
Data path Configuration Time Reduction for Run-time
Reconfigurable Systems

M. Fazlali1, A. Zakerolhosseini1, M. Sabeghi2, K. Bertels 2 and G. Gaydadjiev 2

1 Department of Computer Engineering, Shahid Beheshti University G.C, Tehran, Iran

2 Computer Engineering Laboratory., Delft University of Technology, Delft, The Netherlands

Abstract - The FPGA (re)configuration is a time-consuming
process and a bottleneck in FPGA-based Run-Time
Reconfigurable (RTR) systems. In this paper, we present a
High Level Synthesis (HLS) method, based on the data path
merging technique to amortize the hardware configuration
time in RTR systems. It merges the Data Flow Graphs (DFGs)
of two or more computational intensive parts of the
application and makes one general purpose data path
(merged data path) which results in shorter bit-stream length
and therefore reduces the configuration time. Our
experimental results using the proposed method on media-
bench applications, show up to 40% reduction in the
configuration time compared to conventional synthesis
method.

Keywords: FPGA, Run-time Reconfigurable Systems, High
Level Synthesis (HLS).

1. Introduction

 Many applications contain computational intensive parts
which can be implemented in hardware to increase the
performance. In this paper, we refer to each of these parts as a
kernel and a group of them as a "module". A reconfigurable
system can accelerate such modules by executing them on the
reconfigurable fabric. However, the FPGA resources are
constrained and applications may have several modules.
Therefore, RTR system should be able to share the FPGA
resources by (re)configuration of the hardware whenever it is
necessary [1]. Nonetheless, the run-time reconfiguration
imposes a considerable overhead to the performance of the
system and the reconfiguration should be done as fast and
efficient as possible to prevent the benefit gained by hardware
acceleration to be eclipsed by the overhead of the
configuration [2].

The bit-stream length and the configuration time of the
hardware into FPGA are directly proportional [3]. In fact, the
most of the configuration time is the time to transmit the bit-
stream into FPGA and therefore reducing the bit-stream
length reduces the configuration time [4].

Several researches have been carried out to reduce the
configuration time and improve the performance of the RTR
systems. The works presented in [5, 6] change the execution
order of the kernels to reduce the number of configurations.
Authors in [7] present a temporal algorithm for partitioning
and scheduling the DFGs of the applications. They have
attempted to increase similarity of subsequent configurations
in such a way that the configuration time decreases. The
COMMA methodology for dynamic reconfiguration has been
described in [8] which is mainly about the generation of a
communication infrastructure that is supported by a sequence
of dynamically-placed modules with the aim of minimizing
the configuration time. An algorithm which solves the wire
delay estimation and merging sub-problems for minimizing
configuration time is also presented in [9].

Another direction in research elaborates on the physical

configuration of the FPGA. The FPGA configuration time is
amortized by reducing the size of the bit-stream. Some
compression techniques have been employed in [10, 11] to
shorten the bit-stream length. Authors in [12] used caching
technique for the reduction of the configurations time. [13]
removes a piece of configuration bit-stream on Virtex FPGA
and replaces it with another piece to create a new
configuration and reduce the overhead of placement.

Although these techniques are suitable for reducing the

configuration time of RTR systems and new generation of the
FPGAs supports some of these features, they are usually
costly. For instance, compressing bit-stream to reduce the
transmission time has additional time-overhead for
decompressing the bit-stream. We can reduce configuration
time in off-line stages of creating hardware. Therefore, we
can use high level synthesis technique for the reduction of
configuration time [14].

Data path merging is a high level synthesis method

which has been presented to reduce the resource area usage
for partially reconfigurable system [15]. In this paper, we
apply the same method based on datapath merging but use
different approach to reduce the configuration time. It means
that the main contribution of this paper is to present a new
synthesis approach, based on the data path merging technique
for reducing the bit-stream length and consequently reducing

the configuration time. In fact, merging multiple data paths
into a larger multipurpose data path will reduce the number of
resources we need and results in a shorter bit-stream length.

The organization of this paper is as follows. In the next

section, the basic idea of data path merging is explained and
the impact of data path merging on the module configuration
time is described. Section 3 presents the proposed method for
configuration time reduction followed by the experimental
results in section 4. Ultimately, chapter 5 concludes this
paper.

2. Reducing the Configuration Time

Using Data path Merging

High-level synthesis methods aim of exploiting the intra-DFG
resource sharing to reduce the hardware cost [14]. On the
other hand, Data path merging takes advantage of inter-DFGs
resource sharing for the same purpose. In [16] a novel data
path merging method is presented for the area reduction in
partially reconfigurable system. In this paper, we apply the
same method based on datapath merging but use different
approach to reduce the configuration time in the FPGA-based
RTR systems. The proposed method is explained as follows.

Let a DFG be a directed graph G=(V,E), where
V={v1,v2,…vn} is the set of vertices and
E={e1=(u1,v1,p1),…en=(un,vn,pn)} is the set of edges. A vertex
vi∈V represents an operation that can be performed with a
functional unit while each vi has a set of input ports pi. An
edge ei=(ui,vi,pi)∈E indicates a data transfer from vertex ui to
the input port pi of vertex vi.

A data path D=(V’,E’) is a directed graph, where

V’={v’1,v’2,…v’n} is the set of vertices and
E’={e’1=(u’1,v’1,p’1),…e’n=(u’n,v’n,p’n)} is the set of edges. A
vertex v’∈ V’ represents a merge of vertices vi from Gi and an
edge, and e’=(u’,v’,p’)∈E’ represents a data transfer from
vertex u’ to the input port p’ of vertex v’.

After applying intra-DFG resource sharing possibilities

to a DFG Gi., the data path D is generated for it. This way,
some multiplexers are added into the input ports of the
vertices in D. Data path configuration time Tcc, is the required
time for configuring the data path into the FPGA.
Considering a data path D=(V’,E’), the data path
configuration time is:

Tcc= Tf + Ti (1)

where ()f f v
v V

TT
′ ′∀ ∈

= ∑ is the functional units configuration

time and () MUXi i
v V

TT
′ ′∀ ∈

= ∑ is the multiplexers configuration

time. Tf (v) is the configuration time of a functional unit

allocated to v, and Ti (MUX) represents the configuration time
of a multiplexer used in the input port of each vertex.

The module configuration time TC, is the aggregate sum
of the data paths configuration time for the DFGs
corresponding to all the kernels in the module.

TC =∑ Tcc (2)

A merged data path, MDP=(V’’,E’’), corresponding to
DFGs Gi, i=1…n is a directed graph, where: a vertex v’’∈ V’’
represents a merging of vertices vj from various Gi. An edge
e’’=(u’’,v’’,p’’)∈E’’ represents a merging of edges, ej=(uj,vj,pj),
each one from a different Gi, in such a way that all uj have
been mapped onto u’’ and all vj have been mapped onto v’’
and corresponding input ports pi have been matched together
and mapped to p’’.

1G

1b

3b

≤

÷ −

×

1 1/a b 2/a − 3 2/a b

4/a −

5 3/a b

+÷
MOD

MUX

/+ −

2b

MDP

×

1a 2a
4a

3a
++÷

MOD

×

2G

5a

Fig.1: The merged data paths MDP for DFGs G1 and G2 [16].

Fig.1 illustrates an example of data path merging where
DFGs G1 and G2 from this figure are merged and the merged
data path MDP is made. Considering these DFGs, if operation
of a vertex from G1 and operation of a vertex from G2 can be
performed with the same functional unit, they will become
potential for merging. For example, a1∈G1 and b1∈G2 can be
executed by a functional unit. Thus, these vertices are merged
together and the vertex (a1/ b1) is made for them in MDP. If a
vertex cannot be merged onto other vertices, it will remain in
the merged data path without any modification. After
merging two vertices, multiplexers are employed in the input
ports of their corresponding vertex in the merged data path to

select the input operand. This is illustrated in the input ports
of vertex (a5/ b3) in Fig.1.

An edge from G1 cannot be merged onto an edge from

G2 unless the vertices of the edges are merged. As it can be
seen in Fig.1, because of merging both of the vertices a3 and
a5∈ G1 onto the other vertices b2 and b3∈G2, the edges (a3, a5)
and (b2, b3) are merged together and the edge (a3/b2 , a5/b3) is
made instead in the resulting MDP. In this case, there is no
need for any multiplexer in the input ports of the vertex
(a5 / b3) to select the input operands.

If we use a data path merging as HLS tool, the module

configuration time (TC) is equal to the merged data path
configuration time and our ultimate goal here is to reduce this
configuration time.

3. The Proposed Synthesis Method

To merge DFGs, we need to merge the hardware units
and the interconnection units simultaneously. If we merge
vertices without considering the interconnections or using
only estimates for the interconnections, the resulting merged
data path’s configuration time will not be optimized. To do
this, we use the graph-based technique presented in [16]. It
merges DFGs in steps to compute the merged data path. At
each step, one DFG is merged onto the merged data path. To
merge, we should find the similarities between DFG
resources and the resources from the merged data path. To do
that, we use the concept of compatibility graph.

A compatibility graph Gc=(Nc,Ac) corresponding to the

merged data path MDP and a DFG Gj, is an undirected
weighted graph where:

• Each node nc∈Nc represents a merging between vertices,
or edges. It corresponds to merging vertices vj∈Gj and
vi∈MDP (to create the vertex (v’’) in the next merged data
path) or, merging edges ej=(uj,vj,pj)∈Gj and
ei=(ui,vi,pi)∈MDP (to create the edge e’’i=(u’’i,v’’i,p’’i)
instead). For merging edges, their corresponding vertices
should be merged together.

• Each arc ac=(nc,mc) illustrates that its nodes nc and mc do
not merge the same vertex from Gj, onto two different vertices
from MDP or vice-versa.

• Each node's weight wc represents the reduction in
configuration time obtained by merging.

After merging vi∈MDP onto vj∈Gj., a vertex v’’ is made
instead of them in the next merged data path. Moreover, for
each input port of v’’ which has multiple incoming edge, a
multiplexer is needed to select the input operands. In this
case, configuration time reduction of the nc ∈ Gc is equal to
the difference between the configuration time of the hardware
units and multiplexers before merging vertices and, their
configuration time after merging, that is:

wi = (Tf (vi) + Tf (vj)) - (Tf (v’’) + m×T(muxi)) (3)

Tf (vi) and Tf (vj) in equation (3) are the hardware units
configuration time before the merging and (Tf (v’’) is the
hardware units configuration time after the merging.
Furthermore, m×T(muxi) is used to show the increase due to
the multiplexer configuration time. If the multiplexer has the
same number of inputs as it has before, the merging then
m=0. Otherwise, m shows the increase in the size of
multiplexer (for example going from 4 ports multiplexer to 8
port multiplexer, m=1).

To merge edges (uj,vj,pj)∈Gi and (ui,vi,pi)∈MDP, each

input port of v’’, has just one incoming edge. So, it does not
increase in the size of the multiplexer and therefore, the
configuration time reduction achieved by this type of merging
corresponds to equation (4) that is the weight of removing the
multiplexers, or decreasing the size of the multiplexers.

wi = m × T(muxi) (4)

For merging, we should find a number of compatible
nodes from the compatibility graph that provides the
maximum reduction in configuration time. This overall
reduction is equal to the aggregated weights of all the
compatible nodes in Gc. Choosing compatible nodes from the
compatibility graph Gc=(Nc,Ac), is equal to finding a
completely connected sub graph in Gc, which is called a
clique in graph theory. A clique is called maximal clique, if
there are no larger cliques in Gc. The maximum weighted
clique Mc is a maximal clique in Gc that total weight of its
nodes is larger than any other maximal clique in compatibility
graph. By using the maximum weighted clique, the desired
merged data path is made.

Listing 1: Merging algorithm to make the merged data path

Finding the maximum weighted clique is a well-known
problem in the graph algorithms. It is known to be an NP-
Hard problem [17]. Several optimized and fast Branch
&Bounds solution for the problem of finding maximum
weighted clique have been presented in literature [18, 19].

Program DPM (Input: DFGs G

i
=(V

i
,E

i
)

i=1…n,

Output: merged data path MDP=(V,E))
 {assuming G

i i=1…n
 are sorted};

Begin

 MDP<-G

1
;

 for i<-2 to n do
 G

c
<-MakeCompatibilityGraph(MDP,G

i
);

 M
c
<-MaximumWeightedClique(G

c
);

 MDP<-reconstructMergedDatapath(M
c,
MDP,G

i
);

 Endfor

End DPM.

The function MaximumWeightedCliqueClique() use the
method in [19] to find the desired maximal weighted clique.

After finding the maximal weighted clique in the
compatibility graph, the merging possibility represented by
the nodes of this clique is used to reconstruct the merged data
path. Each node from the clique indicates a merging
possibility between an edge (a vertex) from MDP and an
edge (a vertex) from Gj. Other vertices and edges which
cannot be merged are added to MDP without any merging.

To merge the DFGs in the module, the algorithm merges

DFGs in steps considering a sequence from the biggest DFG
to the smallest one. The pseudo code of the proposed method
is shown in Listing 1. This algorithm considers the biggest
DFG as a merged data path MDP then starts adding other
DFGs to it in steps. It creates the compatibility graph in each
step then it finds the maximum weighted clique Mc in
compatibility graph. Finally it reconstructs the merged data
path. These steps are repeated for all DFGs in a Loop for N
number of DFGs until the merged datapath is made.

4. Experimental Results

Our proposed technique is general (and technology
independent). It can reduce the kernels configuration time for
FPGAs that support partial reconfiguration, (such as Xilinx
FPGAs) and can be used in run-time reconfiguration systems.
To validate this claim, we have implemented the proposed
technique using FPGA Virtex5-xc5vlx. Enough experimental
evidences exist to support the fact that there are some
computational intensive kernels in each application of Media-
bench which have the largest share of execution time [20]. In
our experiments, each application was compiled using the
GCC version compiler, and was profiled so as to determine
which kernels contributed the most to the application
execution time. For each such a kernel, a DFG was generated.

The configuration time of a bit-stream in a FPGA is

equal to [(size of bit-stream) / (configuration clock
frequency)] [3]. After obtaining the bit-stream of the
functional units and multiplexers by ISE 10.2, their
configuration times were obtained. In our experiments, we
considered the maximum configuration clock frequency 100
Mbps in case of the FPGA Virtex5-xc5vlx.

We applied the proposed data path merging synthesis

technique and the technique in [14] to several DFGs
(corresponding to the computational kernels of the
applications from Media-bench). In these experiments, the
Epic-Decoder module, Epic-Encoder module, Mpeg2-
Decoder module, and Mpeg2-Eecoder module includes three
DFGs and, G721module includes two DFGs.

Fig.2: The configuration time reduction percentage for the proposed
data path merging algorithm and the algorithm in [14].

Fig.2 shows the percentage of the reduction in module
configuration time for each benchmark after Appling the
proposed method and the conventional synthesis method in
[14] to the DFGs for each benchmark. As illustrated in this
figure, the conventional technique in [14] cannot reduce the
configuration time for epic-encoder benchmark however; the
proposed data path merging method can reduce its
configuration time efficiently. The proposed approach can
reduce the data path configuration time up to 40% in
comparison to the synthesis technique in [14]. The main
reason for this is the shorter length of the generated bit-stream
by the proposed technique that causes to shorter configuration
time. It should be mentioned that our approach will slow
down the hardware execution. However, in RTR systems we
configure the hardware so many times. While the
configuration time unit is in milliseconds scale and, hardware
execution time is in nanoseconds scale. Therefore, until
hardware has not so many iterations, this overhead compared
to the configuration time reduction is negligible.

We observed that data path merging is a suitable method for
the configuration time reduction of the kernels mapped on
FPGA. But it introduces additional multiplexers when the
operations in DFGs have different operands. The merge
technique, on the other hand, maps input and output operands,
as well as operations, and permits us to map exclusive
operations which may have different operands, if it results in
the final data path configuration time reduction. In order to do
this, it analyzes hardware units and interconnection mapping
together. The results strongly indicate that the data path
merging technique indeed provides configuration time
reduction, when compared to the conventional approach.

5. Conclusions

 This paper presented a new synthesis method to reduce the
configuration time of a data path in FPGA-based RTR system.
Due to large cost of mapping of the modules on the FPGA,
the proposed synthesizer merges the DFGs of the module onto
a single merged data path to amortize the configuration time.

Sharing the recourses between the DFGs is the main cause of
reducing the bit-stream length and shorter bit-stream means
shorter configuration time. We performed the experiments for
FPGA Virtex5-xc5vlx to evaluate the efficiency of the
proposed method. We applied the proposed synthesizer on the
Media-bench applications’ kernels. The obtained results
confirmed that the module configuration time is lowered up to
40% for these benchmarks compared to conventional
synthesis method.

ACKNOWLEDGEMENTS

This research was supported by the Iran Telecommunication
Research Center (ITRC) in the context of the project
T/500/3462. It partially supported by the Hartes project EU-
IST-035143, the Morpheus project EU-IST-027342 and the
Rcosy Progress project DES-6392

6. References
[1] K. Compton, S. Hauck ,“Reconfigurable Computing: A
Survey of Systems and Software, “ In ACM Computing
Surveys (CSUR),vol (34),no (2),pp.171-210, 2002.
[2] Z. Li, “Configuration Management Techniques for
Reconfigurable Computing,” Ph.D. Thesis, Northwestern
University, June 2002.
[3] M. Rollmann and R Merker,“ A Cost Model for Partial
Dynamic Reconfiguration, “ In proc. of International
Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS 2008), pp.182-
186,Greece, July 2008.
[4] Z. Huang and S. Malik , “ Managing dynamic
reconfiguration overhead in systems-on-a-chip design using
merged data paths and optimized interconnection networks,”
In Proc. Design Automation and Test in Europe (DATE
2001), pp. 735–740, Munich, Germany, March 2001.
[5] S.Ghiasi, Majid. Sarrafzadeh, “Optimal
Reconfiguration Sequence Management,” In Proc.
IEEE/ACM Asia South Pacific Design Automation
Conference (ASP-DAC), pp. 359–365, Kitakyushu, Japan,
January 2003.
[6] S. Ghiasi, A Nahapetian and M Sarrafzadeh, “An
Optimal Algorithm for Minimizing Run-time Reconfiguration
Delay,” ACM Transactions on Embedded Computing
Systems (TECS), Vol. 3, No 2, pp. 237-256, May 2004.
[7] F. Mehdipour, M. Sahebzamani, H. R. Ahmadifar, M.
Sedighi and K. Murakami, “Reducing Reconfiguration Time
of Reconfigurable Computing Systems in Integrated
Temporal Partitioning and Physical Design Framework,” In
Proc. 20th IEEE International Parallel&Distributed
Processing Symposium.(IPDPS 2006), pp. 25–29, Greece,
April 2006.
[8] S. Koh and O. Diessel, “ Communications Infrastructure
Generation for Modular FPGA Reconfiguration,” In Proc.
IEEE Int. Conf on Field-Programmable Technology (FPT06),
pp. 321–324, Bangkok, Thailand, December, 2006.

[9] S. Koh and O. Diessel, “ Module Graph Merging and
Placement to Reduce Reconfiguration Overheads in Paged
FPGA Devices,” In Proc. Int. Conference on Field
Programmable Logic and Applications. (FPL 2007), pp.293–
298, Amsterdam, Netherland, August. 2007.
[10] P. J. Hwa, T. Mitra and W.F. Wong, “Configuration Bit-
stream Compression for Dynamically Reconfigurable
FPGAs,” In Proc. IEEE/ACM International Conference on
Computer Aided Design (ICCAD-2004) , pp. 766–773, CA,
USA, November, 2004.
[11] F. Farshadjam, M. Dehghanb, M. Fathy and M. Ahmadi,
“ A New Compression Based Approach for Reconfiguration
Overhead Reduction in Virtex-Based RTR Systems,” Elsevier
journal on Computers &Electrical Engineering, Vol. 32 , No.
4, pp 322–347, 2006.
[12] K. Compton and S. Hauck, “ Reconfigurable
Computing: A Survey of Systems and Software,” ACM
Computing. Surveys, Vol. 34, No.2, pp. 171–210, 2002.
[13] S. Raaijmakers and S. Wong, “Run-Time Partial
Reconfiguration for Removal, Placement and Routing on the
Virtex-II Pro,” In Proc. Int Conference on Field
Programmable Logic and Applications (FPL 2007, pp. 679–
683, Amsterdam, Netherland, August, 2007.
[14] Y. Qu, K. Tiensyrj, J.P. Soininen and J.Nurmi, “ Design
Flow Instantiation for Run-Time Reconfigurable Systems,”
EURASIP Journal on Embedded Systems (TECS), Vol. 2.
No.11, pp. 1–9, 2008.
[15] C. de. Souza, A. M. Lima, N. Moreano and G. Araujo, “
The Data path Merging Problem in Reconfigurable Systems:
Lower Bounds and Heuristic Evaluation,” ACM Journal of
Experimental Algorithms (JEA), Vol. 10, No.2, pp 1–19,
2005.
[16] N. Moreano, Ed. Borin, C. d. Souza and G. Araujo, “
Efficient Data path Merging for Partially Reconfigurable
architectures,” IEEE Transaction on Computer Aided Design,
Vol. 24. No.7, pp. 969–980, 2005.
[17] M.Garey, and D. S. Johnson , “Computers and
Intractability-A Guide to The Theory of NP-Completeness,”
San Francisco, CA, Freeman, 1979.
[18] Patric R. J. Ostergard. “A New Algorithm for the
Maximum-Weight Clique Problem,” Nordic Journal of
Computing (NJC), Vol. 8, No. 4, pp.424–436, 2002.
[19] D. Kumlander, “A New Exact Algorithm for The
Maximum-Weight Clique Problem Based on a Heuristic
Vertex-Coloring And a Backtrack Search,” In Proc. Fourth
European Congress of Mathematics(4ECM),pp.31–39,
27June–2July, Stockholm, Sweden, 2001.
[20] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“Media-bench: a Tool for Evaluating And Synthesizing
Multimedia And Communication Systems,” In Proc. Thirtieth
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-03, pp. 330–335, CA, USA,
December, 1997.

