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and particularly with the data bus, which apparently experiences
random ”hiccups” and halts. Therefore, this thesis will explore two
applications of fault detection methods within the Delfi satellites, fo-
cused first on the CDHS and then on dynamic sensor systems. The
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on-board, particularly in their capability to autonomously detect er-
rors. In that sense, this work begins with a study on the design of the
Delfi-C3 CDHS, with measurements on bit-error rates and software
debugs that show particular flaws. We present, then, an overview of
the next version of the satellite, Delfi-n3Xt, with the current archi-
tectural design of the CDHS and the data bus, which includes the
proposed improvements over the previous design and the rationale
behind them. We also describe fault torelant mechanisms for soft-
ware and communications, more extensively error detection codes

that may improve the reliability of the bus when properly implemented. As the capability of autonomous
fault detection can be applied to other systems besides the CDHS, we investigate a model based mecha-
nism, inspired on a recent variant of the popular Kalman Filter, the Unscented Kalman Filter, which is
fundamented on probabilistic estimation techniques. We apply this method to the navigation sensors of
Delfi-n3Xt and provide results that show it is possible to detect errors with this scheme.
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Preface

D
elfi-C3 was the first dutch student nanosatellite launched into space on April 28, 2008.
After more than a year in operation, it is regarded as a successful mission. The experience,
however, revealed noticeable problems with the Command & Data Handling Subsystem

(CDHS) and particularly with the data bus, which apparently experiences random ”hiccups” and
halts. Therefore, this thesis will explore two applications of fault detection methods within the
Delfi satellites, focused first on the CDHS and then on dynamic sensor systems. The first focus
intends to address the problems in the CDHS, by proposing mechanisms that would increase
the reliability of the systems on-board, particularly in their capability to autonomously detect

errors. In that sense, this work begins with a study on the design of the Delfi-C3 CDHS, with
measurements on bit-error rates and software debugs that show particular flaws. We present,
then, an overview of the next version of the satellite, Delfi-n3Xt, with the current architectural
design of the CDHS and the data bus, which includes the proposed improvements over the
previous design and the rationale behind them. We also describe fault torelant mechanisms for
software and communications, more extensively error detection codes that may improve the reli-
ability of the bus when properly implemented. As the capability of autonomous fault detection
can be applied to other systems besides the CDHS, we investigate a model based mechanism,
inspired on a recent variant of the popular Kalman Filter, the Unscented Kalman Filter, which
is fundamented on probabilistic estimation techniques. We apply this method to the navigation
sensors of Delfi-n3Xt and provide results that show it is possible to detect errors with this scheme.
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Introduction 1
Space is regarded as the ultimate frontier for man. Since the beginnings of humanity,
men have gazed at the skies in wonder and awe. In a first step to conquer these limits,
the Wright brothers in the early 1900’s successfully built and tested the first airplane.
On 20 July 1969, Neil Armstrong from the United States of America put a foot on the
moon. In less than one generation’s lifetime, humankind had astonishly moved forward
in their endless and insatiable effort to conquer the skies above.

As technology evolved during the 20th century, space became less and less the sole
territory of governments and companies starting launching probes and satellites for com-
mercial purposes. Such is the case that as of this day, several hundred operational satel-
lites are currently in orbit around the Earth. Purposes range from the educational to
the military.

More recently, universities and higher education institutions have taken into their
efforts the development and launch of small satellites, called pico, nano or microsatellites
(depending on their size). This serves mostly for educational purposes and engineering
experience, along with experimentation with on board payloads. Moreover, as these
satellites employ commercial off the shelf components (COTS), their development budget
ranges from $65,000 to $80,000, well within the affordable cost range of universities and
schools.

Figure 1.1: Delfi-n3Xt Nanosatellite.

The Chair of Space Systems Engineering at the Faculty of Aerospace Engineering of
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2 CHAPTER 1. INTRODUCTION

the Delft University of Technology has engaged in the development of student nanosatel-
lites as part of an initiative to give students hand on experience into the design and
development of such systems. The first major achievement of this programme was the
development and launch of the Delfi-C3 on April 28, 2008 from Sri Harikota, India. As
of this moment, Delfi-C3 has more than a year in orbit and has successfully transmitted
more than 500,000 telemetry frames (72.14 MB of data). This ambitious programme
aims to launch a satellite every 2.5 years.

1.1 The Delfi-n3Xt Nanosatellite

As a successor to Delfi-C3, Delfi-n3Xt, illustrated in figures 1.1 and 1.2, will be 3.3 Kg
three-unit cubesat with advanced three axis stabilization, battery and high speed data
link. Defined on 21 February 2008, it is currently being designed by 80 students and will
focus on the qualification of microtechnologies from the Dutch space industry.

Figure 1.2: Delfi-n3Xt Nanosatellite.

1.1.1 Mission Statement

The mission of Delfi-n3Xt can best be described by the following goals:

• Pre-qualification of a micro-propulsion system from TNO, TU Delft and UTwente

• Pre-qualification of a Multi-functional Particle Spectrometer (MPS) from Cosine
Research BV

• Scientific Radiation Experiment of Si-solar cells from DIMES
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• Qualification of a high-efficiency communications platform from ISIS BV

• Proof-of-concept for a radiation risk-free implementation of commercial solid-state
data storage devices, provided by NLR

Moreover, the satellite will provide the following advancements over its predecessor:

• Implementation of 3-axis active attitude control

• Providing high data-rate (> 9.6kbps) communication links

• A single-point-failure-free EPS with energy storage

1.1.2 Payloads

The five payloads on board Delfi-n3Xt were selected on the basis of their feasibility,
educational value, services provided, level of innovation and design impacts. After an
assessment procedure carried out by the systems engineers, the instruments listed below
have got a flight opportunity. The current position of each within the structure of the
satellite is displayed in figure 1.3.

Figure 1.3: Delfi-n3Xt Block breakdown.

• Cool Gas Micropropulsion System - TNO, TU Delft, UTwente

Designed to supply thrust for positional and orbit corrections, it contains compact
storage for solid state propellants and a highly integrated feeding and thruster
system based on MEMS technologies. Currently, this unique storage and release
technology works with nitrogen, oxygen and hydrogen. The model is shown in
figure 1.4.
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Figure 1.4: Micropropulsion Payload.

• Hydrogenated Amorphous Silicon Solar Cells - DIMES

Hydrogenated Amorphous silicon allows the fabrication of low cost solar cells,
lightweight and radiation hard. In space, these cells tend to degrade due to the
effects of sustained illumination and radiation impacts. Measurements of voltage-
current relationships on these cells will provide information on the resilience of this
technology and predict the end-of-life for future uses.

• Multifunctional Particle Spectrometer - Cosine Research BV

Referred to as MPS, it is a new type of radiation spectrometer that is able to
detect protons, electrons, ions and gamma rays. The device is spectrally sensitive
over large energy ranges and also able to measure the angle of incidence within 10
degrees. The tracker is based on a Va32Ta ASIA and the readout is done with a
Xilinx FPGA. A prototype is illustrated in figure 1.5.

• Space Flash Memory - NLR

COTS memory is sensitive to radiation, so different measures need to be taken
in order to protect it from damage. It contains electronics to compensate for
Single Event Upset (SEU) with redundant data and Single Event LatchUp (SEL).
Additionally, it will keep measurements of these events.

• Efficient Nanosatellite Transceiver Module - ISIS BV

Based on the the transceiver on board the Delfi-C3, this one has a higher efficiency
power amplifier and a more modular design. For uplink, the ITRX uses UHF at
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Figure 1.5: MPS Prototype.

a maximum of 1200 bps and VHF at a maximum of 9600 bps for downlink. The
transmitter power, which will be at least 400mW may be changed via commands.
As a contingency, this payload may be used as a backup command receiver.

1.1.3 Subsystems

• Electrical Power Subsystem (EPS)

The EPS consist out of four solar arrays directed to the sun and a maximum power
point tracker to get the most power out of the solar cells. About 10 Watts of power
is expected on the primary power bus of the satellite. Furthermore, for energy
storage, four li-ion batteries will have enough capacity for full eclipse operations.

• Command and Data Handling Subsystem (CDHS)

Performs two major functions. It receives, validates, decodes, and distributes com-
mands to other spacecraft systems and gathers, processes, and formats spacecraft
housekeeping and mission data for downlink or use by the On-Board Computer
(OBC). In Delfi n3Xt, power switching and deployment operations, and OBC also
belong to the CDHS.

• Communication Subsystem (COMMS)

COMMS will carry no less than three radios: the primary transceiver PTRX,
the payload ISIS transceiver and the high-speed transmitter STX. The power of
the transmitters is less than a standard Christmas light bulb, but it is enough
to transfer around 100 Mbit of data per day, which corresponds to 6000 typed
paper sheets. The high-speed transmitter works at 250 kbps. The ground station
is located in Delft, but any standard radio amateur equipment can listen to the
satellite beacon when it passes overhead.

• Attitude Determination and Control Subsystem (ADCS)

The Attitude Determination and Control Subsystem will apply active three-axis
control. The sensors chosen are sun sensors, magneto meters and optionally gyro
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sensors. The actuators are reaction wheels and magnetorquers. The ADCS has to
perform sun pointing, measuring, thrusting and tracking.

• Structural Subsystem (STS)

The Structural Subsystem of Delfi-n3Xt makes use of a customized structure. Some
key elements in this structure are the use of a rod system and detachable sides,
and the use of a symmetrical PCB layout for dimensions and holes. The objective
is reduction in time needed for assembly, integration and testing, and improving
the handling capabilities.

• Thermal Control Subsystem (TCS)

The solar panels will experience large thermal cycles, therefore the need arises for
extensive thermal testing of the panels. For the body of the satellite, it is expected
that the cycles are not as extreme. This is due to the relatively constant power
consumption within the satellite as the implementation of batteries enables a large
functionality during eclipse. And as most of the time the body will be in the
shadow of the solar panels (the satellite will point itself towards the sun during
most of the time), the solar radiation will not be the most most important factor
that influences the thermal behavior of the body. It creates possibilities to use
passive cooling to prevent overheating of the PCBs.

1.2 Thesis Motivation

The launch of Delfi-C3 on April 28, 2008 and its subsequent operational life is regarded
as a success and provided valuable data for the payload partners and experience to the
student designers. However, despite the success, the mission has experienced important
problems in the Command & Data Handling Subsystem (CDHS), causing ”hiccups” and
delays that eventually take a toll on data collection and processing.

Therefore, the motivation of this thesis springs from the problems experienced on
Delfi-C3, encompassing a robust design and implementation for the CDHS and the ex-
ploration of fault tolerance methods that could add to the reliability of the system, with
a strong focus on the data bus. For low level fault tolerance, we discuss techniques for
the CDHS focused on software methods and an analysis of applicable error detection
codes.

Fault detection methods can also be applied on a higher level, and therefore this thesis
also decides to explore model based fault detection, in an effort to include techniques on
a system level which could be implemented on future nanosatellites. In this particular
case we decide to study the application of this method to the ADCS of Delfi-n3Xt.

1.3 Thesis Organization

The organization of this thesis is structured in the following manner. Chapter 2 is ded-
icated to an exploration of the design of the Command and Data Handling Subsystem
on-board the Delfi-n3Xt, preceded by an overview of the design and problems of Delfi-
C3. Based on that analysis, the concepts and enhancements of Delfi-n3Xt are explained.
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Chapter 3 discusses techniques and concepts for fault tolerance specifically for the CDHS,
focused mostly on internal bus communications and error detection options. Chapter 4
explores fault tolerance concepts on a system level, with applications to attitude deter-
mination sensors. An innovative technique based on a variant of the Kalman filter is
applied to the ADCS system of Delfi-n3Xt. Finally, chapter 5 summarizes the work and
provides guidelines for future research and engineering efforts.
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Delfi Programme Command

and Data Handling Subsystem 2
This chapter contains an overview of the most important aspects of the Command and
Data Handling Subsystem (CDHS) for the Delfi-n3Xt mission, although many of the
concepts are being conceived in such a way that they can be reused in subsequent mis-
sions, so Delfi-n3Xt and Delfi programme may be used interchangeably. The first section
briefly describes the CDHS of the Delfi-C3 and outlines some of its problems. The fol-
lowing sections will provide an insight into the On-Board computer system and the data
bus. The data bus is of major concern since it is the component that caused the highest
number of glitches in the CDHS of Delfi-C3. Therefore, special focus is given here to its
architecture and implementation.

2.1 Delfi-C3 CDHS

The CDHS for the Delfi-C3 was based on an I2C data bus running at 15.9 kHz and the
FM430 Flight Module as an OBC, running at 1 MHz, which is based on the MSP430
family of processors from Texas Instruments. The architecture of the FM430 is shown in
figure 2.1. The major drawback of this was the PC104 form factor of the board, which
required a support PCB to fit into the satellite.

Figure 2.1: FM430 Flight Module Architecture.

9
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Subsystems worked with PIC microntrollers running at 1 MHz as well. Power switch-
ing for each subsystem was also controlled by a separate PIC processor running at 31
kHz, shown in figure 2.2 as the EPS microcontroller. As the next section explains, these
slow running nodes created issues in performance.

Figure 2.2: Delfi-C3 Subsystem Architecture.

2.1.1 Issues

Although the design can handle most of the tasks required by the CDHS, it does experi-
ence errors and lost data frames from time to time. Determining the exact cause of the
problem has proved to be a daunting task due to the large amount of activity, variables
and factors that have to be taken into account. The time at which these errors occur
also appears to be random. The approach taken here to shed a light on the problem is
based on bit error rate analysis from testing a similar setup with the Delfi-C3 service
layer code. The issue is that varying speed of the components in the bus has a noticeable
impact on the amount of communication errors (bit-error and timeouts).

2.1.1.1 Test Setup and Results of BER Measurements

The purpose of this measurement was to confirm the idea that the bus speed at which
Delfi-C3 runs is one of the most important reasons behind the glitches in communications
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between the subsystems. Therefore, the test was performed with varying bus speeds
under the assumption that at some moment, there would be a marked rise in the amount
of transmission errors. To measure the bit error rate of the Delfi-C3 data bus, we
mounted a I2C bus with three nodes: an MSP430 OBC and two PIC boards to simulate
subsystems (see figure 2.3).

Figure 2.3: Delfi-C3 Setup for BER Measurement.

Under the assumptions of a Gaussian error distribution, the required time for the
test is given by the following formula:

t =
ln(1− c)

br
(2.1)

where t is given in seconds, c is the confidence level (0-1), b is the upper bound for BER
and r is the bit rate, or bus speed in this case. In our test, since we vary the speed,
each test will require a different amount of time. However, we chose c = 0.95 as our
confidence level and b = 10−6 as our upper bound bit error rate, as for a CAN bus the
acceptable BER can range from 10−4 to 10−6[8],[28]. For example, a test for a 15kHz bus
would take approximately 189 seconds. Each test is repeated five times and the result
is the average of those tests.

The satellite bus usually has a timeout defined, under which the OBC assumes a
communication failure. In Delfi-C3 this timeout is set to approximately 400 milliseconds.
To conduct the BER measurements, two different tests were performed; one with the
timeout and another without it. This is to eliminate the effect of this timing requirement
in the error rates.

Without time constraints, the results are shown in graph 2.4. As expected, the slow
running slaves to perform worse, yielding surprise. It is worth mentioning that the com-
munication software contains within a parity scheme to help detect errors. This error
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detection scheme, however, does contain flaws that limit the effectiveness of communi-
cations. More in depth discussion of its implementation will be given in sections 3.2.3.1
and 3.2.4.

Figure 2.4: BER Measurement with no timeout constraints.

Figure 2.5 shows the measurements taken with the time constraint (400 ms). There
is a visible change in the amount of errors for the slower running slaves; a visible peak
after 8 kHz, while the 1 MHz node keeps an acceptable performance throughout the
test. As expected, too, the amount of timeouts is greatly dominated by the slow running
slaves. This could mostly be attributed to the parity calculations. For very low speeds
(1 kHz), the OBC will observe more timeouts, which can be explained by the fact that
such a low speed will more likely consume more time than the 400 ms timeout limit.

I2C specifications dictate that all nodes in the bus should run at least 10 times faster
than the bus speed[18]. In the design of the satellite, the bus is running at approximately
15.9 kHz, which is completely out of compliance. The ultimate reason behind this was
a flaw in the power subsystem design in which no more power could be provided to the
rest of the subsystems and therefore these components (PIC microcontrollers) had to
be slowed to 31 kHz to work under such tight power constraints. Figure 2.2 shows the
setup.

2.1.1.2 Additional Software Issues

During these BER experiments, there were additional observations that are worth men-
tioning. One of them is the fact that during the runs, the I2C operation would halt from
time to time, for a random number of seconds, and then wake up again. While debugging
the program, the error was isolated in the USART0 interrupt request, specifically in the
case where the I2C bus receives more data than expected and therefore remains in con-
stant interrupt. The timeout that should handle this condition is based on tickers from
the MSP430s Timer A. However, according to Texas Instruments (TI) documentation
on the MSP430, USART0 has a higher interrupt priority than Timer A, and therefore
could block the timer counter, perhaps inhibiting proper timeout handling.
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(a) BER Measurements with Timeout

(b) Timeouts

Figure 2.5: BER Measurements with time constraints.

An attempt to correct this issue was to implement the timer counter based on Timer
B, which has a higher priority than USART0. Although the halting was relieved to
some extent, it did not correct the problem entirely, implying a deeper problem. Given
the fact that START and STOP signals on the bus are software controlled in the Delfi-
C3 implementation, special care needs to be taken to handle all possible conditions.
Specifically, the following section of code taken from the USART0 interrupt routine is in
charge of handling bus overflow:

/∗ Receive ready ∗/
else i f ( ( I2CIFG & 0x10 ) == 0x10 )
{

/∗ [ o ther code . . . ] ∗/

i f ( r e c e i v e c oun t > r e c e i v e c oun t g o a l | |
i 2 c s t a t u s == I2C STATUS IDLE)
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{
I2CIFG &= ˜0x10 ; // c l e a r f l a g
return ; // re turn immediate l

}

The attempt here is to clear the interrupt flag and return immediately, allowing the
rest of the system to run. However, it appears that once in this section, it will tend to
remain here until the timer is given a chance to react and handle the timeout condition.
This is a possible explanation to the random hiccups on the data bus. The correction
in this case, is not only to clear the interrupt flag, but also, according to TI documents,
the data buffer must be read to clear it and stop further interrupts. This correction
eliminated the problem.

i f ( r e c e i v e c oun t > r e c e i v e c oun t g o a l
| | i 2 c s t a t u s == I2C STATUS IDLE)

{
char t = I2CDRB; // read data b u f f e r
I2CIFG &= ˜0x10 ; // c l e a r f l a g
return ; // re turn immediate ly

}

2.2 Requirements for Delfi-n3Xt CDHS

This section contains the requirements specified in [5] that are directly related to the
CDHS. Most of them deal with the OBC and functionality, which will be developed in
the application level of the software. In this thesis, we are mostly interested in low level
software for communications and data bus. However, since all of these requirements are
interrelated, they are included here for completeness. The numbering corresponds to the
numbering used in [5].

• SAT.2.6.REQ.C.000: The CDHS shall operate in the temperature envelope of Delfi-
n3Xt

• SAT.2.6.2.1.REQ.F.000: The OBC shall acquire all incoming telecommands pre-
sented by PTRX and ITRX

• SAT.2.6.2.1.REQ.F.001: The OBC shall acknowledge the last received telecom-
mand

• SAT.2.6.2.1.REQ.F.002: The OBC shall acknowledge the execution of the last
received telecommand

• SAT.2.6.2.1.REQ.F.003: The OBC shall store telecommands for later execution
and/or distribution upon acknowledgement by ground operators

• SAT.2.6.2.1.REQ.F.004: The OBC shall distribute processed commands to the
relevant subsystems and payloads if applicable

• SAT.2.6.2.1.REQ.F.005: The OBC shall acquire all housekeeping data presented
by the subsystems
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• SAT.2.6.2.1.REQ.F.006: The OBC shall acquire all payload data presented by the
payloads

• SAT.2.6.2.1.REQ.F.007: The OBC shall send all relative housekeeping and payload
data to the PTRX or ITRX for down link to ground

• SAT.2.6.2.1.2.REQ.F.008: The OBC shall determine the use of PTRX or ITRX
for transmitting

• SAT.2.6.2.REQ.F.000: The OBC shall buffer payload data that cannot be down
linked directly for later down link

• SAT.2.6.2.1.REQ.F.008: The OBC should transmit all produced payload data to
ground using STX

• SAT.2.6.2.1.REQ.F.009: The OBC shall tag all payload data packages with an
RTC timestamp of the time that payload data is acquired from the payload

• SAT.2.6.2.1.REQ.F.010: The OBC shall tag all telemetry frames with an RTC
timestamp of the time that the telemetry frame is assembled

• SAT.2.6.2.REQ.F.001: The OBC shall keep track of time

• SAT.2.6.2.REQ.F.002: The OBC shall command and perform tasks triggered by a
schedule events or telecommands

• SAT.2.6.REQ.F.000: The CDHS shall control and monitor the boot sequence of
the satellite

• SAT.2.6.REQ.F.002: The CDHS shall verify and test the functionality of subsys-
tems and payloads

• SAT.2.6.2.1.REQ.F.011: The CDHS shall use dummy data for requested data that
is not received from subsystems or payloads

• SAT.2.6.2.REQ.F.007: The CDHS shall be able to be monitored through a test
interface

• SAT.2.6.1.REQ.F.000: The I2C data bus shall be accessible externally for moni-
toring

• SAT.2.3.1.REQ.F.001: PTRX shall send direct telecommands over the data bus as
master

• SAT.2.3.1.REQ.F.002: PTRX shall validate direct telecommands

• SAT.2.6.1.REQ.P.001: No microcontroller may hang-up the bus by a hardware or
software failure

Additional requirements that depend on the bus protocol are listed in section 2.4.4.
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2.3 On-Board Computer (OBC)

The Delfi-n3Xt OBC will be the central part of the CDHS, and thus, of pivotal im-
portance to correct design of the satellite. The OBC consists of more than the central
processing unit, but also considers components such as memories, clocks, oscillators, etc.
Some important considerations for the CPU include low power, large temperature range
of operation and proper interfaces for the necessary peripherals. At the moment, the
selected CPU for the CDHS is the MSP430F1612 from Texas Instruments because of its
extremely low power consumption (1 microamp at 2.2 V in idle mode), low cost, wide
temperature range of operation and the quality of the tools available for development.

Figure 2.6: Current OBC Architecture.

Additional to the microcontroller, the following peripherals need to be present to
design a complete system:

• Memories (FLASH and RAM)

The nanosatellite will have only a limited number of passes over the ground station
in Delft, and whenever it does, the communication window is of about 10 to 12
minutes. Therefore, the CDHS is required to store most of the data collected from
the payloads during its operation for later retrieval.
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• Bus Controllers

To communicate with the rest of the subsystems, a proper data bus has to be
implemented. The following section illustrates several possible bus protocols for
embedded systems and explains the considerations for choosing I2C.

• Real Time Clock

The Delfi-C3 mission tagged every data frame with a counter. However, when the
computer reboots, the counter is not always correctly restored. Hiccups in the bus
also affect the correct order in which packets arrived and thus, their tag. For the
following missions, each frame will be tagged with the time. For this purpose, a
separate real-time clock that precisely keeps track of time will be included in the
design. At the moment, the component most likely to be selected is the the DS1388
chip, which also interfaces via I2C.

• Power Supply

Although most microcontrollers carry on mechanisms to maintain proper power
supplies, it is necessary to take additional precautions. The EPS will provide 12V,
but most components work at 5V and the MSP430’s at 3.3V, so DC-DC conversion
is necessary. Moreover, outer space radiation can cause unexpected low-impedance
paths that may destroy the microcontroller. A latch-up protection current limiter
circuit can provide this protection.

• Oscillator

The internal oscillator in the MSP430F1612 has RC characteristics and is very
unstable and dependent on temperature. Crystal-based oscillators are therefore
more appropriate. Most likely a 7.3728 MHz crystal oscillator will be included as
the external clock source for the CPU. The RTC as well, requires a 32.768 kHz
RTC.

• Debugging Interface

For proper development and debugging, it is important to have access to the
internal networking of components, most importantly the microcontroller. The
MSP430F1612 comes with a JTAG interface both for programming and debug-
ging.

In the case of an OBC failure, it is expected that one of the subsystems will be able to
take over operations. At this time, the PTRX is seen as candidate to incorporate some
of the functions of the OBC, but in degraded mode. At least, the PTRX will contain a
telecommand decoder (TCD) in such a way that it transmits commands received from
Earth directly to the bus, and thus, provides some level of manual control.

2.4 Embedded Data Buses

Nanosatellites developed by the DELFI programme are in essence a collection of embed-
ded systems controlled by a central On-Board Computer (OBC). The PCB’s are stacked
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on top of each other, so a proper and flexible data bus, along with a power bus, should
enable proper operation of the whole system.

The selection of a proper data bus technology for Delfi-n3Xt has to comply with the
requirements of the CDHS as described before. Traditional data buses used in space
applications, such as those considered in ESA and NASA literature are high-end buses
for long-haul communications between completely different and independent systems.
Besides requiring additional components or a relatively large area, these buses may also
consume more power than what usually can be delivered by power-tight embedded sys-
tems. Examples of these architectures are SpaceWire, FlexRay, SAFEBus, Ethernet and
MIL-STD-1533. A nanosatellite such as Delfi-n3Xt, requires a compact and embedded
data bus for inter-communication. Examples of serial embedded buses of this nature are
SPI [4], I2C [18],[21] and CAN Bus [27]. Additional to these, wireless standards, such as
Bluetooth and Zigbee, are also used in embedded applications and are readily available
in COTS components. In the following subsections we give a brief overview of those
buses evaluated to be included as part of the Delfi-n3Xt design.

2.4.1 Serial Peripheral Interface Bus (SPI)

Figure 2.7: SPI Data Bus.

The Serial Peripheral Bus [4], shown in figure 2.7 is a de-facto standard developed
by Motorola that is able to communicate in full duplex and based on master/slave(s)
configuration. It is designed to work at relatively high speeds of about 180 MHz or more.
The bus has four lines:

• Serial Clock (SLCK)

• Master Output, Slave Input (MOSI/SIMO)

• Master Input, Slave Output (MISO/SOMI)

• Slave Select (SS)

Data transmission within this bus is initiated by the master, first configuring its clock
using a frequency that can be handled by the slave. Then, the master has to pull the SS
line low of the device with which it wants to communicate and waits for certain period
before it starts issuing clock cycles. As clock cycles are transmitted, the master writes
into the MOSI line for the slave to read and the slave on the MISO line, for the master
to read.
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(a) One-to-one (b) Daisy Chain

Figure 2.8: SPI Topologies.

The topologies usually handled by the SPI are one-to-one and daisy-chains, both
illustrated in figure 2.8. The one-to-one is self explanatory and works as described above.
In the daisy chain arrangement, each device will transmit on the second session of pulses
what it received in the first session. Each outputs the data on MISO line and receives
on MOSI. JTAG and SGPIO use daisy chain configurations for their applications.

Figure 2.9: SPI Timing Diagram.

One unique aspect of SPI is its ability to configure the clock polarity. Data may be
valid either on a low or high state of the clock pulse, depending on the CKPOL and
CKPHA options. CKPOL=0 indicates that the base value of the clock is 0, and data
is read in the rising edge of the clock (CPHA=0) or in the falling edge (CKPHA=1).
Inversely, CKPOL=1 gives a base value of 1 to the clock pulses and CKPHA=0 indicates
data will be read on a falling edge and rising edge when CKPHA=1. Figure 2.9 shows
the timing diagram of an SPI bus for these options.
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One important aspect of SPI is the fact that since it is designed to work at relatively
high speeds (to hundreds of MHz), wires have to be short to avoid high reactance of
these. This makes it quite suitable to use within the PCB, but not within separated
subsystems. Lower speeds may be used for this purpose, at the disadvantage of having
to deal with 4 lines. Other protocols are better suited for this.

2.4.2 I2C Bus

The I2C bus [18], [21] is a multi master serial bus based on two open drain wires, one for
data (SDA) and one for clock (SCL), both pulled up via resistors. The basic architecture
is shown in figure 2.10.

Figure 2.10: I2C Bus, adapted from [18]

Data on the SDA line is only valid when SCL is low and its frequency is controlled
by the master. It is common to use a speeds of 10 Kbit/s (low-speed mode) or 100
Kbit/s (standard mode), but recent revisions allow for speeds of 400 Kbit/s, 1 Mbit/s
and 3.4 Mbit/s. Each device is identified by its unique 7-bit address (16 addresses are
reserved) although recent revisions allow for extensions of 10-bit addresses that need to
follow a slightly different protocol sequence. This basic communication sequence will
always be initiated and finished by the master via START and STOP conditions and
will also indicate which party will be transmitting data via an R/W bit. The START
condition happens when the SDA line is pulled low while the SCL line is high and the
STOP condition occurs when the SCL line is pulled high right before the SDA. The
timing diagram for an I2C transmission is illustrated in figure 2.11.

I2C also allows for the presence of more than one master in the bus. Arbitration
for this involves synchronization of clock pulses and data. For the clock line, the bus
specification dictates that in case of differing pulses, the longest LOW period and the
shortest HIGH period will be conserved by SCL (figure 2.12a). The arbitration procedure
is eased by the fact that both SDA and SCL are pulled up by default, and will therefore
stay low when pulled down by a device. Every time a master pulls down a line it must
therefore check that the line actually goes to low. If this is not the case, that master has
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Figure 2.11: I2C Timing Diagram, adapted from [18].

to back off because there must be another device using the bus at the moment (figure
2.12b). The mechanism is simple but effective, and avoids data corruption because before
the difference was detected and the device steps down, all previous bits in SDA had to
be equal.

(a) Clock Synchronization (b) Data Arbitration

Figure 2.12: I2C Multi-master Arbitration, adapted from [18]

2.4.3 Controller Area Network (CAN) Bus

Originally developed for motor vehicles, the CAN Bus [27] is a multi-master, broadcast
serial bus developed by Bosch GmBH. The bus, however, is not full duplex, so each node
can only send or receive data at any given time. Since it is a broadcast bus, each node
will sense the data, which is encoded in non-return-to-zero (NRZ) format. The bus is
physically composed by a twisted pair of wires, terminator resistors at both ends and
nodes that contain a host processor, a CAN controller for protocol handling and a CAN
transceiver (figure 2.13).

This bus can operate at speeds that range from 1 Kbit/s to 1 Mbit/s, but has no
clock line, so instead it uses low voltage differential signals in which every bit lasts
for a pre-programmed amount of time quanta, then can be divided into four different
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Figure 2.13: CAN Bus Node.

phases as illustrated by figure 2.14. The sync phase lasts for one quantum of time and
helps synchronize after the level changes of the bus lines. The propagation segment
compensates for physical delay times in the CAN network. Phase1 and Phase2 serve for
adjustable delays based on network or node conditions.

Figure 2.14: CAN Bit Timing.

The standard ISO 11898-1 (2003) describes the aspects of the data link layer, Logic
Link Control and Media Access Control. Also, defines four data frame types:

• Data: for normal data transmission

• Remote: a request for transmission of a specific identifier

• Error: transmitted by nodes upon detection of an error

• Overload: serves to add delays between data and/or remote frames

Figure 2.15 shows the structure of the communication data frames transfered in the
network. Start-of-frame (SOF) obviously denotes the beginning of a frame, followed
by an arbitration block (discussed later), control field, data, checksum, acknowledge-
ment and end-of-frame. The control field mostly serves to indicate the length of data
transmitted in the frame. The checksum field contains a CRC of the data based on the
X15+X14+X10+X8+X7+X4+X3+1 polynomial. Finally, the ACK is two bit field that
acknowledges reception.

In the protocol specification of CAN, the arbitration field contains the 11-bit identifier
of the transmitting node. Since all messages are broadcasted, there is no need to specify
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Figure 2.15: CAN Data Frame Format.

a destination. Whenever a node writes this field to the bus, it will monitor the state of
the lines, verifying that they are at the level in which the transmitter expects them to
be. If while sending a recessive bit (1), the line has a dominant value (0), the node has
to stand down. This means, that the identifier of each node assigns them a priority over
other nodes, and should be taken into consideration early in the design. This is more
commonly known as Carrier Sense Multiple Access/Bitwise arbitration (CSMA/BA).

2.4.4 Bus Considerations and Evaluations

The criteria to chose a proper data bus for the DELFI nanosatellite programme includes
considerations of complexity (both in hardware and software), power consumption, reli-
ability and experience/heritage. The comparisons are summarized in table 2.4.4. Each
of the criteria have been assigned a weight according to their importance and impact in
the design.

weight I2C SPI CAN

Power Usage 4 low(1) low(1) high(-1)
Complexity 3 low(1) low(1) high(-1)

Speed 2 medium(0) high(1) high(1)
Reliability 3 medium(0) low(-1) high(1)
Heritage 1 yes(1) no(0) no(0)

Tradeoff 8 6 -2

Table 2.1: Bus Type Comparisons/Tradeoff.

The Serial Peripheral Bus achieves high data rates with relative simplicity, but as
mentioned in the description, works fine only in very short distances, better suited for
PCB area. It defines no higher level protocol and no flow control (low reliability).

Unlike CAN and I2C, however, SPI can achieve full duplex communication, increasing
it’s communication rate. Therefore, SPI is better suited for applications where the
node(s) will communicate with streaming data, but comes low in terms of reliability.

The CANBus is mostly used in the automotive industry and can come in three vari-
ations: High Speed, Fault Tolerant and Single Wire. Some of the advantages of this bus
are greater protection for EMC issues, hardware based error detection and tolerance to
failures that avoid global bus hanging. However, the two most notorious disadvantages
are its relatively high power consumption and added hardware/software complexity. Very



24 CHAPTER 2. DELFI PROGRAMME COMMAND AND DATA HANDLING

SUBSYSTEM

preliminary estimates showed that power consumption for decentralized EPS nodes alone
would consume around 600mW with a PIC18F2480 and around 1000mW in total if im-
plemented with Microchip’s MCP25025 I/O port. In terms of software, the PIC18F2480

needs 60 registers for the CAN module, while only 6 for the I2C port. Moreover, the
number of COTS components with I2C support is higher than CAN and, although not as
resilient, can be complemented with software and hardware features that will be detailed
in the following sections.

The heritage and experience gained from Delfi-C3, along with the available tools,
provide a higher degree of confidence on the suitability of the I2C data bus for Delfi-
n3Xt. Power usage and complexity fall within the acceptable ranges for the design.
Moreover, the SPI or CAN Bus are not useful for interfacing with local EPS switches;
SPI because it would require too many lines and CAN because the added complexity
for each node. I/O port expanders for I2C are, on the other hand, simple and common.

The weaknesses in reliability of I2C, such as error detection and hardware resilience
can be greatly improved with proper hardware and software implementations. These
implementations will be described in the following sections.

Upon decision for an I2C implementation, additional requirements are established:

• SAT.2.6.2.REQ.P.001: If the I2C standard in standard mode (sm) must be used
for communication trough Delfi-n3Xt, no adaptations to the protocol are allowed.

• SAT.2.6.2.REQ.F.008: The microcontroller(s) attached to the bus must be con-
nected via a data bus protector.

• SAT.2.6.1.1.REQ.F.000: A bus protector must isolate the system from the data
bus if the SDA low (logic 1) state exceed the time-out time for all systems.

• SAT.2.6.1.1.REQ.F.001: A bus protector must isolate the system from the data
bus if the SCL low (logic 1) state exceed the time-out time for master systems.

• SAT.2.6.1.1.REQ.P.001: Bus protection circuits must be located as close as possible
to the data bus connector.

• SAT.2.6.2.REQ.P.000: The microcontroller attached to the data bus must support
100 Kbit/s, standard mode I2C. This means an internal clock speed of at least
1MHz.

2.5 Hardware Implementation

Although the I2C protocol provides mechanisms for transfer, synchronization and ac-
knowledgment as described in the previous section, it may be complemented with ad-
ditional hardware mechanisms that ensure reliability for space flight. Moreover, the
architecture has to consider a single-point-failure-free design as this is one of the main
design goals of the project.

The actual implementation of the system data bus has many architecture possibilities,
ranging from having a single bus through all subsystems to separate buses for different
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Figure 2.16: Delfi-n3Xt Data Bus Hardware Architecture.

purposes. Overall, a single bus provides a simple implementation, while bus separation
can provide more reliability and failure resistance. With all tradeoffs considered, the
Delfi-n3Xt will be designed with a single bus, similar to the Delfi-C3 implementation
but complemented with several enhancements. With all payloads and subsystems taken
into account, the bus is expected to have around 20 nodes, including the OBC as the bus
master. In the Delfi-C3, the communication hiccups are heavily influenced by slow PIC
microcontrollers attached to the local EPS switch on each node. In this next version
of the satellite, the implementation will substitute these PIC microcontrollers with I/O

ports (PCF8574) controlled directly via I2C commands, which consume around 13 times
less power (60uW-600uW compared to 8mW for the PIC) and can handle speeds of
100Kbit/s. An illustration of the architecture of a bus node is shown in figure 2.16.

2.5.1 Local EPS Switching via I/O Expander

As illustrated in figure 2.16, the two I2C lines interface with the subsystem at the I/O

Port PC8574 and at the I2C bus protector. The I/O Port is an bus port extender,
essentially a switch, that has a distinctive bus address and can be commanded to turn
any of its outputs into high or low. This feature is used to serve as power switch for
the subsystem, as it directly connects to the Electrical Power Subsystem (EPS). The

connection between the bus and the actual microcontroller node is done via an I2C bus
protector. The architecture of this component is illustrated in 2.18.

Figure 2.17: PC8574 Address Format, adapted from [24].
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Each I/O port is also a slave in the I2C bus and can be addressed independently
at any time. Therefore, this component becomes convenient in case the need comes
to reset a subsystem (hangs, errors, rollbacks, etc) or to power up at boot time. The
address of this component not only identifies it, but also specifies the port and direction
of data. Addresses in I2C consist of 7 bytes in standard mode. Pins A0, A1 and A2 of
the component are hardwired and specify the last 3 bits of the address. The first four
bits address serve to communicate to any of the 8 ports. The format is shown in figure
2.17.

Figure 2.18: Architecture of Bus Expander for Local EPS, adapted from [24].

2.5.2 I2C Protection Circuit

This bus protection is another innovation in the design and will be added to 12 nodes
on the bus, mostly the microcontrollers in each subsystem. This bus protector is con-
ceptually a timer (Fig. 2.19a) that monitors both the SDA and SCL lines. The timer
is based on a simple RC circuit which can be tweaked to conformity by choosing the
appropriate values of capacitance and resistance. The I2C I/O ports are not interfaced
with this protection under the assumption that it is an industry-proven chip that will
cause no hangs. When any of these lines is turned low for a long period of time, the
protector will disconnect the node from the central bus, avoiding a global hanging of the
system. The circuit will keep the node disconnected from the bus as long as any of the
lines (SCL or SDA) remain low. Therefore, the only ways that a node can reconnect is
by waiting until comes out of the hanging condition or wait for the OBC to reboot the
node, which is achieved by shutting down the electrical power via the PC8574 port.

Physical implementation of the bus is currently under discussion; however some con-
siderations can be made on the type of wiring and connectors that would be ideal for
the design. Due to the high flexibility, reliability and low volume, the preferred wiring
would be Flex PCBs, but this is considerably more expensive than Nomex or Teflon
wiring and has to be manufactured by a company. Some cost savings can be achieved
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(a) Concept (b) Circuit

Figure 2.19: I2C Protection Circuit.

by combining the EPS and data buses in the same wiring. A 10 pin wire allows for
enough redundancy (4 I2C lines, 6 for EPS) and with a proper pin assignment crosstalk
can be reduced. Preliminary calculations show that capacitance for this setup would be
approximately 315pF, which is acceptable under the I2C specifications and a resistance
of around 0.44 ohms which also seems reasonable for correct operation of EPS. Since the
experience with Harwin connectors in Delfi-C3 was good, this would also appear to be
a good design choice for Delfi-n3Xt.

2.6 Software Implementation

The software implementation for the proper operation of the Delfi data bus deals with
programming the proper interfaces and adding the capabilities required to make the I2C
design more robust. This short section serves to document the API developed for the
service layer of the CDHS.

• int n initI2C(unsigned char my address, unsigned char mode)

Initializes I2C communications with a specified address and mode. Address is the
7-bit address of this node. Mode can be I2C MASTER or I2C SLAVE.

• int n I2Crecv(unsigned char slave address, volatile char *data, unsigned char
length, unsigned int timeout)

Used by master device to request information from a slave. The slave address
denotes the node to which information is requested. data is a buffer to contain
the transmission, length is the expected size in bytes of the received information
and timeout is the amount in milliseconds the master will wait before signaling a
timeout at the upper level software layer.
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• int n I2C slave packet(volatile char *data, unsigned char length)

Function called by a slave when a packet is ready to be delivered to the master. It
will be transmitted in the next request for data.

• int n I2Csend(unsigned char slave address, volatile char *data, unsigned char
length, unsigned int timeout)

Function called by a master to write data into a slave. Again, slave address is the
slave to receive the bytes in data buffer, length is the size in bytes and timeout is
the amount of milliseconds before a timeout error.

• void i2c recv callback(volatile char *data, int len)

To be implemented by each slave in the upper software layer, will receive all in-
coming data from the bus. data contains the received bytes and len, the number
of bytes.

• void d initTimers(void)

Initializes timer services with TIMER A in continuous mode, meaning it will cause
an interrupt upon reaching 0xffff and start again.

• unsigned int d startTimer(unsigned int id)

Starts the timer with the specified id. Will cause an interrupt on each count to
0xffff.

• unsigned int d getTimer(unsigned int id)

Obtains the current count from the timer with the specified id.

• void wait(int millis)

Generic waiting routine.

• void init sw interrupts(void)

Initializes software interrupt services.

• void register sw int callback(unsigned char id, sw int callback callback)

Registers a callback routine to be called upon a software interrupt identified by id.

• void unregister sw int callback(unsigned char cause)

Unregisters a callback from the software interrupt identified by id.

• void call sw interrupt(unsigned char id)

Cause a software iterrupt identified by id.
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2.7 Summary

This chapter presented a general overview of the Command and Data Handling Sub-
system on-board Delfi-n3Xt. From the analysis and the lessons learned from Delfi-C3,
more focus was placed on a proper design of the communications data bus. High end
data buses on board regular satellite systems like MIL-STD-1553, SAFEBus or Ethernet
were not considered here as they are unsuitable for small nanosatellites. SPI, CAN and
I2C, were considered suitable and therefore evaluated in this work. The I2C bus shows
good performance and falls within the power consumption and speed requirements of
the current mission.

The robustness that the I2C bus may be lacking can be compensated with proper
hardware and software design. In terms of hardware, proper shielding, redundancy and
cabling will help increase its reliability. Additionally, circuit protection for any subsystem
hanging the bus will prevent errors of this nature caused by hanged processors. Finally,
proper software design, testing and documentation can guarantee the requirements of
speed, reliability and data integrity.
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Fault Tolerance for Delfi CDHS 3
The previous chapter discussed the design and inner workings of the Command & Data
Handling Subsystem with strong focus on the data bus. In this chapter we will focus
more on fault tolerance for the CDHS and data bus. We first start with a discussion
of software level fault tolerance and gradually move into a deeper discussion on one of
these techniques: Error Detection Codes.

It is important to keep in mind that not all methods and schemes for fault detection
and recovery are applicable to the Delfi-n3Xt. Embedded systems are characterized by
having very tight constraints in terms of timing and resource usage. Whereas software
for traditional computer systems can have the luxury of multicore processors, redundant
protected memories and multiple interfaces for input, a nanosatellite like Delfi-n3Xt has
severe constraints in terms of power, hardware and processing capability that has to be
taken into account when deciding for an approach in this matter.

3.1 Software Level Fault Tolerance

As in all mechatronic systems, software will permeate almost every aspect of Delfi-
n3Xt, from ground station to the embedded subsystems and payloads. Therefore, proper
procedures and methods should be taken into consideration to provide the desired level
of fault tolerance for the nanosatellite. This section provides an overview of the concepts
and notions of software fault tolerance from literature survey, in the hope that the
methods can be evaluated and those applicable can be implemented.

Because software is not a tangible component within the system, it does not degrade
in the same way as hardware does. Errors cause by incorrect bit storage, transmission
or processing, are actually faults of the hardware components in charge of these tasks.
The only software faults are those that can be introduced during the coding process,
and as such, it is important to design a software development methodology that reduces
the risk of producing them or create filters that can detect them as early as possible. A
proper development cycle takes care of the first two ways to deal with software faults:
prevention and removal. For those unexpected faults that occur while the system is
running, fault tolerance and input workarounds can help maintain sanity. Our focus
here will be in fault tolerance techniques.

3.1.1 Fault Detection Methods

The most direct way to add robustness to software is to add extra modules to a single
program or piece of code intended to contain a fault in case it happens. This is known
as single-version software fault tolerance. Multi-version fault tolerance considers more
than one version of a component with the idea that different designs/algorithms/tools

31
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but built for the same purpose, would not fail in the same manner. Therefore, when one
of them fails, another version is unlikely to fail at the same point. This, however, comes
at the price of larger code and resource consumption. Among the most popular methods
of software fault detection methods are:

• Time-outs

When a certain process or task has to complete within a certain deadline, this
amount of time can serve as an error check. Communication tasks, such as for
the Delfi-n3Xt data bus, has to have deadlines to avoid deadlocks and hangs.
Processing tasks may also be subject to timeouts, where if a process has not finished
its computation within a deadline, this may signify a failure.

• Heartbeats

A heartbeat is a regular and constant signal that is monitored to ensure that a
certain system or part of it is ”alive” or operational. The Delfi-n3Xt will contain
a mechanism, by which a subsystem (possibly the PTRX) will monitor the central
flight computer. If no telecommands requests or packets are received within a
certain amount of time, it will assume OBC failure. This will trigger a set of events
by which the PTRX will work as a degraded OBC, but will keep the satellite alive.
Another example is a watchdog timer, which monitors the OBC and will reboot it
in case of a hang.

Figure 3.1: Delfi-n3Xt OBC Heartbeat - OBC backup.

Figure 3.1 illustrates this principle with the Delfi-n3Xt OBC. If no requests are
detected in 10 seconds (approximately), an OBC backup mode will come to action,
most probably from the PTRX node.

• Resource Consumption Delimiters

It is common than when a software task fails or hangs, the consumption of certain
resources will either increase or decrease. Buffer overflows or memory leaks will
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create an increasingly amount of requests for memory, which can be detected by
a component monitoring memory consumption. The same thing happens when a
process suffers a deadlock condition and completely clogs the processor. A crash,
on the other hand, may be detected by a sudden decrease in processor usage.
Modern operating systems contain provisions of this type.

• Checkpoints

At certain steps of a process, there are usually certain criteria than can be used
to asses the sanity of the current state. At these steps, a specialized monitor
can take the responsibility of making sure values and parameters comply with
certain criteria. In communications, for example, certain nodes may implement
hop counters to check the amount of hops a certain packet has gone through on a
network. If the number is unreasonable, measures need to be taken.

• Data integrity

Complex data structures can be corrupted through a running process, but can be
verified for integrity from time to time. Usually, these structures contain redundant
or header information that eases the process. For example, linked lists, stacks
and/or queues usually contain a counter of elements, which can be verified by
running through the list and performing the actual count. One common example
is the canary check employed to detect buffer overflows, in which a ”canary” value
is added to the beginning or the end of buffers in memory. Failure to read this
value can be a signal of buffer overflow.

• Error Detection Codes

To ensure integrity of transmitted data, redundant bits or bytes may be added
that serve to asses the correctness of the data packet. The redundant information
is generated from the original information segment. When the complete packet is
received, the receiver runs the algorithm on the information bytes to generate the
rest. If these segments don’t match, a transmission error has occurred. Research
and theory on these schemes is abundant, and this is discussed in more detail in a
later section, along with specific analysis of implementations for the Delfi CDHS.

3.1.2 Fault Management Methods

Measures need to be taken to contain the effects of an error when detected. Recovery
mechanisms vary and depend on the graveness of the error. The following are some of
the most common patterns:

• Retry

The simplest of all methods is to repeat the same action once a failure is detected.
Of course, this can only be done a limited number of times, since the cause for
failure may be permanent and constants retries will hang the system. Usually,
this is accompanied by a retry counter, which limits the amount of times the task
should be repeated.
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• Restart

A reboot is usually necessary when the system hangs. If the processor, for example,
is stuck in one task, no other processes can run. Therefore, an additional compo-
nent must restart the system and restitute it to startup. This is usually the action
performed by a watchdog timer. The drawback of this action is that a complete
restart may cause other processes to miss deadlines, or worse, fail completely if
they were expecting resources or were performing a delicate task. Therefore, this
measure should be implemented with careful analysis.

• Voting

Voting schemes require the presence of redundant components performing the same
task. Upon reception of results from all of these separate components (processes,
threads, etc), a voting unit or switch decides which of the outputs should be taken
as most viable. The voting unit can be as simple as a majority voter or much more
complex, with statistical history checks, statistics or advanced heuristics. The
scheme is illustrated in figure 3.2. The price to pay for such a scheme is greater
overhead in computation and resources (for each component).

Figure 3.2: Voting Scheme.

• Roll-back & Roll-forward When the system goes into an undesired state, an exter-
nal component can be set in such a way that in either puts the system back in a
previous known state, or to the next safe state. This provides confidence in the
recuperation, in the hope that the faulty state will not be encountered again. This
mechanism is common in firmware, where states are clearly defined and transition
between one and the other is simple.

3.2 Error Detection and Correction Codes

Information theory, the basics of which were developed by Shannon in the mid-1900’s,
establishes that it is possible to have reliable information transfer over a noisy medium,
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provided that the entropy of this medium is lower than it’s capacity. Also known, as
coding theory, it forms a pivotal part of modern communication systems. Therefore, in
this section we start with a very theoretical overview of coding theory and its purpose,
and further on we describe techniques and methods than can enhance the Delfi pro-
gramme’s command and data handling subsystem, with emphasis on communications
over the data bus.

3.2.1 Noisy Channel Models

The noisy channel model or noisy channel coding theorem is perhaps one of the most
fundamental principles of information theory. The theorem states that there is always
a way to transmit nearly error-free information over a channel no matter how much
contaminated by noise it may be. Formally, it states that for a given channel with
capacity C, it is possible to transmit data at a rate R, with R < C with an arbitrarily
small degree of error.

According to the theorem, for a probability pb of bit error, the maximum rate achiev-
able is calculated by:

R(pb) =
C

1−H2(pb)
(3.1)

where H2 is the binary entropy function, defined as:

H2(x) = x log
1

x
+ (1− x) log

1

1− x
(3.2)

The channel capacity can be calculated from the physical properties of the medium.
For those media bandlimited by Gaussian noise with bandwidth W in hertz, an approx-
imation of its capacity in bits per second is given by:

C = W log2(1 +
Es

No

) (3.3)

assuming ideal Nyquist sampling, Es is the average signal (watts) energy and No is the
noise power present (watts).

The most common type of channels treated in information theory are the binary
symmetric channel (BSC) and the binary erasure channels (BEC). They both describe a
certain type of behavior caused by the noise that contaminates the medium. The BSC is
depicted in figure 3.3 and models a medium in which a transmitted bit can be changed
by a probability of p.

The capacity of the BSC is obtained from the equations above and reduces to:

CBSC = 1−Hb(p) (3.4)

The other model is the binary erasure channel (BEC) that models a medium by which
the noise can simply erase a bit an transmit an erasure, symbolized by e.

The capacity of the BEC model is

CBEC = 1− p (3.5)
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Figure 3.3: Binary Symmetric Channel.

Figure 3.4: Binary Erasure Channel.

3.2.2 Basic Notions of Coding Theory

Binary messages composed of n bits can form at most 2n different messages or words. If
k of those n bits are actual information, then the total number of different information
words that can be transmitted is 2k. Coding schemes are therefore labeled also as (n, k)
for this purpose. The objective of any coding method is to evenly spread the 2k messages
as evenly as possible among the 2n possibilities in such a way that a small disturbance in
the bits still leaves the erroneous message near one of the valid codewords, thus, enable
correction.

The hamming distance dmin is the minimum number of bits that must be changed to
convert one codeword into another valid codeword. This distance it was makes a certain
coding scheme more or less resilient to disturbances from the channel. If a coding method
wishes to detect t errors, it must comply with the following relationship:

dmin > t (3.6)

Sometimes in literature, coding schemes are referred to as (n, k, t). The relationship
between these three quantities can be obtained by asking the question on how many
extra bits are needed to produce a t-error correcting code. In an n-bit message, the
number of different permutations of d bits is given by:

n!

d!(n− d)!
(3.7)

and thus, for a coding scheme that corrects t errors, this relationship can be deduced:
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t
∑

d=0

n!

d!(n− d)!
≤ 2n−k (3.8)

When both sides of the relationship are equal, then the code is called a perfect code.
Moreover, it is also useful to know the ratio of actual data bits to the total number of
bits transmitted, known as the code rate:

R =
k

n
(3.9)

and the actual bit overhead, as expected, is the amount of redundant bits in relation to
the information bits:

Bo =
t

k
(3.10)

3.2.3 Coding Schemes for the Delfi Nanosatellites

Development done for the Delfi nanosatellite programme has to take into consideration
the limited resources available on board. For embedded networks, we take into consid-
eration parity bits, some special checksums and cyclic redundancy checks, since their
computational requirements fit reasonably within the bounds posed by the systems on
board.

3.2.3.1 Parity Bits

One of the simplest error detection methods is the parity bit check. This is an extra bit
added to a message that verifies the amount of 1’s in a string of bits. If the extra parity
bit is 1 when there is an odd amount of 1’s in the data (to make it even), it’s called
even parity, and odd parity when not. For this simple mechanism, dmin = 2 because one
single bit change will render the code invalid, however, two changes will render a valid
codeword. An illustration on how parity works for data transmissions is table 3.2.3.1.

7-bit data even parity odd parity

0000001(1) 00000011 00000010
0110101(53) 01101010 01101011
1000001(65) 10000010 10000011
0111000(56) 01110001 01110000

Table 3.1: Parity Scheme Example.

Clearly, simple parity cannot correct errors, only detect them. In memories, where
higher dimensional parity checks are employed, the scheme may be able to correct errors.
In data transmissions as those considered to the Delfi nanosatellites, this does not apply,
however. Parity checks are usually used in serial communications such as RS232, PCI
and SCSI buses.
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3.2.3.2 Parity Bits Implementation on Delfi-C3

In Delfi-C3, there was one parity bit for every data byte. Therefore, the parity bits
would be grouped in additional bytes on the packet. For this particular implementation,
the even parity check is grouped at the end of the transmission as illustrated in figure
3.5, where the orange blocks represent the parity bytes, on which every bit represents
the parity bit for the preceding data bytes, starting from right and shifting left.

(a) 8 bytes (or less) transmitted

(b) More than 8 bytes

Figure 3.5: Parity Error Detection Scheme for Delfi-n3Xt

To determine the actual code rate and bit overhead, it is important to note that the
data bus protocol imposes the restriction that data can only be exchanged in the form
of bytes. Therefore, when the message length is 1-8 bytes long, there will be an extra
byte for parity, for lengths of 9-16, 2 extra bytes, etc. The analysis is depicted in table
3.2.

Data bytes Lower Bound Upper Bound

1-8 8/16=0.5 64/72=0.89
9-16 72/88=0.82 128/144=0.89
17-24 136/160=0.85 192/216=0.89

Table 3.2: Code Rate for Parity Scheme.

thus indicating that the worst possible code rate is 50% and at most, the scheme will
yield an 89%. The bit overhead can also be analyzed in the same way:

Data bytes Lower Bound Upper Bound

1-8 8/8=1 8/64=0.125
9-16 16/72=0.22 16/128=0.125
17-24 24/136=0.176 24/192=0.125

Table 3.3: Bit Overhead for Parity Scheme.

revealing that at best, the implemented parity scheme will yield 12.5% bit overhead,
and the worst case will be of 100%.

3.2.3.3 Cyclic Redundancy Checks (CRC)

A cyclic redundancy check (CRC) is a checksum algorithm popular for its error detection
capabilities and used in a varied number of applications, such as Ethernet, Controller
Area Network, Flexray, the PNG image format and ZIP compression among others. The
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CRC coding algorithm adds a short, fixed-length bit sequence to a message block and
packs it together to be transmitted. When the receiver gets the packet, it will perform
the algorithm on the data bytes and obtain the CRC for it. If the calculated CRC
does not match the CRC appended to the message, the receiver assumes there has been
a transmission error. Unlike parity bits, CRC’s are more effective to handle ”burst”
errors, that is, errors that occur in a continuous sequence of bits.

The algorithm is based on polynomial division and a complete explanation of the
theory behind the method requires an overview of polynomial algebra and group theory.
A thorough explanation of the theory goes beyond the scope of this work, but we shall,
however, discuss the basic process of calculating a CRC.

First, to each possible n-bit binary message, we associate a polynomial u(x) so that
each bit position (pi) is a coefficient:

u(x) =
n

∑

i=0

pix
i (3.11)

The following table contains examples of this representation 3.2.3.3.

8-bit message Associated Polynomial

00101011 x5 + x3 + x + 1

11010000 x7 + x6 + x4

00000101 x2 + 1

Table 3.4: Polynomial Encoding Examples.

The purpose of the CRC algorithm is to form a polynomial in such a way that it is a
multiple of another polynomial g(x), called the generator polynomial. When the receiver
obtains a block of data, it will then verify that the block of data is in fact a multiple
of g(x), discarding the message if it isn’t. Suppose that u(x) is associated with a k-bit
message and v(x) with the n-message codeword. The relationship with the generator
polynomial g(x) is given by

v(x) = u(x)xn−k + s(x)
v(x) = a(x)g(x)

(3.12)

where s(x) is the remainder of the division of u(x)xn−k by g(x) and v(x) is a multiple.
The message bits are represented by u(x)xn−k and the coefficients of s(x) represent the
CRC checksum that is appended.

As an example, consider the message 110101 represented by u(x) = x5 + x4 + x2 + 1
and the generator polynomial g(x) = x16 + x15 + x2 + 1. Then,

xn−ku(x) = x16(x5 + x4 + x2 + 1)
= x21 + x20 + x18 + x16

and when dividing xn−ku(x) by g(x), the remainder obtained is s(x) = x7 + x5 + x4 +
x3 + x2 + x. The complete codeword therefore becomes 110101 0111110100000000. It
is obvious that both the sender and receiver have to know the generator polynomial
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beforehand. Some common polynomials in use in several applications today are depicted
in table 3.2.3.3.

Name Polynomial

CRC-16 x16 + x15 + x2 + 1

ETHERNET x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

CAN x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1

CCIT-IBM x16 + x12 + x5 + 1

CRC-8 x8 + x7 + x6 + x4 + x2 + 1

Table 3.5: Commonly used CRC Polynomials.

Hardware implementations for the CRC will not be discussed here in detail because
the implementation for Delfi-n3Xt is software based. Suffice it to say, however, that
a hardware implementation is simple and consists of a shift register with XOR gates
placed at the precise positions of the coefficients of g(x). In software, the most direct
implementation is the bit-by-bit on the fly calculation. Another option that reduces the
computational load is a table-lookup algorithm. With 8-bit CRC’s the table is 256 entries
long, but for larger sizes this table may be unfeasably large. For longer polynomial sizes,
a reduced table algorithm may be used as mentioned in [25], in which only part of the
precomputed values are stored and each byte is shifted over the polynomial.

3.2.3.4 CRC Implementation for Delfi-n3Xt

There are several considerations that need to be taken into account when opting for
the CRC algorithm. First of all, it is important to consider the length of the generator
polynomial. Whereas modern computer system have large word sizes (32 bits or more),
most embedded systems, such as those on board Delfi-n3Xt, have short word sizes. Delfi-
n3Xt will carry on board the MSP430F1612 microcontrollers from Texas Instruments,
which support data types of up to 16-bits. Furthermore, the longer the generator poly-
nomial, the more secure it is in terms of error detection, but will take more time to
calculate (both for the sender and receiver). Finally, not all generator polynomials are
equally effective on their error detection capabilities. Philip Koopman from Carnegie
Mellon University in [26] and [11], along with Castagnoli in [3] have explored several
polynomials and studied their effectiveness.

The measure of the effectiveness of a polynomial is it’s hamming distance (dmin), as
explained in previous sections, which is the minimum number of bit errors present to
potentially go undetected. For instance, dmin=4 means that the code will detect all 3-bit
errors, but may be unable to detect 4 or more bits in error. Moreover, as discussed in
[11], the effectiveness also depends on the size of the message; a polynomial that works
well for certain data sizes, may not necessarily preserve its effectiveness for other sizes.

Figure 3.6 shows the effectiveness of some 8-bit CRC’s. The dark line represents the
bound of an ideal polynomial at each data size. The y-axis represents the probability of
undetected error (Pud).. As can be observed, the the effectiveness varies with the chosen
polynomial and data size. [11] cites the case of 0xEA, for example, shows that from
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Figure 3.6: Effectiveness of 8-bit CRC’s, adapted from [11].

data sizes of 86 to 119, it has an HD=4, but above 119, the effectiveness drops to HD=2
with a gradually increasing probability of undetected errors. Table 3.7 shows the most
effective polynomials for given hamming distances.

Figure 3.7: Best polynomials for given CRC sizes and Hamming Distance, adapted from [11].

The two numbers in each cell of table 3.7 represent the polynomial (bottom) and the
data size up to which the HD holds (top). For Delfi-n3Xt, which handles data in the
data bus in bytes, an 8-bit CRC is ideal. The table shows 0x9C with the highest HD
(HD=5) at this size up to data sizes of 9 bits. Given the fact that most of the data
transfers within the satellite will be short, this polynomial is the best choice. The data
transfers will have the appended CRC byte at the end, as illustrated in figure 3.8. For
the Delfi-n3Xt, the implementation for CRC is table-based, as it decreases computation
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overhead considerably at the price of a 256 byte table in memory. Memory within the
microcontroller, however, is not of primordial importance, as most of the mission data
will be stored in external memory.

Figure 3.8: CRC implementation for Delfi CDHS.

There is no fixed value for code rate or bit overhead in this implementation, since the
message length may vary. Of course, as the message size increases, the less bit overhead
and the greater the code rate.

3.2.3.5 Checksums

Although not all hash functions can be considered part of coding theory, they do have
error detection capabilities. In this work we consider two checksums algorithms: the
Pearson hash and the Fletcher-8.

Algorithm 1 8-bit fletcher checksum
sum1 ⇐0,sum2⇐0

for i to message length do
sum1← sum1 + message[i]
sum2← sum2 + sum1

end for
return sum2 & 0xFF

Algorithm 2 Pearson checksum

h[0]← 0
for i to message length do

index← h[i− 1]⊕message[i]
h[i]← T [index]

end for
return h[message lenght]

When compared to CRC’s, these hash functions require less computation and are
therefore opted by in embedded applications. According to [15], the Fletcher checksum
provides slightly better results than the popular Adler algorithm and is easier to com-
pute. This is the reason reason why it is considered as part of this work. Unlike Adler,
as well, it is able to detect insertion or deletion of zeroes, reordering and increment-
ing/decrementing bytes at any end. The pseudocode for the 8-bit fletcher algorithm is
shown in listing 1.

The Pearson hash, proposed in [23], is specially designed to be efficient with 8-bit
computers, it is easy to implement, and is heavily dependent in all the data bytes of the
message. The drawback however, is that it requires a table (T ) of 256 pseudorandom
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values specifically chosen to be a perfect and minimal, that is, a contiguous set of integers
with no holes and no collisions. The algorithm is illustrated in listing 2.

Again, as with the CRC scheme, code rate will increase with longer messages and bit
overhead will tend to decrease.

3.2.4 Tests and Measurements

Implementations of the algorithms described in the previous section were coded and
tested along with the Delfi-n3Xt service layer. The algorithms were programmed in
the C language with the IAR Workbench Tool provided by Texas Instruments. The
test setup consists of a host computer connected via a JTAG interface to the master
MSP430F169 microcontroller, which will generate data and transfer it via a 100 Kbit
I2C bus to a slave MSP430F169, who will, in turn, echo the data. Of course, both
processors have been programmed with the error detection scheme in test. The JTAG
interface eases the debugging and programming of the setup, as well as live monitoring
of memory contents and data execution. Figure 3.9 illustrates the setup.

Figure 3.9: Test Environment for Error Detection Codes.

Figure 3.10 shows the performance of the algorithms in terms of execution time
overhead in the MSP430.

Figure 3.10: EDAC Instructions Overhead for Delfi-n3Xt.

The least overhead was the fletcher checksum (361 instructions), followed closely by
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the Pearson hash (393). Both algorithms are quite simple to implement and compute.
Cyclic redundancy checks can take up to double the amount of computation overhead as a
price for their superior error detection capabilities, but the table-lookup implementation
here has an enormous benefit, since the overhead increase when compared to the previous
two algorithms is relatively very small (471). And as stated in [15], CRC’s have a greater
benefits (overhead/error detection tradeoff) than other checksum algorithms for shorter
codeword lengths.

Surprisingly, the parity scheme, as implemented for Delfi-C3, has enormous costs.
The explanation for this is rather simple. While the other three algorithms add only one
more byte to the data packet in each transmission, no matter the number of data bytes,
the parity scheme will add a variable number of additional bytes. Thus, at least to know
the amount of extra bytes that will be added, divisions have to be performed; divisions
being one of the most expensive operations in terms of CPU time. In the implemented
code, at least two divisions have to be performed for every transmission. Moreover,
byte/bit ordering has to be performed to correctly pack the data frame.

Figure 3.11: EDAC Data/Code Overhead for Delfi-n3Xt.

Figure 3.11 shows the overhead of each EDAC scheme in terms of code and data
(memory) size. The results are more or less expected. Fletcher, Pearson and CRC’s
have about the same code overhead, and such is the result of the way they are imple-
mented. Parity, again, shows high code size, caused mostly by the code to order and
shift bytes/bits. Since both Pearson and CRC’s work with tables of precomputed values,
their data overhead is higher than the rest, but this is compensated by the benefits of in
execution time.
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3.3 Summary

This chapter presented an overview of the software techniques that can enhance the
reliability of the data bus on board the satellites of the Delfi programme. For high level
software, techniques to detect errors include heartbeats, resource checkers, timeouts,
data integrity checks and error correcting codes. To recover from errors, methods to be
used can be retries, restarts, voting schemes and rollbacks.

We also examined some error detection schemes popular for embedded networks,
and suited for the type of systems on-board nanosatellites. The analysis shows that the
parity scheme as implemented for Delfi-C3 greatly increased the overhead in terms of
execution time and code size. Coupled with the deficiencies discussed in the previous
chapter, it is a considerable source of problems for the communications within the data
bus. Overall, the CRC, implemented with a precomputed table of values can greatly
increase the error detection (up to 5 errors) for data sizes well within the range of Delfi-
n3Xt, without considerable additional computation time. Since external memory will
be used for higher level mission tasks, internal microcontroller memory usage will not
interfere with such data requirements.
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Model Based Fault Detection 4
4.1 Introduction and Problem Statement

In the previous chapter, we explored techniques that could be applied in software or
hardware to the CDHS for proper fault detection. In this chapter, we decide explore fault
detection on a different level. Model based fault detection works with a mathematical
model of the system we want to monitor and procures the detection of deviations from
expected behaviour via this model.

Therefore, supervision functions are built into modern embedded systems and with
the advance of the digital era, software plays an increasingly important role in the im-
plementation of these functions. A very illustrative example of this is the fly-by-wire
navigation system included in modern commercial aircraft, where reliability, fault de-
tection and tolerance must be built to ensure the safety of passengers and crew. In
satellite navigation systems, such as the Delfi-n3Xt attitude determination and control
systems, the techniques to detect a fault can provide the means to maintain proper
attitude control even in the presence of such failures in sensors or related components.

In this chapter, we will explore a fault detection method based on a variant of the
Kalman filter, which falls into the category of state estimators and state observers of
figure 4.3. The specific variant of the filter studied here is a relatively recent idea called
the Unscented Kalman Filter (UKF). However, to understand the UKF, we first have
to explore the traditional method, discussed in detail in a later section. Finally, an
implementation of the UKF is included and applied to the set of sensors on board the
Delfi-n3Xt nanosatellite simulation environment to determine the occurrence of faults.

4.1.1 Basic Notions

Before engaging into the topics that concern this section of the thesis, it is appropriate
to introduce concepts and definitions related to the matter in discussion. Although there
is no standard definitions throughout the literature, the pertinent notions, concepts and
ideas are described here as an introduction to the reader.

A fault can be defined as the state of a system in which one of its properties deviates
considerably from a normal or standard behavior. The qualification of the fault is the
difference between the standard and abnormal output[7]. The causes for such an event
may range from manufacturing errors, hardware/software errors, wrong operation, poor
assembly, etc. The buildup or prolonged presence of a fault may derive into malfunctions
or failures.

A malfunction is a condition where a system temporarily loses its ability to perform
expected functions. This may be caused by the presence of one or more faults. A failure,
moreover, is a permanent state in which the system fails to perform its tasks as expected.

47
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One example of such a state is the malfunctions and failures on board the Hubble
space telescope (HST), which among others, included computer reboots after electrical
power outages interrupted the operations of it’s data formatter, in charge of sending
back observed data to Earth, and the failure of its Advanced Camera for Surveys (ACS)
in 2007.

In [22], Parhami suggests the model illustrated in figure 4.1. From an ideal state, a
system can become defective and the exposed defects produce the faults of the system.
As faults accumulate, it will contaminate the processes and manifest as errors, depending
on the fault tolerance built into the system. When an error, or the accumulation of such,
hinder the ability to carry out the specified task within certain bounds of acceptability,
it is considered to be malfunctioning. This does not necessarily mean a catastrophic loss
of operation, but may be a reason to turn the operation into a degraded mode, where
the lowering of certain levels of operation is accepted. If the system is unable to operate
permanently it is considered to be failed.

Figure 4.1: System State Model, adapted from [22].

Faults can be classified according to their behaviour, in which case [16] and [6] identify
four types of faults. Figure 4.2a shows a hard failure or jump fault, where the component
or sensor under observation has a drastic and permanent jump in its expected behaviour.
One example of this can be the occurence of a short or open circuit. A drift fault can be
visualized in figure 4.2b, which manifests as a gradual degradation of the component, and
can occur, for example in the case of thermal or resistance degradation. An intermitent
fault, in figure 4.2c is understood as sudden jumps between one state and another,
alternately functioning and not functioning as expected. A lose connector may cause
a fault of this type. Finally, changes in the noise model of a component can also be
considered a type of fault, for which the behaviour is illustrated in figure 4.2d, and can
be caused, for instance, by a cracked solder joint.

4.1.2 Detection and Diagnosis

Classification of Fault Detection methods can be classified as shown in figure 4.3. The
simplest of all schemes are the limit checking and trend checking methods, where thresh-
olds are established for certain parameters and alarms are generated when the threshold
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(a) Hard/Jump Fault (b) Drift Fault

(c) Intermitent Fault (d) Change in Noise Model

Figure 4.2: Type of Faults, adapted from [16]

is reached or surpassed. More modern methods can be classified into detection via signal
models and process models. Signal models rely on techniques for digital or continuous
signal processing, such as spectrum analysis, Fourier transforms or wavelets. Process
models try to model and estimate the performance of a process and compare with the
actual output. Methods such as neural networks can be included here as they are use-
ful in function approximation, regression analysis and classification. Multi-variant data
analysis considers multiple parameters in its estimations, such as Principal Component
Analysis (PCA), which identifies the most important gradients (variability) in multiple
dimensions from a set of data points.

Figure 4.3: Fault Detection Methods, adapted from [7]

More complex than detection is the diagnosis of the fault. The reason for this is the
fact that most embedded systems are highly coupled, meaning that the contribution of
each component to the output is not linear, and therefore identification of the failing
part is nontrivial. Moreover, the behavior may not be time-invariant. Therefore the
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techniques employed for isolation or identification involve highly statistical techniques
or artificial intelligence methods (neural networks and fuzzy logic). Figure 4.4 shows a
classification tree of this methods.

Figure 4.4: Fault Diagnosis Methods, adapted from [7].

Once a fault has been detected and isolated, procedures have to be taken to ensure
safety or the system and operators. The measures depend on the urgency and the purpose
of the system, but can range from a simple notification to the operator(s) to a complete
shutdown of the system. Apart from those two extremes, two important techniques are
static (Figure 4.5) and dynamic redundancy (Figure 4.6). Static redundancy describes
a system in which several redundant components (sensors, actuators, etc) are included
to perform the same task, but the actual output is chose mainly by a voter. This voter
can be as simple as an majority voter, use statistical data to chose the most reliable
reading or optimize it’s inputs to generate a reliable signal[31]. The q-method included
in the Delfi-n3Xt ADCS that combines readings from the sun sensors and magnetometer
is an example of such a voter[14]. Dynamic redundancy, on the other hand, also includes
redundant components, but will use only one of them at a time. Upon the onset or
detection of a fault, a switch is activated to output the right readings or signals.

4.2 Related Work

The purpose to this section is to review recent applications of fault detection and isolation
techniques and variants of traditional methods. The literature of applications for FDI
is extensive, and the works mentioned here are included to provide some background
on the recent works being done in the field, but do not represent the whole range of
applications and variations available.

As described in the introduction, FDI systems can range from simple threshold check-
ing methods to complex model and signal based systems. A simple voter-based redun-
dancy FDI system is studied in [1] for a steer-by-wire (SBW) system for road-wheel
control in a ground vehicle. The steering wheel has attached sensor to it and both front
wheels have an road-wheel-angle (RWA) sensor. The mathematical model described in
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Figure 4.5: Static Redundancy. Figure 4.6: Dynamic Redundancy.

[1] shows the relationship between the three signals. The input from these three sensors is
taken into account by a majority voter to decide the proper output of the system. A first
check is performed directly from the outputs to check that values from the components
fall within accepted values (i.e. an angle of 90 degrees for an RWA is invalid). Further
on, fault isolation is performed by comparing the differences between each signal with
the others. In the presence of a fault, the common signal that causes differences beyond
an accepted threshold is marked as erroneous. Moreover, the fault has to persist for a
certain amount of (tunable) time for it to be marked. The correct output is assumed to
be the average of all incoming signals. The basic Simulink FDI algorithm is shown in
figure 4.7.

Figure 4.7: FDI Algorithm for Road-Wheel Control Subsystem, adapted from [1].
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Simulation results of this scheme show that the algorithm can correctly detect and
isolate a persistent stuck-at fault in one sensor. When this happens, the damaged com-
ponent is shut off and no longer taken into account for nominal operations. The correct
output is assumed to be the average of the remaining two sensors. As expected, a fault
in two or more sensors cannot be isolated and therefore all signals are considered faulty
in that case.

More related to the work presented in this thesis is presented in [32], where an FDI
system is implemented for satellite navigation. The implementation, however, considers
only gyroscopes and an earth sensor. The strategy for fault detection implemented is
highly mathematical and tries to decouple unknown disturbances in navigation with
the residue as much as possible using singular value decomposition. The scheme also
procures to maximize the norm of the transfer matrix between sensors and residue in
order to make it more sensible to sensor disturbances. Moreover, multiple relations of
this kind, maximizing the norm between one sensor, while minimizing it for the rest,
provide an easy way to isolate erroneous behavior from components. Implementation
and simulation in Matlab/Simulink (Fig. 4.8) was carried out with stuck-up faults in
one or more of the sensors and actuators.

Realistic noise levels are added to the simulation and disturbances that go beyond
the acceptable threshold are flagged as errors if they persist for more than 10 samples.
This system, on board the Indian Remote Sensing Spacecraft, is able to track sensor
faults, both from gyros and earth sensor, and isolate them correctly, however, actuator
faults did not cause enough disturbances to be perceived.

Figure 4.8: FDI Model for Gyro Fault Detection, adapted from [17].

In [17] the application of a Kalman based FDI system for unmanned ground vehicles is
studied. The vehicle is equipped with a color camera, a laser range sensor, and electronic
compass, a Garmin GPS receiver, wireless Ethernet link, a Crossbow IMU all interfaced
to a main board computer consisting of a Pentium IV running at 3.2 Ghz. For fault
detection and isolation, the only sensors taken into account are the odometers, the IMU
and the GPS receiver. Data from these sensors is filtered through a java/Matlab based
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component that performs online residual calculations and signals faults when perceived.
Moreover, the module has the ability to switch on and off any component outputting
faulty data. When additive faults are injected into the system, results showed that
failures were detected and isolated properly. However, when multiple failures occurred,
isolation was not always possible.

The LEO satellite ADCS introduced in [19] describes a fault detection strategy based
on the extended Kalman filter, but with slight differences. EKF iterations are used for
state estimation, faults are not determined via residuals, but by checking the spectral
norm of the innovation matrix. The spectral norm is defined as the squared root of
the maximum eigenvalue, and the properties of this value allow the determination of
abnormal behavior. The authors derive a set of minimum and maximum bounds for the
spectral norm, and any breach of these bounds is taken as the onset of a fault. The few
simulations presented in this work show a correct behavior of the system in the presence
of shift faults (faults where the output of a component is shifted by certain value).

Figure 4.9: AAUSAT FDI Model, adapted from [14].

Finally it is worth mentioning the FDI system proposed for the AAUSAT-II satel-
lite from Aalborg University in Denmark[14], as the model and environment used for
the AAUSAT is also the basis for the studies performed in this chapter of the thesis.
The system, shown in figure 4.9 will procure detection of faults in gyro measurements.
Also included are magnetometers and sun sensors, which are further processed with an
optimization block labeled q-method, that calculates the most likely reading from both
components.

The decision phase block will compare model estimates with actual readings and
signal a fault when a certain threshold value has been surpassed. A stuck-at-0 fault
introduced in one of the gyros is correctly indicated by the decision block, but an open-
circuit, simulated by introduction of mean-valued noise of 2.5V fails to be detected.
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Finally, a short-circuit, treated as a 5V output, is correctly detected when injected.

4.3 Fault Detection via Kalman Filters

As described in the previous section, Kalman filters and its variants play an important
role in research of FDI schemes. In this section we introduce the traditional Kalman
filter and gradually explain how it can be modified to deal with nonlinear processes. We
conclude the section describing the variant that will be implemented for the Delfi-n3Xt
simulation environment.

The Kalman filter, or lineal quadratic estimation (LQE), is a recursive mathematical
procedure to estimate variables and states in linear processes. In its natural form, it
is applicable to linear dynamic systems for state and observation prediction, computer
vision, and signal processing. In practice, it provides efficient results and is theoretically
appealing because this is the filter that achieves the greatest minimization in the variance
of the estimation error. In each recursion, the filter updates its estimation with the mean
and covariance of the state, which, although may seem a simple representation of the
system, it suffices for most operational activities. Yet with all these benefits, there is one
important disadvantage: the standard version of the filter works only for linear processes.

To illustrate how the standard Kalman filter works, consider the following simple
dynamic system:

xk = Axk−1 + wk

yk = Cxk + vk
(4.1)

where xk is the state vector of the process at time k, A is a state transition matrix,
yk is the observation at time k and C is the transition matrix between the state and
measurement. Finally, wk and vk are Gaussian white noise with known covariance. The
two noise models have the following associated covariances:

Q = [wkw
T
k ]

R = [vkv
T
k ]

From these basic equations, the filter estimates the new state with the following
equation:

x̂k = x̂′
k + Kk(yk − Cx̂′

k) (4.2)

K is called the Kalman gain and serves to accommodate the data according to the
reliability of the measurements. If the measurement noise is large, K will be small so
that the measurement yk is not given much weight when estimating the next state x̂k.
If the measurement noise is small, then K will give more credibility to yk for the next
estimation. This gain is calculated as follows:

Kk = P ′
kC

T (CP ′
kC

T + R)−1 (4.3)
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where P is the current covariance matrix. The update for the covariance matrix is given
by 4.4.

Pk = (I −KkC)P ′
k (4.4)

Finally, the projection to next step is given by

x̂′
k+1 = Ax̂k

Pk+1 = APkA
T + Q

(4.5)

The Kalman recursive algorithm is summarized in the following figure 4.10.

Figure 4.10: The Kalman Filter Algorithm.

An initial covariance matrix Pk has to be given as input to start the calculations.
The derivation of the Kalman filter will not be discussed here, but suffice it to say that
it comes from minimizing the mean squared error (MSE) of the state-space equations
shown before (equation 4.1). Another alternative is to derive the solution as a chi-square
merit function, which is a maximum likelihood function. For a complete derivation using
both alternatives, see [30].

Complex systems in use today, however, are usually non-linear. Therefore, to im-
plement model based state estimation with LQE, the problem has to be modified. One
option is to linearize the problem, the basis for the Extended Kalman Filter (EKF),
which is considered the standard filter for non-linear estimation. Linearization theory
is vast and we shall not engage into its discussion here, but we shall mention that the
idea behind the EKF is to apply a Jacobian linearization about the current mean and
covariance. Another, newer idea, is to perform the non-linear transformation to a deter-
ministically selected set of points. The method is the Unscented Transform, basis of the
Unscented Kalman Filter (UKF), which we shall explore further in the next section.
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4.3.1 The Unscented Transform

The Unscented transform is inspired by the idea that it is simpler to estimate a prob-
ability distribution than an arbitrary non-linear function. The basic idea is shown in
figure 4.11, where a set of properly chosen points, also called sigma points, are trans-
formed via the nonlinear function into a new set of points. Knowing the covariance and
mean of the sigma points and then calculating again for the transformed set, provides a
way to estimate how these moments are transformed by the system.

Figure 4.11: The principle of the Unscented transform.

Sigma points are not selected randomly. They have to be deterministically chosen
so that they exhibit precisely the properties that we are interested to explore in the
non-linear transformation, in this case, their mean and covariance. Moreover, the points
can be weighted so that the higher order moments can be fine tuned further. For a set
of p sigma points around the state mean x̄, the weights W (i) can be positive or negative,
but must obey the following condition:

p
∑

i=0

W (i) = 1 (4.6)

A proposed set of sigma points χi that exhibit the desired properties of mean x̄ and
covariance Px is the following:

χ0 = x̄

χi = x̄ +
(

√

(L + λ)Px

)

i
i = 1, ..., L

χi = x̄−
(

√

(L + λ)Px

)

i−L
i = L + 1, ..., 2L

Where L is the dimension of each data point and
(

√

(L + λ)Px

)

i
is the ith column of the

square root matrix (L + λ)Px. The corresponding weights can be calculated as follows:
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W 0 = λ/(L + λ)
W i = 1/2(L + λ) i = 1, ..., L

with λ = α2L − L and L being the number of dimensions. These values and constants
spring from optimizations obtained by estimating the moments of probability distribu-
tions via Taylor expansions. The α parameter serves to provide some degree of control
over the spread of the sigma points around x̄. Figure 4.12 shows the effect of the α
parameter with a mean centered at (0,0). Points represented by a star were generated
with a value of α = 10−2, and those shown as a bubble with α = 10−1. As you can see,
for lower values, the points tend to be closer to the mean. According to [9] a good value
for α is in the order of 10−3 for most applications dealing with Gaussian distributions.
Some authors also distinguish between the weights used for calculating means (W i

s) and
those for calculating covariances (W i

c), with the purpose of adding additional tweaks to
higher order moments.

Figure 4.12: Sigma points with different α. Smaller values of α generate points closer to the
mean.

Advanced methods to capture and/or minimize errors of higher order moments is
described in [13] and [29]. All of them require careful analysis of more Taylor terms used
to approximate the probability distribution at hand. For the purposes of the work in
this thesis, mean and covariance will suffice.

4.3.2 The Unscented Kalman Filter

When considering a dynamic system governed by the following set of state-space equa-
tions:
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xk = f(xk−1) + w(k)
yk = h(xk) + v(k)

(4.7)

where f and h are known non-linear functions with w and v Gaussian white noise with
zero mean and covariance matrices [w(k)w(k)T ] = Q(k) and [v(k)v(k)T ] = R(k), the
first step of the UKF is to select the set of sigma points and perform the Unscented
transform with both f and h. The mean and covariances can then be estimated and
used as input to the equations of the standard Kalman filter. The complete algorithm
of the UKF can be summarized as follows:

Step 1: Calculate sigma points as described in the previous section.
Step 2: Compute the predicted mean x̂k|k−1 and covariance Px with the sigma points
χi

k−1|k−1 and their weights W i.

χi
k|k−1 = f(χi

k−1|k−1) i = 0, 1, ..., 2L

x̂k|k−1 =
2L
∑

i=0

W i
sχ

i
k|k−1

Px =
2L
∑

i=0

W i
c [χi

k|k−1 − x̂k|k−1][χ
i
k|k−1 − x̂k|k−1]

T + Q(k)

Step 3: Compute the predicted observation mean ŷk and its convariance Py from the
transformed sigmas yi

k.

yi
k = h(χi

k|k−1) i = 0, 1, ..., 2L

ŷk =
2L
∑

i=0

W i
sy

i
k

Py =
2L
∑

i=0

W i
c [yi

k − ŷk][y
i
k − ŷk]

T + R(k)

Step 4: Calculate the cross correlation matrix Pxy.

Pxy =
2L
∑

i=0

W i
c [χi

k|k−1 − x̂k|k−1][y
i
k − ŷk]

T

Step 5: Apply classic Kalman filter prediction equations to obtain the predicted state
x̂k|k and covariance Pk|k for the next step.

Kk = PxyP
−1
y

x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

Pk|k = Pk|k−1 −KkP
T
y

Step 6: Repeat steps 1 to 5 for the next reading/measurement.
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4.3.3 UKF Residuals

The problem addressed is the exploration of a scheme to determine faults within the
sensor system of the Delfi-n3Xt nanosatellite based on the UKF. By combining the model
of the system along with the measurements, it is possible to determine the occurrence
of a fault by measuring the change in mean of the measured Gaussian variable. The
residuals (εk) between the actual observations and those predicted by the UKF serve as
a parameter for such an analysis, and such residuals can be calculated as follows:

εk = yk + bf − ŷk (4.8)

where bf is the fault. The most straightforward method to detect a fault is to establish
a threshold for λ and alert of a possible fault when εk > λ. A certain window of samples
can also be considered to make detection more reliable (avoid detection of short lived
spikes):

Dm =
1
√

m

m
∑

k=1

ε(k) (4.9)

Section 4.6 will go into a broader discussion of proper methods to chose values for window
sizes and thresholds. It is obvious that a fault has to be considerably larger than the
signal noise in order to be detectable. For small faults, this method does not provide
a practical solution; however, if the fault cannot be distinguished from normal noise, it
probably does not have a distinguishable impact in the system output either.

4.4 Delfi-n3Xt Sensors and Model

4.4.1 Attitude Sensors

To correctly determine the attitude of Delfi-n3Xt, the satellite will carry a set of sensors
for correct attitude determination. The collection of sensor devices provides an accept-
able level of redundancy that is useful when one fails or outputs erroneous data. A brief
description on the manner in which each device works is offered below:

• The Sun sensor measures the angle towards the sun via photodiodes. On Delfi-
n3Xt, two sensors will be included in the six side panels of the craft to determine
position (12 in total). The amount of light helps determine the angle at which
each particular sensor is facing the sun. Special care has to be taken to counteract
Earth’s albedo. 1

• Gyros measure the angular velocities in three axes. Several gyros have to be
combined in order to obtain complete information on the rotation rate. In this

1The albedo of an object is the amount of light it can reflect from the sun. In the case of the Earth,
some parts of the surface and the atmosphere reflect from 4% to 26% of sunlight. This causes problems
with sun sensors because they may interpret Earth’s albedo as the sun. More modern sensors, however,
counteract this problem with the fact that the Earth only reflects certain frequencies, and by measuring
the frequencies not reflected by it, can correctly identify the sun.
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particular case, there are two gyros for each axis, each oriented in the opposite
direction (Y+,Y-,X+,X-,Z+,Z-). On Delfi-n3Xt, two integrated gyros with three
axis resolution will be included.

• The magnetometer provides information of the alignment with respect to Earth’s
magnetic field. More than one magnetometer may be included to determine the
alignment angle. On board Delfi-n3Xt, as with the gyros, two magnetometers will
be included, each with three axis resolution.

in each axis.

4.4.2 Model

The motion of a satellite can be mathematically modeled by the following state-space
equations derived from Newton’s laws of motion and Euler’s laws of angular momentum.
The state of the system is given by the following differential equation:

[

ω̇
q̇

]

=

[

I−1(Next + Nctrl − S(ω)(Iω + Lmw))
1
2Ωq

]

(4.10)

where q̇ is the attitude quaternion and ẇ the angular velocities in the three axis. I
represents a diagonal matrix containing the moments of inertia of the rotating body for
its three axis and Next,Nctrl represent external and control forces respectively. S(ω) and
Ω are constructions derived to ease the representation of the system and are defined as
follows:

S(ω) =







0 −ω̂3 ω̂2

ω̂3 0 −ω̂1

−ω̂2 ω̂1 0






Ω =











0 −ω̂3 ω̂2 ω̂1

−ω̂3 0 ω̂1 ω̂2

ω̂1 −ω̂1 0 ω̂3

−ω̂1 −ω̂2 −ω̂3 0











The observation equation of this system in particular is the same angular velocities and
quaternion components:

[

ω
q

]

=

[

13×3 03×4

04×3 14×4

] [

ω
q

]

(4.11)

where 1m×n is an m×n identity matrix and 0m×n is an m×n matrix of zeros. Equations
4.10 and 4.11 are the state-space equations for this dynamic system (equations 4.7). The
fact that the state equation is a differential equation poses an additional challenge as it
cannot be applied as-is in the UKF, but has to be solved numerically in each step of the
recursion.



4.5. IMPLEMENTATION AND SIMULATION RESULTS 61

Figure 4.13: The Delfi-n3Xt Simulink model.

4.5 Implementation and Simulation Results

Figure 4.13 shows the Simulink model used to perform simulations of the spacecraft.
For simplicity, actuator blocks have been removed. The following blocks are present:

• Environment & Satellite provides a simulation of space kinematics and space-
craft properties calculated on properties such as the initial attitude quaternion
(spacecraft-center to Earth-inertial), initial angular velocities, inertial moments
matrix, mass, magnetic dipole moments and center of mass.

• Sensor Emulation will calculate outputs from a sun sensor, three magnetometers
(for each axis) and size gyros (two per axis, in opposite directions. Output from
the sun sensor comes as millivolts (mV) for magnetometer and gyros.

• Attitude Determination System will output angular velocities (rad/s) and an
attitude quaternion. The angular velocities are determined by the gyros, while
the quaternion is determined via a least squared optimization method (q-method)
based on the input from the sun sensor and magnetometers.

The conceptual setup of the implemented method for our experiments is illustrated
in figure 4.14. The output from the ADCS unit comes as an input to the implementa-
tion of the Unscented Kalman filter. This output contains the current quaternion and
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Figure 4.14: Basic Setup of the Fault Detection Scheme.

angular velocities, which after processed by the UKF, are then compared to calculate
the corresponding residuals, which we further analize in search of a fault.

4.5.1 Gyro Faults

We start with a simulation of a gyro failure. Sensors are stimulated with normally
distributed white noise. Additionally, the model contains switches to add abnormal
noise to a gyro and to simulate a stuck-at-0 condition, which may be caused by an
open circuit. Normal noise levels all have a mean of 0 and deviations of around 10% of
the signal root mean square RMS power (0.05mA for the sun sensor, 0.005mV for the
magnetometer and 250mV for the gyro). Kinematic initial conditions for our simulation
are as follows:

ω =







0.3
0.00
0.05






q =











0
0
1
0











I =







0.053
0.053
0.024






Pinitial =

























10−6 0 0 0 0 0 0
0 10−6 0 0 0 0 0
0 0 10−6 0 0 0 0
0 0 0 10−6 0 0 0
0 0 0 0 10−6 0 0
0 0 0 0 0 10−6 0
0 0 0 0 0 0 10−6

























ω, q and I come from the model described in section 4.4.2 and represent the nanosatel-
lite in a constant rotation in X and Z axes. Pinitial is the initial covariance matrix needed
for equation 4.4 with values chosen to indicate a normally working system.

The simulation is run for 300 units of time or steps (each step being a reading from
the sensors), and the normal output from gyros is shown in figure 4.15. Since the initial
values of angular velocities defined rotation only in two axis, one can clearly see the two
gyros static in the axis that has no rotation.

It is highly unlikely that all gyros fail at the same time, more common is a fault in
one of the components. Therefore, at t=240, a sudden change in the noise model of one
of the gyros is induced to simulate a fault. The new noise model follows a deviation of
1000mV (around 50% of signal RMS power) and keeps the mean to 0. The output from
the sensor unit is illustrated in figure 4.16a. The residuals obtained from the UKF are
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Figure 4.15: Normal Output from Gyros.

shown in figures 4.16b to 4.16d, with error correlation values of R = 0.1I and Q = 0.01I,
Q = 0.05, Q = 0.08 respectively. To detect a fault, we used a windowed residual method
as described by equation 4.9, with a window size of m = 6 and λ = 0.02.

Another possible fault is a stuck-at condition, where a component is assumed to be
stuck at a certain value, regardless of the real conditions. This is may be caused by
manufacturing defects or open circuits. In this particular simulation, we stimulated a
stuck-at-0 behavior. The simulation is again run for 300 time units, and at t=240 one
gyro is forced to freeze at a 0 transmission. The fault is shown in figure 4.17a. The
residuals obtained from the UKF are shown in figures 4.17b to 4.17d, again with error
correlation values of R = 0.1I and Q = 0.01I, Q = 0.05, Q = 0.08 respectively. The
same window and λ values are used as in the previous simulation.

In both error cases, the fault can be visualized as the change in the mean of the
residuals from t=240 onwards. As expected, a lower value given to the model’s error
covariance matrix gives more weight to the prediction associated to the model in the
UKF, and thus, a more pronounced and visible change. We can see that with smaller
covariance values for the model (more trust), the method is quicker to detect faults. This
can also be perceived visually by a more pronounced changed in the residuals.

It is important to find a balance between the confidence given to the model and the
measurements. Assigning a very small covariance error to the model (more trust) can
make it difficult to detect abnormal events or conditions, such as unexpected torques,
which will be read by the sensors, but may be considered faults by the UKF residuals
method. On the other hand, too much confidence on the measurements can make it
difficult to detect erroneous readings. Literature suggests that much of these parameters
can be chosen from experience [10], but also a realistic measure of noise and disturbances
in the particular environment of each application. A more in depth discussion of a method
to decide proper values of window size and threshold is done in section 4.6
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(a) Change in noise model (b) Q = 0.01I, R = 0.01I. Fault detected at t=249.

(c) Q = 0.05I, R = 0.01I. Fault detected at t=266. (d) Q = 0.08I, R = 0.01I Fault undetected.

Figure 4.16: UKF Residuals for Gyroscope change in noise model

4.5.2 Faults from Euler Angle Estimations

One approach explored during the development of this work was to take advantage of the
redundancy present in the system and use the quaternions calculated from magnetometer
and sun sensor to estimate errors in the gyros. Attitude and rotations can be specified
in both quaternions or euler angles, and to explore this approach, we must first convert
the quaternions to euler angles for further processing. Figure 4.18 shows the residuals
obtained from this method.

As the figure shows, the output has noticeable short lived spikes present. The cause
of this spike is none other than the presence of infinities that come out of the conversion
of quaternions to euler angles. These infinities are also know as singularities and they
are an inherent problem to attitude determination via Euler angles. Since the conver-
sion involves trigonometric and inverse trigonometric functions applied to quaternion
components, they result in singularites at certain values.

Proper values of window length and threshold can be used to compensate these
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(a) Stuck-at-0 fault (b) Q = 0.01I. Fault detected at t=258.

(c) Q = 0.05I. Fault undetected. (d) Q = 0.08I. Fault undetected.

Figure 4.17: UKF Residuals for Gyroscope stuck-at-0 fault

spikes, but it will not remove the problem completely. For instance, if the spacecraft is
rotating at a faster angular velocity, these spikes will be more and more common, and the
increases in the mean of residuals in the presence of faults will become indistinguishable.
Rotation over the three axes may also increase this phenomenon. Some solutions that
may be explored to counteract this problem include determination of angular velocity
from the mathematical model and solve the system of equations or constrain the solution
to points not close to these singularities.

4.5.3 Magnetometer Faults

In this scenario, we simulate magnetometer failures. Sensors are stimulated with nor-
mally distributed white noise. Additionally, the model contains switches to add abnormal
noise to a gyro and to simulate a stuck-at-0 condition, which may be caused by an open
circuit. Kinematic initial conditions are the same as for the gyro.
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Figure 4.18: Fault Detection from Euler Angle Estimations.

The model shows additive noise for all sensors and switches to simulate a stuck-at-0
fault and addition of abnormal noise (change in noise model). Again the simulations are
run for 300 units of time and the fault is introduced at t=240. The normal output from
magnetometers is shown in figure 4.19.
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Figure 4.19: Normal Output from Magnetometers.

The first fault to be simulated is a change in noise model. Delfi-n3Xt needs three
axis magnetometers, which require either three magnetometers of one axis resolution or
one with three axis determination capability. In this case we will assume the former. As
with the gyros, it is unlikely that all components fail, so only one is injected with the
fault. The new noise model has a deviation of 0.05mV (around 50% RMS power) and
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keeps the mean at 0. The output of the magnetometers with the injected disturbance is
illustrated in figure 4.20a.

The residuals obtained from the UKF are shown in figure 4.20, with error correlation
values of R = 0.1I and Q = 0.01I, Q = 0.05, Q = 0.08 respectively. The graph shows
a definite increment in the mean of the residuals, however it is full of short lived spikes
with abrupt changes. This spiky output is problematic to deal with because depending
on the window size, the method may interpret one fault, several intermittent faults or
none at all. In this simulation we use a window size of 6 and λ = 0.2.
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(a) Change in noise model (b) Q = 0.01I. Fault detected at t=249.

(c) Q = 0.05I. Fault detected at t=249. (d) Q = 0.08I. Fault detected at t=268.

Figure 4.20: Residuals for Magnetometer change in noise model

The stuck-at-0 fault is also simulated at t=240, and the results are illustrated in
figure 4.21. Again, the graphs show a spiky output for the residuals. As expected, at a
higher error covariance of the model, the less marked the change in residuals.

Unlike faults in the gyros, the residuals coming out from the magnetometer faults,
although noticeable, come out with abrupt changes. The explanation for this relies in
the q-method block visible in figure 4.9. The q-method is a least squared optimization
procedure that tries to compute the most likely attitude quaternion from the outputs of
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(a) Stuck-at-0 Fault (b) Q = 0.01I. Fault detected at t=246.

(c) Q = 0.05I. Fault detected at t=298. (d) Q = 0.08I. Fault undetected.

Figure 4.21: Residuals for Magnetometer stuck-at-0 fault

the sun sensor(s) and magnetometer(s). Therefore, any disturbance to these sensors will
not translate to a linear disturbance in the calculation of the quaternion. This, as well,
makes it extremely difficult to isolate a fault within these components. At most, as can
be seen from the results presented here, the UKF is able to detect the presence of an
anomaly. Inclusion of an observer before or within the q-method block may provide a
way to add proper fault isolation to these components, since each sensor output would
be monitored independently.

The general tendency again is that with more trust placed in the model, the easier
and faster the method will detect the presence of an anomaly. Spiky output can, however,
cause problems. Depending on the window size, spikes properly separated may not be
captured by the window size, and render the fault undetected, as in the result presented
in figure 4.21d.
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4.6 Parameters for Fault Detection Method

In the simulations and results presented above, detection (or undetection) of faults was
decided with given values of window sizes and thresholds. These values, however, can
be chosen appropriately with statistically acceptable confidence levels. [10] suggests a
method based on the χ2 distribution.

As the cumulative windowed sum of the residuals is defined by

Dm =
1
√

m

m
∑

k=1

ε(k) (4.12)

where m is the number of samples (window size) and since ε(k) is assumed to be Gaussian
with mean 0 in the absence of faults, then Dm is also Gaussian N(0, Pyy) under those
same conditions. However, in a faulty system, from equation 4.8 it is clear that the
distribution of the residual becomes N(bf , Pyy) and, thus, for Dm, N(

√
mbf , Pyy).

More useful, yet, is a normalized version of Dm by its variance

Sm = (Dm)2P−1
yy (4.13)

and a fault is assumed to occur when Sm > λ, with λ being a threshold value. Sm is now
a χ2 distributed expression, and therefore λ can be chosen with the desired confidence
level. The probability density function with a no fault hypothesis (H0) is represented by

p(Sm/H0) =
1√

2πSm
exp(

−Sm

2
) (4.14)

The probability of having a false alarm (signaling an inexistent fault) is expressed by

Pf =

∞
∫

λ

p(Sm/H0) dSm (4.15)

In the case we assume the presence of a fault (H1), the distribution deviates by
N(
√

mbf , Pyy), and the probability function becomes:

p(Sm/H1) =
1

2
√

(2πSm)

(

exp(
(−
√

Sm +
√

m/Pyybf )2

2
)+exp(

(−
√

Sm −
√

m/Pyybf )2

2
)
)

(4.16)
and the false positive rate is therefore:

Pm =

λ
∫

0

p(Sm/H1) dSm (4.17)

The size of a window and λ, therefore, can be decided via equation 4.15 and 4.17.
The size of a window has an impact in the performance and should not be too small to
promote false detections or too long such that the system cannot detect the error within
acceptable time limits.
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The method suggested by [10] is, however, based on the assumption that bf is a
constant value and the faults studied were also of that nature; shift faults. In this thesis,
however, the faults explored are not all shift faults, so this method would have to be
slightly adapted.

For faults involving a change in additive Gaussian noise model, the value of bf cannot
be simply the expected value of the normal distribution, because in most cases, this is 0.
A more interesting approach would be to consider bf as a function of the noise deviation,
so that changes in this respect can be used to decide upon values for λ and window size.
For faults of stuck-at-0 nature, bf can be considered a function of the expected value
of the model. In the case of continuous signals as those presented here for gyros, the
expected value can be the root mean square or quadratic mean.

4.7 Summary

In this chapter we provide an investigation of model based fault detection, particularly
well suited for embedded sensor systems. Delfi-n3Xt will carry on board a complete
Attitude Determination and Control Subsystem, which makes use of magnmetometers,
sun sensors and gyroscopes. Therefore, we take on the task of exploring the applicability
of a Kalman based fault detection scheme for a system such as this one.

We begin our discussion with the traditional Kalman Filter algorithm and illustrate
its use. Then the Unscented Transform is introduced as a form to map statistical mo-
ments into nonlinear functions, which is then taken as the basis of the Unscented Kalman
Filter, and this can now be used for error detection in nonlinear dynamic systems. The
implementation of this filter is included in the simulation environment of Delfi-n3Xt.
Faults are induced in the system to observe the performance of the method and the
results show that the method is indeed capable to detecting the fault within acceptable
boundaries of time.



Conclusions &

Recommendations 5
This chapter provides a summary of the work presented in this thesis, highlighting the
conclusions and major points. Recommendations for future work are also included, which
are mostly inspired from the experience gained during the development of this project.

5.1 Summary & Conclusions

This thesis was motivated by the problems encountered during the developed and op-
eration of the Delfi-C3 nanosatellite, launched on April 2008. Failures in the bus and
CDHS prompted for an exploration of the design and implementation flaws. Therefore,
this thesis encompassed solutions for the CDHS with a special focus on the data bus for
internal communications.

In chapter 2, we discussed very briefly about Delfi-C3’s CDHS design and flaws, in-
cluding hardware and software bugs. This was complemented by Bit-Error measurements
with hardware on board the satellite. Furthermore, the CDHS overall architecture for
the new Delfi-n3Xt satellite was discussed, including the architecture of the On Board
Computer and data bus. The I2C data bus is chosen after a comparison with several
other bus architectures. Finally, the implementations in hardware and software are pre-
sented, with their specific enhancements to increase the realiability of this primordial
component. Hardware will include redundant lines, I/O ports for easier and effective

local power control for each subsystem and and I2C circuit protector that guarantees
that no single subsystem will hang the bus and stop all communications.

Chapter 3 goes deeper into the discussion of software fault tolerance for the CDHS,
including some methods and techniques that should be considered and implemented
in the upper software layers. Mainly, however, the chapter focuses in communication
reliability, were coding theory is introduced and several coding schemes are presented
as options for Delfi-n3Xt and the Delfi Programme in general. The parity scheme, as
implemented in Delfi-C3 contains flaws that make it a poor choice for future mission.
CRC’s, if properly implemented, however, would provide realibility in error detection
with low computational overhead.

Finally, as fault tolerance can also be applied on a higher level and to other systems,
this thesis also decides to explore model based fault detection, in an effort to include
techniques on a system level which could be implemented on future nanosatellites of the
Delfi programme. This can be performed via kalman filtering techniques, which take
into account a mathematicla model of the process along with its actual measurements.
Traditional kalman filters however, are designed for linear systems, and thus, needs to
be modified for nonliear processes, such as those involved in satellite navigation. The
Unscented Kalman Filter provides a way to apply the filter to a nonlinea model based
a simple probabilistic principle. A UKF was implemented and included in a Delfi-n3Xt

71
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simulation environment with results showing that is possible to detect errors in sensors
by proper analysis of residuals. Finally, methods to decide the proper value of initial
parameters for the UKF to optimize its effectiveness are discussed.

5.2 Recommendations for Future Work

As of this moment, the Delfi-n3Xt has not gone into the detailed design phase yet,
so the architectures presented here must be implemented. Payload partners should be
provided with well tested interfaces to guarantee ease of integration. Some other concrete
recommendations and guidelines would be the following:

• Proper documentation should be written and available at all times. One of the
problems encountered when exploring the design of Delfi-C3 was the lack of proper
documentation, specially for software. Proper documentation, commenting and
versioning should be regarded as pivotal in the project.

• Testing of the designs proposed should be carried out as soon as possible. The
proposed architectures and solutions presented here need to be teste throughly. At
the moment of presenting this thesis, not enough students were available in the
project to take on the task of breadboarding and developing prototype boards for
the Delfi-n3Xt, and thus thorough tests could not be carried out.

• As the Delfi Programme grows, it is adivisable to develop a standard set of com-
ponents, of which the data bus architecture could be one. In this sense, a higher
level protocol over I2C should be developed, that includes mechanisms for error
detection, many-to-many communication capabilities (not only master-slave) and a
transparent software layer to be used for the rest of the software in the subsystems.

• Testing Bit-Error Rate on a large bus with 10+ nodes would provide a realistic
environment to asses the quality of the enhancements proposed here.

• Explore the performance of the Unscented Kalman Filter for error detection with
actuators similar to those proposed for Delfi-n3Xt. This would serve as a realis-
tic benchmark for the failure detection method, and truly provide clues into its
practicality.

• Detailed benchmark between the Unscented Kalman Filter and the Extended
Kalman Filter, which is the standard used filter in industry. Comparison should
contain details of computational resource requirements and performance to fault
detection applications.

• Look further into fault estimations via Euler angle predictions. Some ways to avoid
the problems of singularities may be to restrict the problem to angles not to close
to those that cause problems or to derive the angular velocity from the model
equations.
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• Explore techniques for failure isolation in the sun sensor and magenetometer. At
this point, the method proposed here can only detect the presence of a failure in
the ADCS system related to quaternion calculation, but cannot distinguish which
components is the cause. This may be achieved by placing the UKF before the
q-method block.
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Nomenclature

ADCS Attitude Determination and Control Subsystem

BER Bit-Error Rate

bps bits per second

CAN Controller Area Network

CDHS Command & Data Handling Subsystem

COMMS Communications Subsystem

COTS Commercial Off the Shelf

CRC Cyclic Redundancy Check/Code

EKF Extended Kalman Filter

EPS Eletrical Power Subsystem

Kbps Kilobits per second

kHz Kilohertz

mA Milliamperes

MHz Megahertz

mV Millivolts

OBC On-Board Computer

PCB Printed Circuit Board

SPI Serial Peripheral Interface

STS Structural Subsystem

TCS Thermal Control Subsystem

UKF Unscented Kalman Filter
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Communications Service Layer

Souce Code for Delfi-n3Xt A
1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 I2C Driver f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9 #ifndef N I2C

10 #define N I2C
11
12 //#de f i n e USE EDAC
13
14 #define I2C BUF SIZE 150
15
16 #ifdef USE EDAC
17 #define I2C EDAC BUF SIZE ( I2C BUF SIZE/8)+1
18
19 // s e t the edac header , change to any o ther
20 #include ”pearson . h”
21
22 #endif

23
24 //modes f o r dev i c e
25 #define I2C MODE MASTER 1
26 #define I2C MODE SLAVE 0
27
28 // s t a t e s
29 #define I2C STATUS IDLE 0
30 #define I2C STATUS RX 1
31 #define I2C STATUS TX 2
32
33 // re turn cond i t i on s
34 #define I2C OK 0
35 #define I2C ERR TIMEOUT −2
36 #define I2C ERR XMIT −1
37
38
39 int n in i t I 2C (unsigned char my address , unsigned char s l a v e ) ;
40 int n I2Crecv (unsigned char s l ave addr e s s , volat i le char ∗data , unsigned char l ength , un

41 int n I2Csend (unsigned char s l ave addr e s s , volat i le char ∗data , unsigned char l ength , un

42 void getI2CData (char ∗buf ) ;
43 int n I2C s l ave packe t ( volat i le char ∗data , unsigned char l ength ) ;
44
45 extern void i 2 c r e c v c a l l b a c k ( volat i le char ∗data , int l en ) ;
46

81
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47 #endif

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 I2C Driver f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #include <msp430x16x . h>

11 #include ” c r o s s s t u d i o i o . h”
12 #include ” n i 2 c . h”
13 #include ” n t imer s . h”
14
15
16 stat ic volat i le char ∗xdata =0;
17 stat ic volat i le unsigned char xdata l en =0;
18 stat ic volat i le unsigned char x f e r ed =1;
19
20 // are we a s l a v e or master?
21 stat ic unsigned char i2c mode =0;
22
23 // used when we are a s l a v e
24 stat ic volat i le char s l v r c vda t a [ I2C BUF SIZE ] ;
25 stat ic volat i le char s l v r c v d a t a l e n =0;
26 stat ic volat i le char s l v s enddata [ I2C BUF SIZE ] ;
27 stat ic volat i le char s l v s endda t a l e n =0;
28 stat ic volat i le char xmit mode = I2C STATUS IDLE ;
29
30 // f o r EDAC
31 #ifdef USE EDAC
32 stat ic volat i le char edac [ I2C EDAC BUF SIZE ] ;
33 stat ic volat i le unsigned char edac l en =0;
34 stat ic volat i le unsigned char ex f e r ed =0;
35 #endif

36
37
38 int n in i t I 2C (unsigned char my address , unsigned char mode){
39
40 // con f i gu r e p ins ( Ports )
41 P3DIR = 0x00 ;
42 P3SEL = 0x0A ;
43
44 // s top any a c t i v i t y in I2C mode
45 U0CTL = 0x00 ;
46 I2CTCTL = 0x00 ;
47
48 // In t e r r up t s : r ece i ve , transmit , acces s and nack
49 I2CIE = TXRDYIE + RXRDYIE + ARDYIE + OAIE + NACKIE;
50
51 // s e t l o c a l address
52 I2COA = my address ;
53
54 // c l o c k s t u f f
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55 I2CPSC = 0x00 ;
56 I2CSCLH = 0x08 ; // h igh s t a t e c l o c k dura t ion
57 I2CSCLL = 0x08 ; // low s t a t e c l o c k dura t ion
58
59 i2c mode = mode ;
60
61 i f ( mode == I2C MODE SLAVE ) {
62
63 U0CTL = I2C + SYNC;
64 U0CTL &= ˜I2CEN ;
65 I2CTCTL = I2CSSEL1 ;
66 I2CTCTL &= ˜I2CTRX;
67
68 I2CTCTL |= I2CSTT+I2CSTP ;
69 U0CTL |= I2CEN ; // enab l e I2C f u n c t i o n a l i t y
70 }
71
72 I2CIFG =0;
73
74 return 0 ;
75 }
76
77 // t h i s f u cn t i on only used by master
78 // only master can ask f o r i n f o
79 int n I2Crecv (unsigned char s l ave addr e s s , volat i le char ∗data , unsigned char l ength , un

80
81 int r t imer =0;
82
83 // Conf igure USART fo r I2C mode
84 // I2C mode , 7− b i t addrs , I2C mode sync , master mode
85 U0CTL = I2C + SYNC + MST;
86
87 // make sure I2C not ye t r e l e a s e d
88 U0CTL &= ˜I2CEN ;
89
90 // con f i gu r e t ransmiss ion
91 // by t e mode , hw c on t r o l l e d data t rans f e r , ACLK clock , SDA pin in r e c e i v e mode
92 I2CTCTL = I2CSSEL1 ;
93 I2CNDAT = length ;
94
95 // b u f f e r f o r r e c ep t i on
96 xdata =data ;
97 xdata l en =length ;
98 x f e r ed =0;
99

100 #ifdef USE EDAC
101 length = length + num edac bytes ( l ength ) ;
102 I2CNDAT = length ;
103 #endif

104
105 // Set adress o f d e s t i n a t i o n s l a v e c o n t r o l l e r
106 I2CSA = s l av e add r e s s ;
107
108 // Enable I2C hardware
109 U0CTL |= I2CEN ;



84 APPENDIX A. COMMUNICATIONS SERVICE LAYER SOUCE CODE FOR

DELFI-N3XT

110 // Send START b i t
111 //I2CTCTL |= 0x01 ;
112 I2CTCTL |= I2CSTT+I2CSTP ;
113
114 d startTimer (I2C TIMER ) ;
115 while ( r t imer < t imeout && xfe r ed < l ength ){ r t imer = d getTimer (I2C TIMER ) ;

}
116
117 // check to see i f I2C bus i s busy
118 while (I2CDCTL & I2CBB){ }
119
120 i f ( r t imer >= timeout )
121 return I2C ERR TIMEOUT;
122
123
124 i f ( ! ( x f e r ed == length ) ) return I2C ERR XMIT ;
125 else {
126
127 #i f d e f USE EDAC
128 i f ( ! checkedac ( data , xdata len , edac ) ) return I2C ERR XMIT ;
129 #end i f
130
131 return I2C OK ;
132 }
133 }
134
135 /∗ S lave prepares next t ransmiss ion ∗/
136 int n I2C s l ave packe t ( volat i le char ∗data , unsigned char l ength ){
137 int i =0;
138 for ( ; i < l ength ; i++ )
139 s lv s enddata [ i ] = data [ i ] ;
140
141 #i f d e f USE EDAC
142 {
143 volat i le char ∗ edc = s lv s enddata+length ;
144 ex f e r ed = 0 ;
145 edac l en = setedac ( s lv senddata , length , edc ) ;
146 l ength = edac l en + length ;
147 }
148 #end i f
149
150 s l v s endda t a l e n = length ;
151 return 0 ;
152 }
153
154 int n I2Csend (unsigned char s l ave addr e s s , volat i le char ∗data , unsigned char l ength , unsigned in

155
156 int r t imer =0;
157
158 // Conf igure USART fo r I2C mode
159 // I2C mode , 7− b i t addrs , I2C mode sync
160 i f ( i2c mode == I2C MODE SLAVE )
161 U0CTL = I2C + SYNC;
162 else

163 U0CTL = I2C + SYNC + MST;
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164
165 // make sure I2C not ye t r e l e a s e d
166 U0CTL &= ˜I2CEN ;
167
168 // con f i gu r e t ransmiss ion
169 // by t e mode , hw c on t r o l l e d data t rans f e r , SMCLK clock , SDA pin in transmi t mode
170 //I2CTCTL = 0x28 ;
171 I2CTCTL = I2CSSEL0 + I2CSSEL1 + I2CTRX;
172 I2CNDAT = length ;
173
174 I2CSA = s l av e add r e s s ;
175 xdata =data ;
176 xdata l en =length ;
177 x f e r ed =0;
178
179 #ifdef USE EDAC
180 ex f e r ed = 0 ;
181 edac l en = setedac ( data , length , edac ) ;
182 l ength = edac l en + length ;
183 I2CNDAT = length ;
184 #endif

185
186 // Enable I2C hardware
187 U0CTL |= I2CEN ;
188 // Send START b i t
189 //I2CTCTL |= 0x01 ;
190 I2CTCTL |= I2CSTT + I2CSTP ;
191
192 d startTimer (I2C TIMER ) ;
193 while ( r t imer < t imeout && xfe r ed < l ength ){ r t imer = d getTimer (I2C TIMER ) ;

}
194
195 while ( I2CDCTL & I2CBB ){ }
196
197 i f ( r t imer >= timeout )
198 return I2C ERR TIMEOUT;
199
200 i f ( ! ( x f e r ed == length ) ) return I2C ERR XMIT ;
201 else return I2C OK ;
202 }
203
204 #pragma vec to r=USART0TX VECTOR
205 // vo id I2CISR( vo id ) i n t e r r u p t [USART0TX VECTOR] {
206 i n t e r r u p t void I2CISR (void ) {
207
208 // a c t i v i t y on the bus , so r e s e t t imer
209 d startTimer (I2C TIMER ) ;
210
211 // r e c e i v ed ready
212 i f ( ( I2CIFG & RXRDYIFG) ) {
213 char c =0;
214
215 c = I2CDRB; // always read the r e g i s t e r . . o the rw i s e i n t e r r u p t cont inues
216 I2CIFG &= ˜RXRDYIFG; // c l e a r the i n t e r r u p t f l a g as w e l l
217



86 APPENDIX A. COMMUNICATIONS SERVICE LAYER SOUCE CODE FOR

DELFI-N3XT

218 i f ( i2c mode == I2C MODE SLAVE ) {
219 xmit mode = I2C STATUS RX ;
220
221 s l v r c vda t a [ x f e r ed++] = c ;
222
223 } else

224
225 #i f n d e f USE EDAC
226
227 xdata [ x f e r ed++] = c ;
228
229 #else

230
231 i f ( x f e r ed < xdata l en )
232 xdata [ x f e r ed++] = c ;
233 else {
234 /∗ the r e s t i s edac codes ∗/
235 edac [ ex f e r ed++] = c ;
236 x f e r ed++;
237 }
238
239 #end i f
240 }
241
242 // transmi t ready
243 i f ( I2CIFG & TXRDYIFG ) {
244 I2CIFG &= ˜TXRDYIFG;
245
246 i f ( i2c mode == I2C MODE MASTER ){
247
248 #i f n d e f USE EDAC
249
250 /∗ j u s t t r a n s f e r data ∗/
251 I2CDRB = xdata [ x f e r ed ++];
252
253 #else

254 /∗ f i r s t t r a n s f e r a l l data ∗/
255 i f ( x f e r ed < xdata l en )
256 I2CDRB = xdata [ x f e r ed ++];
257 else {
258 /∗ when we have t r an s f e r e d a l l t he data , t r a n s f e r the edac codes ∗/
259 I2CDRB = edac [ ex f e r ed ++];
260 x f e r ed++;
261 }
262 #end i f
263 }
264
265 // s l a v e s . . .
266 else {
267 xmit mode = I2C STATUS TX ;
268 // the r e i s s t i l l data to be sen t
269 i f ( x f e r ed < s l v s endda t a l e n )
270 I2CDRB = s lv s enddata [ x f e r ed ++];
271 else return ;
272 }
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273 }
274
275 // we r e c e i v ed no ACK
276 // need a smart way to repor t t h i s e r ror to
277 // the upper so f tware l a y e r s
278 i f ( I2CIFG & NACKIFG ) {
279 I2CIFG &= ˜NACKIFG;
280 }
281
282 // acces s ready . Means t ha t s t u f f has f i n i s h ed ,
283 // u s ua l l y STOP cond i t i on de t e c t e d in the bus
284 i f ( I2CIFG & ARDYIFG ) {
285 I2CIFG &= ˜ARDYIFG;
286
287 i f ( i2c mode == I2C MODE SLAVE )
288 // as a s l ave , we f i n i s h e d r e c i e v i n g from the Master
289 // time to c a l l t he i2c c a l l b a c k
290 i f ( xmit mode == I2C STATUS RX ) {
291 #i f d e f USE EDAC
292 i f ( checkedac ( s l v r cvdata , xdata len , edac ) )
293 #end i f
294 i 2 c r e c v c a l l b a c k ( s l v r cvdata , x f e r ed ) ;
295 #i f d e f USE EDAC
296 else

297 P1OUT = P1OUT;
298 #end i f
299 }
300
301
302 xmit mode = I2C STATUS IDLE ;
303 }
304
305 // we hear a s t a r t cond i t i on s (SLAVE)
306 // so s e t t r a n s f e r counter to 0 , r e c ep t i on or
307 // t ransmiss ion i s about to beg in .
308 i f ( I2CIFG & STTIFG ) {
309 I2CIFG &= ˜STTIFG;
310 x f e r ed =0;
311
312 #i f d e f USE EDAC
313 ex f e r ed = 0 ;
314 #end i f
315 }
316
317 // own address . .
318 // i f we are s l a v e s , pay a t t e n t i o n
319 i f ( I2CIFG & OAIFG ){
320 }
321 }

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Timer Drivers f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL



88 APPENDIX A. COMMUNICATIONS SERVICE LAYER SOUCE CODE FOR

DELFI-N3XT

7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #ifndef N TIMERS
11 #define N TIMERS
12
13
14 #define NUM TIMERS 10
15 #define I2C TIMER 0
16 #define WAIT TIMER 1
17
18 void d in i tT imer s (void ) ;
19 unsigned int d startTimer (unsigned int id ) ;
20 unsigned int d getTimer (unsigned int id ) ;
21 void wait ( int m i l l i s ) ;
22
23 #endif

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Timer Drivers f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #include <msp430x16x . h>

11 #include ” n t imer s . h”
12
13 volat i le stat ic unsigned int g l oba l t ime r =1;
14 volat i le stat ic unsigned int t imers [NUM TIMERS ] ;
15
16 // Uses Timer A
17 void d in i tT imer s (void ){
18
19 // S ta r t Timer A in cont inuous mode .
20 TACTL |= 0x0010 ;
21
22 // count up to . . .
23 TACCR0 = 0 x f f f f ;
24
25 // enab l e i n t e r r u p t and output h igh
26 TACCTL0 = 0x14 ;
27
28 }
29
30
31 unsigned int d startTimer (unsigned int id ){
32 i f ( id >= NUM TIMERS ) return −1;
33 t imers [ id ] = g l oba l t ime r ;
34 return t imers [ id ] ;
35 }
36
37 unsigned int d getTimer (unsigned int id ){
38 unsigned int l =0;
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39 i f ( id >= NUM TIMERS ) return −1;
40
41
42 i f ( g l oba l t ime r < t imers [ id ] )
43 l = (0 x f f f f − t imers [ id ] ) + g l oba l t ime r ;
44 else

45 l= ( g l oba l t ime r − t imers [ id ] ) ;
46
47 return l ;
48 }
49
50 void wait ( int m i l l i s ){
51 d startTimer (WAIT TIMER) ;
52 while ( d getTimer (WAIT TIMER) < m i l l i s ){
53 // wai t f o r t imeout . .
54 }
55 }
56
57 #pragma vec to r=TIMERA0 VECTOR
58 // vo id t ime r a i s r ( vo id ) i n t e r r u p t [TIMERA0 VECTOR] {
59 i n t e r r u p t void t im e r a i s r (void ) {
60
61 g l oba l t ime r++;
62 //P1OUT ˆ= 0x01 ;
63
64 TACTL &= ˜0x0001 ;
65 }

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Sof tware I n t e r r up t s f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #ifndef SW INTERRUPTS
11 #define SW INTERRUPTS
12
13 #define SW INT I2CRCV 0
14 #define SW INT OTHER1 1
15 #define SW INT OTHER2 2
16
17 typedef void (∗ sw i n t c a l l b a c k ) ( void ) ;
18
19 void i n i t sw i n t e r r u p t s (void ) ;
20 void c a l l sw i n t e r r u p t (unsigned char cause ) ;
21
22 void r e g i s t e r s w i n t c a l l b a c k (unsigned char cause , sw i n t c a l l b a c k ca l l b a ck ) ;
23 void un r e g i s t e r sw i n t c a l l b a c k (unsigned char cause ) ;
24
25
26 #endif

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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2 Sof tware I n t e r r up t s f o r MSP430
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9 #include <msp430x16x . h>

10 #include ” c r o s s s t u d i o i o . h”
11 #include ” swint . h”
12
13 // the i n t e r r u p t v e c t o r
14 stat ic char SW INT VECTOR =0;
15 stat ic sw i n t c a l l b a c k SW INT CALLS [ 8 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
16
17 // we use the f i r s t b i t f o r a so f tware i n t e r r u p t
18 void i n i t sw i n t e r r u p t s (void ){
19 SW INT VECTOR =0;
20
21 P2DIR &= ˜0x01 ; // s e t b i t 0 to 0
22 P2SEL &= ˜0x01 ; // s e t f unc t i on to genera l inpu t f unc t i on
23 P2IFG &= ˜0x01 ; // c l e a r i n t e r r u p t s
24
25 }
26
27 // r e g i s t e r a so f tware i n t e r r u p t c a l l b a c k
28 void r e g i s t e r s w i n t c a l l b a c k (unsigned char cause , sw i n t c a l l b a c k ca l l b a ck ){
29 SW INT CALLS [ cause ] = ca l l b a ck ;
30 }
31
32 void un r e g i s t e r sw i n t c a l l b a c k (unsigned char cause ){
33 SW INT CALLS [ cause ] = 0 ;
34 }
35
36 void c a l l sw i n t e r r u p t (unsigned char cause ){
37 SW INT VECTOR |= (0 x01 << cause ) ;
38 P2IFG |= 0x01 ;
39 }
40
41 #pragma vec to r=PORT2 VECTOR
42 i n t e r r u p t void SWINT(void ) {
43 // vo id SWINT( vo id ) i n t e r r u p t [PORT2 VECTOR] {
44
45 // so f tware i n t e r r u p t
46 i f ( P2IFG & 0x01 ) {
47
48
49 // we r e c e i v ed something from I2C bus
50 i f ( SW INT VECTOR & (0 x01 << SW INT I2CRCV) ) {
51 SW INT VECTOR &= ˜(0 x01 << SW INT I2CRCV) ;

// c l e a r the f l a g
52
53 // proces s the commands
54 i f ( SW INT CALLS [ SW INT I2CRCV] )
55 SW INT CALLS [ SW INT I2CRCV ] ( ) ;
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56
57 return ;
58 }
59
60 // check i f no o ther i n t e r r u p t s pending
61 i f ( SW INT VECTOR == 0 )
62 P2IFG &= ˜0x01 ;
63 }
64 }
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Error Detection Codes for

Delfi-n3Xt B
1 #ifndef CRC H
2 #define CRC H
3
4 /∗ c a l c u l a t e s crc ∗/
5 int c r c ( volat i le char ∗data , int len , volat i le char ∗pbytes ) ;
6 int comparecrc ( volat i le char ∗data , int len , volat i le char ∗ edac ) ;
7 int checkcrc ( volat i le char ∗data , int l en ) ;
8
9 /∗ t h e s e have to be s e t ∗/

10 #define num edac bytes (n) 1
11 #define checkedac comparecrc
12 #define s e t edac c r c
13
14 #endif /∗CRC H ∗/

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Ca l cu l a t e s crc
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #include ” n i 2 c . h”
11 #ifdef USE EDAC
12
13 /∗ Table f o r po lynomia l 0x9C ∗/
14 unsigned char crcTable [ 2 5 6 ] = { 0 , 156 , 164 , 56 , 212 , 72 , 112 , 236 , 52 , 168 , 144
15 12 , 224 , 124 , 68 , 216 , 104 , 244 , 204 , 80 , 188 ,
16 32 , 24 , 132 , 92 , 192 , 248 , 100 , 136 , 20 , 44 ,
17 176 , 208 , 76 , 116 , 232 , 4 , 152 , 160 , 60 , 228 ,
18 120 , 64 , 220 , 48 , 172 , 148 , 8 , 184 , 36 , 28 ,
19 128 , 108 , 240 , 200 , 84 , 140 , 16 , 40 , 180 , 88 ,
20 196 , 252 , 96 , 60 , 160 , 152 , 4 , 232 , 116 , 76 ,
21 208 , 8 , 148 , 172 , 48 , 220 , 64 , 120 , 228 , 84 ,
22 200 , 240 , 108 , 128 , 28 , 36 , 184 , 96 , 252 , 196 ,
23 88 , 180 , 40 , 16 , 140 , 236 , 112 , 72 , 212 , 56 ,
24 164 , 156 , 0 , 216 , 68 , 124 , 224 , 12 , 144 , 168 ,
25 52 , 132 , 24 , 32 , 188 , 80 , 204 , 244 , 104 , 176 ,
26 44 , 20 , 136 , 100 , 248 , 192 , 92 , 120 , 228 , 220 ,
27 64 , 172 , 48 , 8 , 148 , 76 , 208 , 232 , 116 , 152 ,
28 4 , 60 , 160 , 16 , 140 , 180 , 40 , 196 , 88 , 96 ,
29 252 , 36 , 184 , 128 , 28 , 240 , 108 , 84 , 200 , 168 ,
30 52 , 12 , 144 , 124 , 224 , 216 , 68 , 156 , 0 , 56 ,
31 164 , 72 , 212 , 236 , 112 , 192 , 92 , 100 , 248 , 20 ,
32 136 , 176 , 44 , 244 , 104 , 80 , 204 , 32 , 188 , 132 ,

93
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33 24 , 68 , 216 , 224 , 124 , 144 , 12 , 52 , 168 , 112 ,
34 236 , 212 , 72 , 164 , 56 , 0 , 156 , 44 , 176 , 136 ,
35 20 , 248 , 100 , 92 , 192 , 24 , 132 , 188 , 32 , 204 ,
36 80 , 104 , 244 , 148 , 8 , 48 , 172 , 64 , 220 , 228 ,
37 120 , 160 , 60 , 4 , 152 , 116 , 232 , 208 , 76 , 252 ,
38 96 , 88 , 196 , 40 , 180 , 140 , 16 , 200 , 84 , 108 ,
39 240 , 28 , 128 , 184 , 36} ;
40
41 int c r c ( volat i le char ∗data , int len , volat i le char ∗pbytes ){
42
43 unsigned char t index =0;
44 unsigned char remainder = 0 ;
45 int byte =0;
46
47 for ( byte = 0 ; byte < l en ; ++byte )
48 {
49 t index = data [ byte ] ˆ ( remainder >> ( (8 ∗ s izeof (char ) ) − 8 ) ) ;
50 remainder = crcTable [ t index ] ˆ ( remainder << 8 ) ;
51 }
52
53 /∗ the crc ∗/
54 pbytes [ 0 ] = remainder ;
55
56 /∗ crc on ly occup ie s 1 by t e ∗/
57 return 1 ;
58 }
59
60
61 int comparecrc ( volat i le char ∗data , int len , volat i le char ∗ edac ){
62
63 char crc1 =0;
64
65 c rc ( data , len , &crc1 ) ;
66
67 i f ( c rc1 == edac [ 0 ] ) return 1 ;
68 else return 0 ;
69 }
70
71 #endif

1 #ifndef FLETCHER H
2 #define FLETCHER H
3
4 /∗ c a l c u l a t e s crc ∗/
5 int f l e t c h e r ( volat i le char ∗data , int len , volat i le char ∗pbytes ) ;
6 int c h e c k f l e t c h e r ( volat i le char ∗data , int len , volat i le char ∗ edac ) ;
7
8 /∗ t h e s e have to be s e t ∗/
9 #define num edac bytes (n) 1

10 #define checkedac ch e c k f l e t c h e r
11 #define s e t edac f l e t c h e r
12
13 #endif /∗FLETCHER H ∗/

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Ca l cu l a t e s F l e t ch e r ’ s 8− b i t Hash
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3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #include ” f l e t c h e r . h”
11
12 int f l e t c h e r ( volat i le char ∗data , int len , volat i le char ∗pbytes ){
13
14 int sum1 =0, sum2 =0, i =0;
15
16 for ( i =0; i < l en ; i++ ){
17 sum1 += data [ i ] ;
18 sum2 += sum1 ;
19 }
20
21 pbytes [ 0 ] = (sum2 & 0xFF ) ;
22
23 return 1 ;
24 }
25
26
27 int c h e c k f l e t c h e r ( volat i le char ∗data , int len , volat i le char ∗ edac ){
28
29 char hash =0;
30
31 f l e t c h e r ( data , len , &hash ) ;
32
33 i f ( hash == edac [ 0 ] ) return 1 ;
34 else return 0 ;
35
36 }

1 #ifndef PEARSON H
2 #define PEARSON H
3
4 /∗ c a l c u l a t e s crc ∗/
5 int pearson ( volat i le char ∗data , int len , volat i le char ∗pbytes ) ;
6 int checkpearson ( volat i le char ∗data , int len , volat i le char ∗ edac ) ;
7
8 /∗ t h e s e have to be s e t ∗/
9 #define num edac bytes (n) 1

10 #define checkedac checkpearson
11 #define s e t edac pearson
12
13 #endif /∗PEARSON H ∗/

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Ca l cu l a t e s Pearson ’ s Hash
3
4 Napoleon E. Cornejo
5 ncornejo@gmail . com
6 Del f t , NL
7
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8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10 #include ” n i 2 c . h”
11 #ifdef USE EDAC
12
13 char vtab l e [ ] =
14 {
15 1 , 87 , 49 , 12 , 176 , 178 , 102 , 166 , 121 , 193 , 6 , 84 , 249 , 230 , 44 , 163 ,
16 14 , 197 , 213 , 181 , 161 , 85 , 218 , 80 , 64 , 239 , 24 , 226 , 236 , 142 , 38 , 200 ,
17 110 , 177 , 104 , 103 , 141 , 253 , 255 , 50 , 77 , 101 , 81 , 18 , 45 , 96 , 31 , 222 ,
18 25 , 107 , 190 , 70 , 86 , 237 , 240 , 34 , 72 , 242 , 20 , 214 , 244 , 227 , 149 , 235 ,
19 97 , 234 , 57 , 22 , 60 , 250 , 82 , 175 , 208 , 5 , 127 , 199 , 111 , 62 , 135 , 248 ,
20 174 , 169 , 211 , 58 , 66 , 154 , 106 , 195 , 245 , 171 , 17 , 187 , 182 , 179 , 0 , 243 ,
21 132 , 56 , 148 , 75 , 128 , 133 , 158 , 100 , 130 , 126 , 91 , 13 , 153 , 246 , 216 , 219 ,
22 119 , 68 , 223 , 78 , 83 , 88 , 201 , 99 , 122 , 11 , 92 , 32 , 136 , 114 , 52 , 10 ,
23 138 , 30 , 48 , 183 , 156 , 35 , 61 , 26 , 143 , 74 , 251 , 94 , 129 , 162 , 63 , 152 ,
24 170 , 7 , 115 , 167 , 241 , 206 , 3 , 150 , 55 , 59 , 151 , 220 , 90 , 53 , 23 , 131 ,
25 125 , 173 , 15 , 238 , 79 , 95 , 89 , 16 , 105 , 137 , 225 , 224 , 217 , 160 , 37 , 123 ,
26 118 , 73 , 2 , 157 , 46 , 116 , 9 , 145 , 134 , 228 , 207 , 212 , 202 , 215 , 69 , 229 ,
27 27 , 188 , 67 , 124 , 168 , 252 , 42 , 4 , 29 , 108 , 21 , 247 , 19 , 205 , 39 , 203 ,
28 233 , 40 , 186 , 147 , 198 , 192 , 155 , 33 , 164 , 191 , 98 , 204 , 165 , 180 , 117 , 76 ,
29 140 , 36 , 210 , 172 , 41 , 54 , 159 , 8 , 185 , 232 , 113 , 196 , 231 , 47 , 146 , 120 ,
30 51 , 65 , 28 , 144 , 254 , 221 , 93 , 189 , 194 , 139 , 112 , 43 , 71 , 109 , 184 , 209 ,
31 } ;
32
33
34 int pearson ( volat i le char ∗data , int len , volat i le char ∗pbytes ){
35 unsigned char h =len ;
36 int i =0, index =0;
37
38 for ( i =0; i < l en ; i++ ){
39 index = h ˆ data [ i ] ;
40 h = vtab l e [ index ] ;
41 }
42 pbytes [ 0 ] = h ;
43 return 1 ;
44 }
45
46 int checkpearson ( volat i le char ∗data , int len , volat i le char ∗ edac ){
47
48 char hash =0;
49
50 pearson ( data , len , &hash ) ;
51
52 i f ( hash == edac [ 0 ] ) return 1 ;
53 else return 0 ;
54 }
55
56 #endif



Unscented Kalman Filter

Matlab Source Code C
1 % Sigma Point S e l e c t i o n a l gor i thm
2 % ===============================
3 %
4 % Napoleon E. Cornejo ( ncornejo@gmail . com)
5 % Technische Un i v e r s i t e i t De l f t
6 % Del f t , The Nether lands
7 % March 11 , 2009
8 %
9 % X = complete s e t o f po in t s de f i ned by the func t i on in a c e r t a i n range

10 % each row in X rep r e s en t s a po in t o f the f unc t i on
11 % Px − covar iance
12
13 function [ s igmas weights ] = sigmas (X, Px , W0)
14 sX = s ize (X) ;
15 npo ints = sX ( 1 ) ;
16
17 alpha=1e−2; %de f au l t , t unab l e
18 beta=2; %de f au l t , t unab l e
19 lambda=alpha ˆ2∗ npoints−npo ints ;
20 c=npoints+lambda ;
21
22 % dimension o f random va r i a b l e X
23 s = s ize (X) ;
24 dimX = s ( 1 , 1 ) ;
25
26 % i n i t i a l i z e sigma/we i gh t s po in t s array
27 weights = zeros (2∗dimX+1, 1 ) ;
28
29 %compute the we i gh t s
30 weights (1 ) = lambda/c ;
31 for k=1:dimX
32 weights ( k+1 ,:)= 0 .5/ c ;
33 weights ( k+dimX+1 , :) = 0 .5/ c ;
34 end

35
36 meanX = X’ ;
37 covX = Px ;
38
39 %compute the sigma po in t s
40 sigmas = zeros (2∗dimX+1, dimX ) ;
41 sigmas ( 1 , : ) = meanX ;
42 % sq r t covar iance matrix x s c a l i n g f a c t o r
43 c = sqrt ( c ) ;
44 sqcovX = c∗sqrtm( covX ) ;
45 for k=1:dimX
46 sigmas (k+1 ,:)= meanX + sqcovX (k , : ) ;
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47 sigmas (k+1+dimX , : ) = meanX − sqcovX (k , : ) ;
48 end

1 % Unscented Kalman F i l t e r
2 % =======================
3 %
4 % Napoleon E. Cornejo ( ncornejo@gmail . com)
5 % Technische Un i v e r s i t e i t De l f t
6 % Del f t , The Nether lands
7 % March 2009
8 %
9

10 % X in i t curren t / i n i t i a l s t a t e po in t s
11 % Px in i t curren t / i n i t i a l s t a t e covar iance
12 % Y in i t curren t / i n i t a l o b s e r va t i on /measurement po in t s
13 % sN s t a t e no i se
14 % oN obse r va t i on (measurement ) no i se
15
16 function [ X next Px next ] = ukalmanf ( f s t a t e , X in i t , Px in i t , fobserv , Y in i t , sN , oN)
17
18 % s t a t e no i se w( k ) and ob s e r va t i on no i se v ( k ) covar iances
19 Q=sN∗sN ’ ;
20 R=oN∗oN ’ ;
21
22 % ca l c u l a t e sigma po in t s and a s s o c i a t e d we i gh t s
23 [SG,W] = sigmas ( X in i t , Px in i t , 0 ) ;
24 dimsg = s ize (SG) ;
25 npo ints = dimsg ( 1 ) ;
26 dimX = dimsg ( 2 ) ;
27
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % nonl inear t rans format ion o f sigma po in t s %
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 Z = zeros (dimX , npo ints ) ;
32 meanZ =0;
33 for k=1: npo ints
34 % each transformed po in t
35 Z ( : , k ) = f s t a t e (SG(k , : ) ’ ) ;
36
37 % we ob ta in the weigh ted mean from a l l the transformed po in t s
38 meanZ = meanZ + W(k , : ) ∗ Z ( : , k ) ;
39 end

40 % we su b s t r a c t the mean from each innova t ion po in t and
41 normZ = Z − meanZ ( : , ones ( npoints , 1 ) ) ;
42 % ca l c u l a t e the es t imated convariance from the transformed po in t s
43 Pzz = normZ∗diag (W)∗normZ ’ + Q;
44 %%%%%%%%% a l t e n a t i v e way %%%%%%%%%%%
45 %Pzz =zeros ( s i z e (Q) ) ;
46 %for i =1: npo in t s
47 % nZ = Z( : , k ) − meanZ ;
48 % Pzz = Pzz + nZ∗nZ ’ ;
49 %end
50 %Pzz = Pzz + Q;
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52
53
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54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 % pred i e c t e d o b s e r va t i on s from transformed po in t s %
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 Y =zeros (dimX , npo ints ) ;
58 meanY = 0 ;
59 for k=1: npo ints
60 Y( : , k ) = fobs e rv (Z ( : , k ) ) ;
61 % we ge t the weigh ted mean from a l l the innova t ion po in t s
62 meanY = meanY + W(k , : ) ∗Y( : , k ) ;
63 end

64 % we su b s t r a c t the mean from each innova t ion po in t and
65 % ca l c u l a t e covar iance matrix
66 normY = Y − meanY( : , ones ( npoints , 1 ) ) ;
67 Pyy = normY∗diag (W)∗normY ’ + R;
68
69 %%%%%%%%% a l t e n a t i v e way %%%%%%%%%%%
70 %Pyy =zeros ( s i z e (R) ) ;
71 %for i =1: npo in t s
72 % nY = Y( : , k ) − meanY;
73 % Pyy = Pyy + W( i )∗nY∗nY’ ;
74 %end
75 %Pyy = Pyy + R;
76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 % c l a s s i c a l kalman f i l t e r s t e p s %
80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
81 % cros s covar iance matrix
82 Pzy = normZ∗diag (W)∗normY ’ ;
83 %Pzy =zeros ( s i z e (normZ∗normY ’ ) ) ;
84 %for i =1: npo in t s
85 % Pzy = Pzy + W( i )∗normZ∗normY ’ ;
86 %end
87
88
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
90 % Kalman gain
91 K = Pzy∗ inv (Pyy ) ;
92 % s t a t e p r e d i c t i on
93 X next = meanZ + K∗( Y in i t − meanY ) ;
94 % covar iance p r e d i c t i on
95 Px next = Pzz − K∗Pzy ’ ;
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