNS 17 23 40 -16.7 -34.4

RS 32 64 96 – -9.4
32 bits C-RRNS 34 72 106 +10.4 –

6M-RRNS 33 55 88 -8.3 -17

clustered errors. For these codes, the error correction capa-

bility is equal to half the number of residues (symbols) per

checkword.

As mentioned in Section III.A, Mi is taken as a reference to

determine the validity of a codeword. In this work, nonethe-

less, Mi is set up to M16=216−1 and M32=232−1 for 16

and 32 bits word memory, respectively. These are considered

to alleviate data that larger than M16 and M32 to be wrongly

decoded. E.g., for a 32 bits memory word. when M32 is taken

as reference, then any decoded data with a value from 232

to 2047×2048×2049=8589932543 (i.e., the product of non-

redundant moduli), will be considered as erroneous data.

The RRNS variants and RS codes, 4K×16 bits word and

4K×32 bits word memories, and fault injection were described

using MATLAB script. All codes were set to the corresponding

t to protect the codeword from faults. For RRNS decoding

process, MRC was implemented. For RS code, MATLAB

built-in RS encoding and decoding functions were used [18].

An appropriate adjustment for polynomial generator was done

to encode and decode 16 and 32 bits memory word.

Faults were uniformly injected at each memory location.

The faults were increased from single bit up to 20 clustered

bits per codeword for 16 bits word memory data, and single

bit up to 35 clustered bits per codeword for 32 bits memory

word data. Various fault rate, from 1% to 10%, were applied

during the experiments. The size of total memory capacity,

whether to use 4096 locations or more, is not so important

because faults were uniformly distributed.

B. Results

Table III shows the number of bits that represent the

codeword for each code. Overall, 6M-RRNS has the smallest

number of codeword bit length follows by RS and C-RRNS

codes. For 16 bits memory word data, 6M-RRNS realizes a

codewords which are 16.7% and 34.4% shorter as compared

to RS and C-RRNS codes, respectively. Whilst for 32 bits

memory word data, 6M-RRNS realizes a codewords which

are 8.3% and 17% shorter as compared to RS and C-RRNS

codes, respectively.

Fig. 4 shows the simulation results for C-RRNS, 6M-RRNS

and RS codes. The correction capability of all codes reduces as

the fault rate becomes higher. At 10% fault rate all the codes

ensure that more than 96% and 97% of the 16 and 32 bits

word memory locations, respectively, are reliable. Both RRNS

variants perform better than RS code in correcting faults for

irrespectively of faults rate. For 16 bits memory word, at 10%

fault rate, C-RRNS code can correct 99% of the total faulty

locations, whereas 6M-RRNS and RS code can correct 97.1%

96.1%, respectively, of the faulty locations. For 32 bits word

memory and at the same fault rate, all codes perform slightly

higher; C-RRNS with 99.2%, 6M-RRNS with 98%, and RS

with 97.1%.

C. Analysis

Although C-RRNS code is able to correct the largest number

of erroneous bits as shown in Fig. 4(b), 6M-RRNS code is the

best if we look at different perspectives. These include ratio

2009 IEEE/ACM International Symposium on Nanoscale Architectures 31

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

of correction capability over generated codeword length, ratio

of correction capability over fixed codeword length, capacity

of data storage over fixed memory size, and decoding latency

of RRNS codes; they are analyzed in the followings.

First, consider the ratio of correction capability over gener-

ated codeword length. For 16 bits memory word coded into

6M-RRNS, the maximum number of erroneous bits it can

correct is 17 out of 40 bits codeword, which means 42.5% of

each memory word will be corrected. RS and C-RRNS possess

only 16/48=33.3% and 19/61=31.1%, respectively. For 32 bits

memory word, 6M-RRNS, RS, and C-RRNS codes ensure the

correction of 37.5%, 33.3%, and 32% of each memory word,

respectively. Thus, 6M-RRNS provides the highest bit-wise

error correction capability in this case.

Second, consider of the capability of the error correction

codes when assuming a fixed length of codeword. In this

case, RS and C-RRNS codes will be to 40 bits codeword

(i.e., by taking off the last two- and three-residue checkword,

respectively) to have similar bit length to 6M-RRNS. These

reductions decrease the error correction capability to at most

t=	 10−4
2
=3 for RS, t=	 6−3

2
=1 for C-RRNS, and t=	 7−3
2
=2

for 3NRM-RRNS codes. The maximum 16 bits word memory

data that can be corrected for RS is now 3×4=12 bits, C-

RRNS is 1×7=7 bits, and 3NRM-RRNS is 9+8=17 bits.

Yet, all 16 bits word data encoded into 2NRM-RRNS are still

protected by the four-residue checkword. In a similar way,

one can find that for 32 bits memory word when considering

a codeword of 88 bits in size, then the maximum bit-wise cor-

rection capability will be 3×8=24 bits, C-RRNS is 1×12=12

bits, and 3NRM-RRNS is 17+16=33 bits. Hence, 6M-RRNS

is the best to realize a higher error correction capability when

fixed length of codeword is considered.

Third, consider the capacity of the data storage given a fixed

memory chip size. If the input data is coded with the three

different considered schemes, then 6M-RRNS will realize

the highest data storage because of its compact codeword.

It is reported in one that [1] 1Tbit hybrid memory can be

fabricated in a centimeter square. Considering such memory

size for 16 bits memory word, 6M-RRNS will be able to

store 20% and 52.5% more data than RS and C-RRNS,

respectively. This is because 6M-RRNS allows the storage of

#C6M=1T/40 codewords in the memory, while the use of

C-RNNS allows for the storage of #CC=1T/61 codewords.

Note that the size of a codeword for 6M-RRNS is 40 bits and

that for C-RRNS is 61 bits. The difference in storage is then

calculated as #C6M−#CC

#CC
=52.5%. Redoing the calculation for

1T organized into 32 bits memory word results in 9.1% and

20.4% larger data for 6M-RRNS as compared to RS and C-

RRNS, respectively. Therefore, 6M-RRNS offers the biggest

data storage when considering a fixed memory chip size.

Fourth, consider the decoding time for RRNS codes. Since

6M-RRNS code hold at most two error correction capability,

the code requires maximum C6
2=15 iterations during decoding

procedure. However, for C-RRNS code the procedure needs

maximum C9
3=84 iterations. Hence, 6M-RRNS performs 5.6

times faster decoding than C-RRNS.

VI. CONCLUSION

In this paper the concept of Redundant Residue Number

Systems (RRNS) is introduced for fault tolerance hybrid

memories. A modified RRNS code has been proposed while

targeting higher degree of cluster faults. The proposed version,

referred to as 6M-RRNS, is based on six redundant residues

in generating the RRNS codeword. The experimental results

show that 6M-RRNS code has shorter codeword than well-

known Reed-Solomon (RS) and conventional RRNS codes

(C-RRNS). Hence, allowing for more data storage for a given

fixed memory size. Moreover, the 6M-RRNS has a competitive

error correction capability as compared to RS and C-RRNS.

Future work is to enhance the fault tolerance capability, e.g.,

by combining RRNS codes to other techniques like N-tuple

modular redundancy and scrubbing.

REFERENCES

[1] D. B. Strukov and K. K. Likharev, “Prospects for terabit-scale nanoelec-
tronic memories”, Nanotechnology, vol. 16, pp. 137–148, 2005.

[2] ZettacoreTM. ZettaCoreTMmemory. http://www.zettacore.com/
[3] K. Bullis, ”Ultradense Molecular Memory: Researchers develop a large-

scale array of nanoscale memory circuits”, MIT Technology Review,
http : //www.technologyreview.com/Nanotech/18100/

[4] L. Rispal and U. Schwalke, “Large-Scale In Situ Fabrication of Voltage-
Programmable Dual-Layer High-kappa Dielectric Carbon Nanotube
Memory Devices With High On/Off Ratio”, IEEE Electron Device

Letters, vol. 29, iss. 12, pp. 1349–1352, Dec 2008.
[5] C.M. Jeffery, A. Basagalar, and R. J. O Figueiredo, “Dynamic sparing

and error correcting techniques for fault tolerance in nanoscale memory
structures”, in Proc. of IEEE Conf. on Nanotechnology, pp. 168–170,
Aug. 2004.

[6] D. B. Strukov and K. K. Likharev, “Architectures for defect-tolerant
nanoelectronic crossbar memories”, Nanotechnology, vol. 7, pp. 151–
167, 2007.

[7] F. Sun and T. Zhang, “Two Fault Tolerance Design Approaches for
Hybrid CMOS/Nanodevice Digital Memories”, in Proc. of IEEE Int’l

Work’p on Defect and Fault Tolerant Nanoscale Architectures, 2006.
[8] H. Naeimi and A. DeHon, “Fault Tolerant Nano-Memory with Fault

Secure Encoder”, in Proc. Int’l Conf. on Nano-Networks (Nanonets

2007), Sept. 2007.
[9] S. Ghosh and P.D. Lincoln, “Dynamic Low-Density Parity Check Codes

for Fault-tolerant Nanoscale Memory Fault-tolerant Nanoscale Mem-
ory”, online at http : //www.csl.sri.com/users/shalini/ldpc.pdf.

[10] S. Biswas, T. S. Metodi, F. T. Chong, and R. Kastner, “ A Pageable,
Defect-Tolerant Nanoscale Memory System”, in Proc. of IEEE Int’l

Symposium on Nanoscale Architecture, pp. 85–92, 2007.
[11] K. K. Likharev, “Hybrid CMOS/Nanoelectronic Circuits: Opportunities

and Challenges”, J. of Nanoelectronics and Optoelectronics, vol. 3, pp.
203–230, 2008.

[12] N. Szabo and R. Tanaka. Residue Arithmetic and its Application to

Computer Technology. MC-Graw-Hill. New York. 1967.
[13] J. -D. Sun and H. Krishna, “A coding theory approach to error control in

redundant residue number system - Part II: multiple error detection and
correction”, IEEE Trans. on Circuits and Systems, pp. vol. 39, 18–34,
Jan 1992.

[14] R. C. Baumann, “Soft Error in Advanced Semiconductor Devices–Part
1: The Three Radiation Sources”, IEEE Trans. on Device and Materials

Reliability, Vol. 1, No. 1, pp. 17–22, March 2001.
[15] L. Yang and Lajos Hanzo, “Coding theory and performance of

redundant residue number system codes”, http : //www −

mobile.ecs.soton.ac.uk/
[16] V. T. Goh and M. U. Siddiqi, “Multiple Error Detection and Correc-

tion based on Redundant Residue Number Systems”, IEEE Trans. on

Communications, vol. 56, no. 3, pp. 325–330, March 2008.
[17] F. Barsini and P. Maestrini, “Error correcting properties of redundant

residue number systems”, IEEE Transactions of Computers, vol. 2, no.
2, pp. 915–923, 1973.

[18] MathWorksTM. Reed-Solomon Decoder Simulation. http :

//www.mathworks.com/matlabcentral

32 2009 IEEE/ACM International Symposium on Nanoscale Architectures

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:11:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

