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ABSTRACT

The shift towards using increasing numbers of processing
elements has placed new burdens on the programming
community to fully exploit the potential performance
gain of multiprocessor systems. The programming
problem is even more complex in the case of systems
that utilize reconfigurable devices. The increased
complexity of programming necessitates the use of tools
that can support programmers in migrating existing
applications to these emerging systems. Programmers
need increasingly sophisticated tools for profiling and
analysis of applications. Particularly, tools to inspect the
memory access behavior of applications become crucial
due to the processor/memory communication bottleneck.
In this paper, we present xQUAD, a unique extension to
the QUAD dynamic profiling toolset, which augments the
memory access analysis of an application by providing
detailed, fine-grained intra-function information. xQUAD
provides detailed memory access information on the
application source code data object granularity. This
information can help programmers for application
optimization and revision. We also present a ranking
method based on the memory access intensity of a
function, which reveals more accurately the suitability
of the function for hardware implementation. xQUAD is
tested on a real application from the multimedia domain
to describe the capabilities of the proposed toolset.

KEYWORDS: Dynamic profiling, Instrumentation, Per-
formance analysis, Code tuning, Reconfigurable architec-
tures, Hardware/Software partitioning.

1. INTRODUCTION

In the last decades, the rate of improvement of processor
performance has greatly exceeded the rate of improvement
of memory performance. This phenomenon is the main

obstacle limiting the overall performance of applications
on computing systems. Conversely, modern applications
require an increasing amount of computing power, which
can not always be delivered by conventional modern
processors. As an alternative to conventional computing,
the introduction of heterogeneous architectures featuring
reconfigurable devices, such as FPGAs, has demonstrated
to greatly accelerate a wide variety of applications [1],
[2]. Furthermore, the latest developments in FPGA
technology have been quite beneficial for this field,
making FPGA logic the de facto standard as a co-
processor component. Nevertheless, the introduction of
heterogeneous reconfigurable architectures has not solved
the processor/memory bottleneck yet. In fact, efficient
and high-performance application results on FPGAs
require careful consideration of the memory bottleneck
of the underlying system. Additionally, heterogeneous
architectures incorporating reconfigurable devices
introduce more processing elements on the same platform,
which is usually reflected by the need for an increase
in I/O capabilities. As a result, the performance of an
application mapped onto a heterogeneous reconfigurable
platform is largely determined by how much exploitable
parallelism is available, and also by the ability of the
system to provide data to keep the parallel hardware
operational [3].

To address this issue, there is an increasing demand
in software tools to help developers in analyzing
their applications in terms of memory usage. The
QUAD (Quantitative Usage Analysis of Data) core
tool [4] provides a comprehensive overview of the
actual data communications between the functions
in an application. The tQUAD tool [5] focuses on
the memory bandwidth issues and delivers temporal
information for the functions in an application. In order
to manually and/or automatically revise application
source code for increased performance on hardware
accelerators, it is required to have in-depth fine-grained
memory access related information on individual data



objects. This information is critical in code tuning to
reduce data communications between tasks running on
different processing elements. The main problem with
the information extracted by the QUAD toolset is that
it provides a coarse view of the intra-function memory
accesses. As a result, it is very difficult to attribute the
extracted memory access information to particular user-
defined data objects in a program at the source code level.

In this paper, we present an extension to the QUAD
toolset, called xQUAD, which augments the memory
access analysis of an application by providing detailed,
fine-grained intra-function information. It identifies and
reveals the correspondence between data objects defined
in the application source code and the relevant memory
access information reported by the QUAD toolset.

The main contributions of this paper are the following:
• the design and implementation of an extension of the

QUAD toolset, which provides fine-grained memory
access information on user-defined data objects in a
program source code;

• the presentation of a memory access intensity in-
dex, which helps to provide a rough estimation
of hardware mapping decisions for reconfigurable
architectures;

• the validation of the proposed tool on a real
application.

The remainder of the paper is organized as follows.
Section 2 summarizes some related profiling tools. In
Section 3, we provide background and description of
the basic components required for xQUAD, including
the instrumentation framework and the necessary module
for retrieving source code level information from binary
executable files. Section 4 describes the proposed tool.
Finally, Section 5 concludes the paper.

2. RELATED WORK

As computing systems grow increasingly complex,
profiling tools become vital to help developers in
analyzing and improving the performance of applications.
Dynamic profiling tools, contrary to static profiling tools,
analyze programs during their execution and provide
valuable information about their runtime behavior. In the
context of dynamic profiling tools, in [6], the authors
present an efficient profiler and tracing system called
QPT. It rewrites the executable file of a program by
inserting code to record the execution frequency or
sequence of each basic block. The execution cost of
functions in the program can be extracted from this
information. gprof [7] is a general profiler that estimates

the execution time of each function through sampling.
SpixTools [8] is a collection of programs, which allows
instruction-level profiling of applications. Spix creates
an instrumented version of the user’s program. As it
runs, this instrumented program keeps track of how often
each basic block is executed. Several tools are provided
for displaying and summarizing collected data. Spixstats
prints tables showing opcode usage, branch behavior,
register usage, and other information. Sdas disassembles
the application program and annotates the disassembled
code with instruction execution counts. Sprint prints the
source code for the application and annotates it with
statement or instruction execution counts.

MemSpy [9] instruments source programs with Tango
[10], an execution-driven simulator, with calls to the
memory simulator for each memory reference associated
with dynamically-allocated memory or explicitly-
identified address ranges. Data accumulation is indexed
in a 2-D space by code objects (procedures) and data
objects (data allocated by an instance of a call to
malloc). CPROF [11] is a cache performance profiler
that annotates source listings to identify the source lines
and data structures that cause frequent cache misses. By
annotating lines of source code and data structures with
the corresponding number of cache misses, CPROF helps
the user to focus on problematic data structures and it aids
the programmer in identifying types of transformations
that can improve program cache behavior. The Memory
Trace Visualizer (MTV) [12] is a tool that provides
interactive visualization and analysis of the sequence of
memory operations performed by a program as it runs.

Current dynamic profilers lack the ability to provide
runtime memory usage statistics regarding individual data
objects defined in an application source code. This defi-
ciency imposes a substantial burden on programmers to
efficiently detect the memory access related bottlenecks
and revise the code based on the information extracted
during the execution of an application. The QUAD toolset
was missing the capability for recognizing data object
symbols in the program source code, which made it
complicated to discretize where, inside a kernel, a certain
memory behavior appears.

3. RESEARCH CONTEXT

The QUAD toolset is developed as the dynamic profil-
ing framework in the context of the Delft WorkBench
(DWB) [13]. The DWB is a semi-automatic tool platform
for integrated hardware/software co-design, targeting het-
erogeneous computing systems containing reconfigurable
components. It targets the Molen machine organization



[14], a heterogeneous reconfigurable platform developed
at Delft University of Technology. The DWB addresses
the entire design cycle from profiling and partitioning
to synthesis and compilation of an application and it
focuses on four main steps within the entire system
design, namely:

• the code profiling and the cost modeling [4], [5],
[15];

• the graph transformations and optimizations [16]–
[18];

• the retargetable compiler [19];
• the VHDL generation [20].

For a given application, code profiling and cost modeling
identify which parts of the application are good candidates
for hardware implementation. This decision is based on
the available hardware resources and the speed-up pro-
vided by the hardware implementation of the application,
or parts of it, versus a software implementation. Graph
transformations and optimizations analyze the candidate
parts of the application for hardware implementation to
find out if the code segments can be clustered/partitioned
according to various objectives such as hardware resource
sharing. After making the decision of which parts of the
code segments to implement in hardware, the code is an-
notated. Subsequently, the retargetable compiler generates
new object code. Finally, the identified instructions (code
segments) pass through a VHDL generation phase, which
generates hardware description of the instructions.

4. xQUAD

Nowadays, Dynamic Binary Instrumentation (DBI) frame-
works are gaining popularity among the available methods
for intercepting memory accesses. These frameworks can
be used to develop dynamic profilers. xQUAD falls under
this category of profilers. It is implemented as a Dynamic
Binary Analysis (DBA) tool using the Pin [21] DBI
framework.

4.1. Pin

DBI is a technique for analyzing the behavior of an
application, by injecting extra code into the application’s
binary at runtime. Pin provides a DBI framework for
building a variety of DBA tools for multiple architectures.
Instrumentation in Pin is performed by a Just-In-Time
(JIT) compiler. Pin intercepts the very first instruction
of the application and re-compiles the executable
generating basic blocks code starting at this instruction,
and instrumenting the code according to the specified
instrumentation type. This straight-line code sequence
is almost identical to the original one, except that it

.debug_info
         COMPILE_UNIT<header overall offset = 306>:
         <0><11> DW_TAG_compile_unit

DW_AT_stmt_list 218
DW_AT_high_pc 0x8048571
DW_AT_low_pc 0x80483e4
DW_AT_comp_dir /comp/dir/dwarf
<1>< 686> DW_TAG_subprogram

DW_AT_sibling <867>
DW_AT_external yes(1)
DW_AT_name main
DW_AT_low_pc 0x804845e
DW_AT_high_pc 0x8048571
<2><715> DW_TAG_variable

DW_AT_name s
DW_AT_decl_file 1
DW_AT_decl_line 53
DW_AT_type <238>
DW_AT_location DW_OP_fbreg -44

<2><699> DW_TAG_subprogram
-----------
DW_AT_name             function_sample
<2><715> DW_TAG_variable

DW_AT_name          m
DW_AT_decl_file             1
DW_AT_type                <238>

Figure 1. A Sample Debugging Information Entry

runs under the control of Pin. When a branch exits this
basic block, Pin generates more basic blocks code for
the branch target and it continues the execution. The JIT
generated code and its instrumentation are saved in a
code cache for future execution of the same sequence of
instructions to improve performance.

The execution of an instrumented application usually
shows a considerable slowdown. This depends on the
nature of the instrumented application, as well as on
the overhead caused by the analysis routines in the tool.
It appears that most of the slowdown is caused by the
execution of the code, rather than by on-the-fly code
compilation (which includes the insertion of the instru-
mentation code). In Pin, some performance improvements
are done during the compilation phase of the application.
This results in an instrumented code, which run very fast
compared to other DBI frameworks.

4.2. DWARF2 Debugging Information

The Pin DBI framework does not provide API functions
for retrieving variable information. Therefore, source-level
information about variables should be extracted directly
from the ELF object file. By compiling the application
with debugging information flag on, gcc augments
the ELF object file with a debugging section, whose
format is, unless specified otherwise, the DWARF2
Debugging Information format [22], [23]. DWARF
provides debugging entries to define low-level source
code representation, like, among others, information
about source code types, function and object names, line
numbers information, instruction addresses and effective
memory address offsets. These information are stored in
different sections, all prefixed with the debug keyword.
The most important section is the .debug info section,



which is the DWARF core data structure containing
the actual debugging information. These debugging
information are, in turn, contained in entities called
Debugging Information Entries (DIE), organized in a
tree structure, as depicted in Fig. 1. The data layout is
modified to resemble the tree structure of the .debug info
section.

As most modern programming languages are block struc-
tured, DWARF also follows this model. Hence, each DIE,
except the topmost root DIE representing the Compilation
Unit (CU) of the source file, is contained within a parent
DIE and may contain children DIEs. DIEs are tree nodes,
which may represent data types, variables, functions, and
everything else which participates to the formation of the
object code. The DIE type is specified by a tag. Further-
more, a DIE is composed by a set of attributes describing
the type, name, source line number, location address or
references to another DIE (e.g., a variable’s reference to a
data type specification). Following the DWARF structure,
source code level information is retrieved by using the
libdwarf consumer library interface [24]. This library
abstracts away from the DWARF low-level routines, by
defining wrap functions that ease the process of retrieving
debugging information from object files.

4.3. xQUAD Overview

xQUAD retrieves low-level source code representations
of variables from the DWARF debugging section of an
executable. This is necessary as Pin does not provide
any information about data symbols. For this purpose, a
module is developed for retrieving low-level source code
information from the debugging section of an object file.
The architectural overview of the xQUAD tool is depicted
in Fig. 2. xQUAD performs two types of analysis: a
detailed intra-functional variable memory access analysis
and a global memory usage analysis of the entire ap-
plication. Performing such an analysis at this fine level
of granularity can produce results, which can become
soon unmanageable, both in terms of analysis content and
time. Therefore, the tool is able to selectively filter out
information according to the user needs and preferences.
This is done by feeding a text-based file to the tool upon
analysis start, where the user can specify the functions
to perform the analysis being on some specific, or all,
local variable(s). Furthermore, it is also possible to include
global variables in the analysis. The extracted information
is output in flat text files, which allows the user to inspect
these files later by searching for desired information or
performing postprocessing. The extracted information can
also be visualized with some third-party visualization
tools to gain, at first glance, a general idea of the memory
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Figure 2. Architectural Overview of xQUAD

usage of an application. Moreover, the text files have a
simple format layout, which renders possible to parse
these files for extracting specific information, such as the
number of accesses on the local memory, the frequency
of accesses on the heap, and the ratio of usage of different
memory segments.

4.4. xQUAD Implementation

xQUAD mainly consists of three parts:

• a module for retrieving DWARF debugging informa-
tion;

• the Pin’s instrumentation functions;
• the QUAD’s analysis functions called from the

instrumentation functions.

Due to space limitations, the implementation details
associated with each of the above-mentioned parts are
omitted. Nevertheless, we provide an overview of the
most important routines and peculiarities in the xQUAD
implementation. In the beginning, the tool performs some
preliminary work, more specifically, the initialization
of the analysis report files, the command-line parsing,
the initialization of data-structures used for analysis
information storage, and the initialization of the Pin
framework. Following that, xQUAD processes the
debugging information from the object file. Processing
debugging information is transparent, meaning that
the user is not aware of this process and the only
requirement is that the object file should include
debugging information, which is indeed a compulsory
prerequisite. By using the libdwarf library, the DWARF
process is initialized and, afterwards, each CU inside
an application is processed and analyzed. Following the
tree structure of the DWARF format, each individual CU
is examined by a depth-first traversal algorithm. During
the search, only the information interesting for the user
(according to the previously defined list of functions and
variables) is further processed. The processing involves
storing variable names and their offsets w.r.t. the current
frame base pointer into a table, kept temporarily in the
memory.



After reading the debugging information, xQUAD
starts the instrumentation process by using APIs from
the Pin framework. The xQUAD tool instruments
the application at two levels of granularity: at the
routine level and at the instruction level, by calling the
Pin API functions RTN AddInstrumentationFunction()
and INS AddInstrumentationFunction(), respectively.
RTN AddInstrumentationFunction() instruments every
routine in the application and its purpose is to keep its
own version of the stack of routine calls. The name
of each routine is retrieved by using the API function
RTN name and the function name is stored in a stack
data structure. By keeping an owned version of the call
stack, it is possible to know if a currently executing
function has been called for the first time, meaning that
the function is producing fresh memory accesses, i.e.,
these memory accesses are being produced for the first
time. Conversely, a function may be returning from a
callee, meaning that the data accesses currently produced
must be accounted for a previous function call. The call
stack is used in various aspects of the analysis, like the
implementation of the routine count functionality and the
correct implementation of the memory map file.

Afterwards, the INS AddInstrumentationFunction() API
function is called. This function allows instrumentation
analysis at instruction level, meaning that every
instruction of the application is inspected at the runtime.
The instrumentation analysis checks for instructions
operating on memory and the return instruction. The
return instruction is inspected for the purpose of
maintaining the earlier described call stack, while the
inspection of memory related instructions is the main
concern of xQUAD. Each time an instruction references
memory (read or write), the tool calls an analysis
function that inspects whether or not the current memory
operation is done on a data object that the user has
earlier defined. This is done by checking if the current
instrumented function matches a function in the table
stored by the previous DWARF information extraction
step.

Pin’s API function INS InsertPredicatedCall() is used
to call analysis functions. This API function prevents
pollution of the memory analysis by calling an analysis
function only if a particular instruction is actually
executed, i.e., only if the instruction is predicated
true. In case a memory access instruction is executed,
various parameters are passed to the analysis function
RecordTrace(). The REG GBP parameter represents the
current base pointer. This parameter is used to calculate
the actual memory address of the variable in question, by
adding to this base pointer the offset stored in the table of

the offset-variable name pairs. Furthermore, the effective
address of the instruction is passed to the analysis
function, along with the current function name retrieved
by using the Pin API call to RTN Name. Using these
parameters, it is possible to build another table consisting
of pairs of variable name and variable address. Finally,
the INS IsPrefetch() parameter is used to indicate if the
current instruction is a prefetch instruction and, if this is
the case, the analysis function returns immediately as we
aim at examining only the actual memory operations.

Another analysis function is defined for the purpose of
keeping a count of the executed instructions. This analy-
sis function is called for every instrumented instruction,
memory related or not. The count of the executed instruc-
tions allows us to have an estimation of the time a certain
memory operation is executed, effectively implementing
a time-stamp in terms of instruction cycles. This temporal
information can be helpful in gaining useful statistics
about the memory usages of data objects defined in the
application source code.

5. CASE STUDY

In this section, we present a case study that demonstrates
the capabilities of xQUAD. For this purpose, we have
chosen the hArtes wfs audio processing application. The
main goal is to have a detailed analysis regarding the
memory accesses within each kernel of the application.
The ability of the tool to make a clear connection between
raw memory addresses and the actual data objects defined
in the source code of the application makes it practical to
spot memory deficiencies within the application. It also
provides valuable hints for revisions. Furthermore, a rank-
ing method is presented, which extracts a memory penalty
factor for a kernel from the execution time retrieved by
gprof. This metric serves as an indication of the memory
access intensity of a kernel relative to its execution time.
However, it does not reflect any particular quantitative
value of measurement. It only specifies an index by taking
the ratio of the memory accesses over the memory access
related part of the gprof execution time. As a result, this
index is only applicable for comparison purposes between
kernels, which allows to draw up a ranking method.

5.1. hArtes wfs

The Wave Field Synthesis (WFS) [25] concept is a 3D
audio rendering technique characterized by the creation
of a virtual source and a virtual room. WFS is based
on the Huygens principle, which, informally, states that
each point in a wavefront can be considered as a primary
source for the creation of new secondary waves, which, in



turn, become a primary source for other waves. Hence, an
advancing wave can be constructed by the summation of
all the secondary waves arising from previously primary
source waves. This principle is reproduced by loudspeaker
arrays that generate a complete sound field in the listening
zone, which is identical to an appropriate real sound event.
The hArtes wfs application provided by Fraunhofer IDMT
[26] implements a selfcontained wave field synthesis
system.

5.2. Experimental Analysis

By inspecting the memory map profiles of the hArtes
wfs application for the three distinctive regions namely,
the stack, the heap, and the data, some observation can
be derived. It turns out that from the beginning until
approximately half of the execution time, there is a
sparse usage of heap memory addresses, while during
the second half of the execution time this usage becomes
quite intense for a certain range of addresses in the
heap memory. Intensive heap usage is accounted for the
wav store kernel, which becomes active approximately
in the middle of the execution time and it is the only
active function until the end of the execution. Actually,
wav store saves the output audio signals, produced
during its execution, from the buffers allocated in the
heap memory to an output file. To accomplish this, it
uses mostly individual heap addresses, which explains
the intense heap usage.

Table 1 summarizes all the memory references of
the hArtes wfs application along with the number
of individual memory addresses used. The detailed flat
profile produced by xQUAD contains the memory address
referenced during a kernel’s execution, the corresponding
data object name, the kernel’s call number, and the time
stamp when the reference is issued. The number of data
objects presented in Table 1 refers to the local variables
defined in the kernel excluding the formal parameters.

Table 1. Memory Access Statistics for hArtes wfs

Stack Heap Data
Kernel # # # # # # #

DO ADD ACC ADD ACC ADD ACC
wav store 4 38 3160179 35935 291844 537 131932
fft1d 10 33 2192660 6 13 9 59
DelayLine processChunk 18 41 893129 3 5 9 25
bitrev 2 26 922918 7 32443 10 64303
zeroRealVec 1 19 324462 3 281 7 504
AudioIo setFrames 2 14 665 32 32 5 12
perm 4 22 126662 5 17 10 50
cadd 1 24 86742 5 16155 10 32378
cmult 3 24 123200 6 16173 10 32251
Filter process 3 20 81054 5 19 9 47

#DO is the number of local data objects defined in the kernel; #ADD is the
total number of distinct addresses referenced during the application execution;
#ACC is the total number of accesses for data objects.

Table 2. gprof Flat Profile for hArtes wfs

Kernel %time self calls self total
seconds ms/call ms/call

wav store 31.91 0.28 1 277.25 277.25
fft1d 28.23 0.25 984 0.25 0.25
DelayLine processChunk 14.23 0.12 493 0.25 0.38
bitrev 8.19 0.07 2015232 0.00 0.00
zeroRealVec 7.44 0.06 15782 0.00 0.00
AudioIo setFrames 4.01 0.03 493 0.07 0.07
perm 2.07 0.02 984 0.02 0.09
cadd 0.79 0.01 1009664 0.00 0.00
cmult 0.73 0.01 1009664 0.00 0.00
Filter process 0.71 0.01 493 0.01 0.73

% time is the percentage of the total execution time of the program used by the
function; self seconds is the number of seconds accounted for by the function
alone; calls is the number of times a function is invoked; self ms/call is the
average number of milliseconds spent in the function per call; total ms/call is
the average number of milliseconds spent in the function and its descendants
per call.

The recorded accesses are based on variables, which can
have different sizes. Therefore, xQUAD does not reveal
the actual number of bytes accessed during the execution
of a kernel. To have an aggregate estimation of this
value, tQUAD can be utilized. Due to space limitation,
we have omitted the detailed memory usage information
of each data object defined in the source code of the
application. The data in Table 1 is recorded with a time
slice length of 500 instructions, i.e., these results are
describing almost completely the actual behavior of the
application w.r.t. its memory usage. Selecting a larger
time slice results in the reduction of the analysis time
and the disk space usage1. However, the choice of a too
large time slice should be avoided, as this would cause a
loss of some valuable information.

From Table 1, we can see that the number of individual
memory addresses for accessing the non-local memory is
considerably higher for wav store compared to the other
functions. In the case of stack, more than one third of
the total accesses (the data is not present in Table 1) are
due to a local variable that acts as a sentinel for the main
loop, which stores the specifications of wave frames to
an output file. Thorough examination of the flat profile
and the application source code also reveals that the main
load of the local accesses in DelayLine processChunk
originates from a rather large data structure, which
collects the necessary data for delay update. Should the
kernel be implemented in the hardware, allocating the
mentioned data object and two small counters on the chip
memory can result in more than fifty percent reduction
in the total external memory accesses.

AudioIo setFrames is responsible for copying interleaved

1. The produced memory map file for the hArtes wfs application with
a time slice of 500 instructions is almost 50 MB. By storing each
instruction, the produced file can grow up into GBs, which may make
the postprocessing of the data impractical.



audio signal parts into the corresponding audio frame
in the memory. The hArtes wfs application uses 32
secondary sources (i.e. an array of 32 loudspeakers) and
so, AudioIo setFrames needs 32 distinct addresses for
accomplishing its task. The data presented in Table 1
can be misleading by itself, particularly for the stack
region, as it does not take into account the number of
times that a specific function is called. Therefore, we
used gprof to find out the execution frequencies of the
functions. The results are presented in Table 2. At a
first glance, in Table 1, bitrev shows a high frequency
of stack usage. However, this function is called over
2 million times, which reduces the number of local
memory accesses to only a few instances per call. To
have an overview of the memory usage with a high level
of abstraction, i.e. without diving directly into numeric
values, the visualization feature of xQUAD can be used.
xQUAD is able to show the memory usage progress of
an application in a motion picture format.

Memory Access Intensity. gprof provides a cumulative
execution time estimate for each kernel, failing to
distinguish between the time spent on computations and
the time spent on memory operations. The selection of
potential candidates for hardware implementation based
solely on the computational intensity can not be regarded
as an accurate metric in the context of heterogeneous
reconfigurable systems. The reason lies in dealing with
the high data communication that must be provided to
the reconfigurable devices. To have a more accurate
understanding of the behavior of kernels, we tried to
estimate the time spent on memory operations w.r.t. the
time spent for computations. Finding the exact time that
is spent on each memory access, if possible at all, is
a very difficult task, as it depends extensively on the
intrinsic nature of the underlying platform.

We tried to measure separately the computation- and
the communication-related contributions of each kernel
in the hArtes wfs application. Table 3 summarizes the
analysis results. The values are averaged in the cases that
the kernels show different behaviors in subsequent calls.
Almost all the kernels had similar behaviors in recurring
calls and the differences were negligible, except for
zeroRealVec, which acted considerably different in one
case. As Table 3 shows, for most of the kernels more than
half of the whole executed instructions are due to memory
access operations. This memory communication load can
increase up to nearly the whole execution time for strictly
memory-bound kernels, such as, AudioIo setFrames.

We introduce a ranking strategy to help the estimation of
the time spent on memory operations w.r.t. the time spent

Table 3. Communication vs. Computation Time
Profile of hArtes wfs

Kernel MAR NLOC Total Total Stk # Uni.
MAR inst. MA inst. Ratio Exec.

wav store 37.14 24.54 3389224874 12587888805 33.92 1
fft1d 54.43 13.06 1411388 768176 76.00 6
DelayLine processChunk 54.24 10.30 1009733 547848 81.04 139
bitrev 51.31 5.48 264 136 89.33 4
zeroRealVec 54.59 9.16 11277 6156 83.21 6
AudioIo setFrames 99.66 99.37 132127 131677 0.30 4
perm 65.86 11.33 70235 46260 82.81 6
cadd 60.22 18.18 86 51 69.72 4
cmult 63.46 15.40 94 60 75.75 4
Filter process 53.08 22.45 100520 53351 57.71 7
MAR is the percentage ratio of the memory access instructions to the total
instructions executed in the kernel; NLOC MAR is the same as MAR except
that only references to the non-local region are considered; Stk Ratio is the
percentage ratio of the memory access instructions within the local region to the
total memory access instructions; # Uni. Exec. is the total number of distinct
statistical data recorded for different calls of the kernel.

on calculations. We assume that for each kernel k, the
time needed for accessing the memory system (τcomm)

is proportional to the total number of issued memory
accesses during the execution of that kernel (ηma)

∀k : τcomm(k) ∝ ηma(k). (1)

Furthermore, the time needed for accessing the memory
can be estimated by Equation 2, assuming a completely
primitive flat memory architecture without considering
any hierarchies, caches, compiler optimizations, and other
complexities:

τcomm(k) ≈ ξ×τgprof (k)×MAR(k) (2)

≈ α×τstk(k) + β×τheap(k) + γ×τdata(k),

(3)

where τgprof (k) is the total cumulative time reported by
the gprof profiler for the kernel k and MAR (Memory
Access Ratio) is the ratio of the total memory access
instructions (ηma) to the total instructions. τstk is the
communication time accessing the stack region. Accord-
ingly, τheap refers to the heap and τdata to the data regions
of the memory. α, β and γ reflect cost factors for accessing
data objects in stack, heap, and data regions, respectively.
By using the parameters presented in Table 3, we can
revise τcomm(k) as follows.

τcomm(k) ≈ τgprof (k)×MAR(k)×
(
α× ηstk(k)

ηma(k)

+ β ×
ηheap(k)

ηma(k)
+ γ × ηdata(k)

ηma(k)

)
.

(4)

In the context of reconfigurable systems, it makes sense to
consider two distinctive types of memory accesses. Local
data objects, commonly limited in size, are allocated in
the on-chip memory (BRAMs and/or LUTs) and all the
other global and dynamically allocated data objects, rather



Table 4. A Ranking of the hArtes wfs Kernels

Kernel ηma τcomm (MAI)−1 Rank
wav store 423776 0.068712 6167423 4
fft1d 72 0.032650 2205 9
DelayLine processChunk 30 0.012360 2427 8
bitrev 96746 0.003836 25220542 3
zeroRealVec 785 0.005496 142831 5
AudioIo setFrames 44 0.029811 1475 10
perm 67 0.002266 29568 6
cadd 48533 0.001818 26695819 2
cmult 48424 0.001540 31444156 1
Filter process 66 0.002245 29399 7

large in size, are put on any kind of off-chip memory,
e.g. SDRAMs. These can be addressed with the terms,
local data, usually referring to the data objects in the stack
region, and non-local data, which commonly refers to the
data objects in the global scope and heap regions. In this
respect, we rewrite (4) as following:

τcomm(k) ≈ τgprof (k)×
(
α×MAR(k)× ηstk(k)

ηma(k)

+ ζ ×MAR(k)×
ηheap(k) + ηdata(k)

ηma(k)

)
≈ τgprof (k)×

(
α×MAR(k)× StkRatio

+ ζ ×MARnloc(k)
)
,

(5)

where MARnloc(k) is the ratio of the non-local memory
access instructions to the total number of instructions
executed in the kernel k. α and ζ reflect cost factors
for accessing data objects in local and non-local regions,
respectively. We define Memory Access Intensity (MAI) of
a kernel as a metric to distinguish between the memory
intensiveness of kernels.

MAI(k) =
τcomm(k)

ηma(k)
. (6)

In a simple scenario, suppose that the cost for accessing
the local memory region is totally insignificant compared
to the non-local memory region, i.e α is close to zero.
Table 4 presents an order of the kernels based on the
probable suitability for mapping onto an FPGA. Lower
value for MAI indicates the kernel is more appropriate
for hardware implementation. The total execution time
is retrieved from the gprof flat profile in Table 2, while
the total number of memory accesses is extracted from
Table 1. In Table 4, the stack accesses of the kernels are
not taken into account, as most time penalty is expected
to be for accessing the heap and data segments of the
memory. The ηma column reports the sum of the heap
and the data regions memory accesses, while τcomm(k)

is an estimate of the time spent executing a kernel’s
memory access operations. The ordering is based on the
inverse values of the MAI of the kernels.

As seen in Table 4, cadd and cmult get the top posi-
tions in our list. These tiny frequently used kernels are
responsible to do mathematical addition and multipli-
cation for complex numbers. A thorough inspection of
the source code also justifies the placement. The reason
lies in the fact that cadd consists of only two floating
point addition operations (computation workload) and six
memory access operations in total, four memory reads
and two memory writes (communication workload). A
similar scenario applies to cmult with five additions, three
multiplications, and sixteen memory accesses. It should
also be stressed that mapping these kernels to HW still
does not affect the overall performance considerably, as
they are only responsible for a very small fraction of
the whole execution time of the application. Apart from
these kernels, wav store still accounts as one of the
most appropriate kernels for mapping onto the FPGA.
Interestingly, fft1d and DelayLine processChunck, which
had top positions in the gprof profiling information,
drop down to near the last position in the list, when
we consider our Indexing scheme. The distinct case of
AudioIo setFrames, which is the strictly memory-bound
kernel in the list, is quite interesting, as it gets now its
actual position in the ranking. The kernel is identified as
the worst candidate for hardware mapping. Examining
the source code reveals that this kernel merely copies
interleaved audio signal parts to a frame by invoking the
memcpy library function. This means that the time spent
for memory accesses relative to the computation time
is dominating, which makes the kernel an inappropriate
candidate for the hardware implementation.

6. CONCLUSIONS

The primary obstacle for improving the overall
performance of computing systems arises from the
communication bottleneck between processing elements
and memory subsystem. This bottleneck is even
more evident with the introduction of heterogeneous
architectures containing reconfigurable fabrics. To
alleviate this problem, a thorough and detailed analysis
of the memory access usage of an application is of vital
importance.

This paper presents xQUAD, a unique tool that is able to
perform memory access analysis at the intra-functional
level. The tool provides detailed information regarding
the memory access behavior inside a function, which
delivers important information for optimization purposes
on a fine-grain scale and for discovering possible unusual
behavior of data objects in functions. These information
are essential to have a deep understanding of the ap-
plication behavior and they would not be revealed by



an analysis based on an inter-functional level. In order
to accomplish this task, xQUAD extracts data objects
information at the source code level during an application
execution and attributes the memory access statistics to the
descriptive names in the application source code. Based on
the extracted information, we proposed a memory access
intensity metric which, in comparison to general profilers,
characterizes the kernels in an application more accurately
for mapping onto the hardware in reconfigurable architec-
tures.
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