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Abstract— This paper evaluates various branch-prediction
schemes under different cache configurations in terms of perfor-
mance, power, energy and area on suitably selected biomedical
workloads. The benchmark suite used consists of compression,
encryption and data-integrity algorithms as well as real implant
applications, all executed on realistic biomedical input datasets.
Results are used to drive the (micro)architectural design of a
novel microprocessor targeting microelectronic implants. Our
profiling study has revealed that, under strict or relaxed area
constraints and regardless of cache size, the ALWAYS TAKEN
and ALWAYS NOT-TAKEN static prediction schemes are, in
almost all cases, the most suitable choices for the envisioned
implant processor. It is further shown that bimodal predictors
with small Branch-Target-Buffer (BTB) tables are suboptimal yet
also attractive solutions when processor I/D-cache sizes are up
to 1024KB/512KB, respectively.

I. INTRODUCTION

The field of biomedical microelectronic implants is rela-

tively new (approximately 50 years). There are many widely

known examples of such devices with the most famous being

the implantable pacemaker that extended the lifetime of many

patients in the years it has be used in the heart surgery

practice. According to data from the American Heart Asso-

ciation [1] in USA alone approximately 180,000 pacemakers

and 91,000 defibrillators have been implanted for the year

2005. In addition to those, biomedical implants are now being

applied for an expanding range of medical applications, e.g.

blood-glucose level detection, paralyzed-muscle restoration

and deep-brain neuromodulation. This trend, combined with

the observation that the life expectancy (and the average age

of the world population) will keep growing, lead us to believe

that more implant applications will emerge in the near future.

Some will be mainly targeting improved quality of life and

reduction of the clinical healthcare costs. A possible future

scenario is where the hospital stay can be shortened by the

application of tiny implants that are monitoring or assisting the

patient body in various ways while people are moving around

unhindered and performing their everyday tasks. Implants will

monitor and log biological data in-vivo and, depending on the

patient disease, will act on those readouts by regulating some

physiological quantity in the body or inform the treating doctor

in case of danger. A good example is releasing insulin to the

blood stream when high blood-glucose levels are detected.

It has come to our attention that the biomedical implant

market is mature enough to embrace implants relying on the

technological innovations of late [2]. In recent years implant

designers are slowly changing their approach from mostly
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Fig. 1. Relative distribution of implant-core architecture types over the last
12 years (Source: [2]).

analog, simple, full-custom design towards multifunctional

systems relying on digital process and control units. The

earlier custom-designed, application-specific (e.g. Finite-State-

Machine-based) systems [3]–[5] are becoming more generic

and software-based (µP/µC-based) ones [6]–[8]. This trend

has been well-studied [2] and is depicted in Fig.1. What we

can learn from this figure is that implant-processor design is

becoming more structured than it used to be in the past and

that in the near future implant functionality will heavily rely

on software (written in some high-level, established language

like C) rather than pure, hardwired circuitry.

The anticipated rapid expansion of implant applications in

the years to come, combined with the adoption of digital

processing elements and software, calls for a formal, stan-

dardized way of designing future implant architectures. Our

long-term goal is the design of a novel, minimalistic, highly

reliable, low-power processor suitable for a large subset of

well known as well as novel biomedical applications as the

ones mentioned above. We are currently in the process of

defining the architecture of our digital processor. In this paper,

we investigate different branch-prediction alternatives under

varying L1 I- and D-cache configurations. We perform tests

against metrics of performance, power, energy and area. We,

then, select the candidates with the best characteristics for the

targeted application domain. We, thus, offer insights on the

design and implementation of the branch-prediction subsystem

of our targeted processor. Concisely, the contributions of this

work are:

• Careful evaluation of various branch-prediction schemes

under performance, power, energy, area constraints using

different processor cache configurations and a collection

of representative biomedical workloads;

• Precise analysis of the quantitative data for the evaluated

branch-prediction schemes for current and future implant

processors; and

• A sound methodology and toolset for selecting best-suited
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branch-prediction mechanisms for different biomedical

(or other) workloads.

The rest of the paper is organized as follows: section II

gives an overview of related works in the field. Section III

provides the details of our selected input datasets, application

benchmarks as well as the profiling testbed used. Section IV

contains, in detail, the findings of this evaluation work. Overall

conclusions and future work are drawn in section V.

II. RELATED WORK

So far, extensive work has been put in identifying and

profiling common applications to be executed on the targeted

implant architecture. Algorithms for lossless data compression

[9], symmetric-key encryption [10] and data integrity as well

as representative real-world applications have been evaluated

and suitable candidates have been isolated. Moreover, a care-

fully selected benchmark suite for microelectronic implants

has been proposed [11], based on the profiled applications, to

guide and assist future implant design. This benchmark suite

has been shown to offer diverse program behaviors and, thus,

be able to capture corners of our design space. We build on

our previous work by using it in our following exploratory

study on suitable cache organizations.

Besides, a significant body of prior work has been pub-

lished on branch-prediction behavior with respect to tradi-

tional metrics (e.g. accuracy, performance) as well as recent

ones (e.g. power, energy, delay). Skadron et al. [12] have

presented an exhaustive analysis of the interaction between

branch prediction, instruction-window size and cache size.

They have utilized as workload the SPECint95 benchmarks.

Their main focus was in the interplay between the three

structures in terms of processor performance. Youssif et al.

[13] have compiled a comprehensive list of currently existing

prediction schemes and have evaluated them in terms of

performance. Tests have utilized the SPEC2000 benchmarks

and a superscalar-processor simulation environment. Parikh

et al. [14] have investigated power repercussions of three

advanced branch predictors on a Alpha 21264 simulator under

SPEC2000-selected benchmarks. They have, then, proposed

three interesting techniques for reducing power consumption in

the branch-prediction unit. Jimenez et al. [15] have approached

the branch-prediction issue from the viewpoint of delay as

well as, typically, of accuracy and area. To this end, they have

proposed three techniques for accommodating delay since they

indicate its increasingly dominating impact on performance in

future processors with large prediction structures.

The work presented here is original, as compared to related

works like the above, in that: i) it studies the whole processor

when different prediction schemes are utilized and particularly

their reaction to different I/D-cache sizes, ii) it involves 3

more metrics in the study apart from performance, and iii) it

targets a different class of low-power devices with particular

idiosyncrasies. To the best of our knowledge, no similar

effort has been reported so far in explicitly studying branch-

prediction techniques for an implant processor.

III. EXPERIMENTAL SETUP

A. Characteristics of implant applications

In order to correctly set up our experiments as well

as to select suitable branch techniques we fi5rst elaborate

on the particular idiosyncrasies of microelectronic implants.

Such implants are highly resource-constrained devices. The

(re)implantation frequency for battery replacement - a costly

and risky undertaking - is directly related to the operational

life of a device. In order to achieve long in-vivo operation

times, we are aiming at a tight power budget (µW order of

magnitude).

An ultra-small form factor is also required for such

devices considering the space available for implantation inside

the body. This means that available processor area is also

limited. Besides there are further aspects benefitting from low

transistor counts (but out of the scope of this paper) such as

higher device yield, increased testability and higher coverage

for fault-tolerant design.

There has been shown to exist [2] and we are targeting

a significant category of biomedical applications displaying

moderate performance requirements, e.g. a feedback loop

periodically regulating the functionality of bioactuators based

on readouts from biosensors. Even so, under tight power and

area budgets, the implant still has to complete its real-time

(repetitive) duties within specific time margins. To do so, it

must maintain a minimal instruction rate under the worst-case

scenario.

B. Input datasets

Typical biomedical readouts are often highly periodic sig-

nals (e.g. heart beat) or stable signals (e.g. blood temperature)

which can, under specific circumstances, display gradual or

abrupt changes in value (e.g. a sudden muscle contortion).

We have collected and used various workloads, representative

of such behaviors, capturing both stable as well as rapidly

changing patterns. The original datasets have been provided

from the BIOPAC (R) Student Lab PRO v3.7 Software. Paper-

size limitations do not allow for an extensive description of

the various workloads; for the work presented here, we have

used a biological dataset containing 10 KB of ECG data and

representative of all examined workloads. Reported literature

and an extensive study [2] on implants have revealed that

typical memory sizes inside the implants range from 1 KB to

10 KB; thus, the use of 10−KB ECG data. More particularly,

they have revealed instruction-memory sizes in the 10−KB

locus and data-memory sizes in the 1−KB locus.

C. Benchmark applications

Eight benchmark applications have been used to evaluate

different cache configurations. They comprise the ImpBench

benchmark suite [11] and consist of lossless data compression

algorithms, symmetric-key encryption algorithms and data-

integrity algorithms as well as representative code based on

real biomedical applications. The benchmarks are reported

in Table I for convenience; they represent common tasks

in present and future implant applications and also exhibit
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BENCHMARK TYPE NAME SIZE (KB)

Compression miniLZO 16.30
Finish 10.40

Encryption MISTY1 18.80
RC6 11.40

Data integrity checksum 9.40
CRC32 9.30

Real applications motion 9.44
DMU 19.50

TABLE I

IMPBENCH [11] BENCHMARKS.

BENCHMARK #CC #INSTR. #BRANCHES BR. RATIO

checksum 1,102,562 62,869 7,933 12.62%
CRC32 12,021,257 419,159 69,976 16.69%
DMU 483,432,846 36,808,268 4,393,796 11.94%
Finish 80,581,690 852,663 147,971 17.35%
MISTY1 41,006,520 1,268,465 63,086 4.97%
MiniLZO 32,482,046 199,163 34,008 17.08%
motion 25,891,030 859,371 130,773 15.22%
RC6 25,919,634 864,930 60,869 7.04%

TABLE II

TYPICAL, GENERAL BENCHMARK STATISTICS.

varied characteristics. Some statistics useful for this study are

reported in Table II.

D. Simulation testbed

Our branch-predictor evaluation study has been based on the

XTREM [16] simulator, a modified version of SimpleScalar

[17]. The XTREM simulator is a cycle-accurate, microarchi-

tectural, power- and performance- functional simulator for

the Intel XScale core [18]. It models the effective switching

node capacitance of various functional units inside the core,

following a similar modeling methodology to the one found in

Wattch [19]. XTREM has been selected for its straight-forward

functionality but mostly for its accuracy in performance and

power modeling. It exhibits an average performance error of

6.5% and an average power error of 4% compared to real

hardware.

Many of the XScale architectural features have been inte-

grated into XTREM. Thumb instructions and special memory-

page attributes are not supported but they do not affect simula-

tion results since they are not used by our benchmarked appli-

cations. XTREM allows monitoring of 14 different functional

units of the Intel XScale core: Instruction Decoder (DEC),

Branch-Target Buffer (BTB), Fill Buffer (FB), Write Buffer

(WB), Pend Buffer (PB), Register File (REG), Instruction

Cache (I$), Data Cache (D$), Arithmetic-Logic Unit (ALU),

Shift Unit (SHF), Multiplier Accumulator (MAC), Internal

Memory Bus (MEM), Memory Manager (MM) and Clock

(CLK). However, to better match our application field and,

also, to isolate cache behavior as much as possible, many

of XTREM’s architectural parameters have been cut down or

disabled to better reflect the highly constrained implantable

processors. The modified XTREM characteristics are sum-

marized in Table III. Performance/power figures have been

checked and scaled properly with the changes.

E. Branch-prediction schemes

A large range of branch-prediction techniques has already

been proposed in the literature. As previously discussed, our

envisioned biomedical-implant processor is being designed -

Fig. 2. Illustration of a BTB entry in the case of a bimodal predictor [20].

among others - under constraints of ultra-low power consump-

tion and miniature form factor at the calculated cost of limited

performance. Accordingly, the processor pipeline will feature a

small depth. This set of attributes has effectively narrowed our

evaluation effort towards the less complex end of the branch-

prediction spectrum.

In the work at hand, we evaluate two static-prediction

techniques, i.e. ALWAYS TAKEN and ALWAYS NOT-TAKEN;

it is interesting to investigate how these low-sophistication

(but also low-complexity) schemes perform in a implantable-

device context. We further evaluate one dynamic-prediction

technique, i.e. an N-entry, direct-mapped BIMODAL (2-bit)

predictor which is coupled with a BTB structure used to drive

branch penalties down. The BTB stores the history of branches

that have executed along with their targets. Figure 2 shows an

entry in the BTB, where the tag is the instruction address of

a previously executed branch and the data contains the target

address of the previously executed branch along with two bits

of branch-history information (four states: strong-taken, weak-

taken, weak-not-taken, strong-not-taken).

There clearly are more sophisticated techniques than a

bimodal predictor to achieve higher prediction accuracy in

the general case (e.g. skew predictor, gshare predictor) but

their complexity is considerably higher, as well. Also, more

general, n-bit predictors could be also studied but it has been

sufficiently proven that 2-bit predictors score almost as high

as infinite-bit predictors [21].

It is important at this point to mention that, for reasons of

reliability as well as design complexity, our biomedical proces-

sor is meant to feature single-threaded execution, at least in the

foreseeable future. Accordingly, all branch-prediction schemes

are similarly evaluated on the XTREM simulator on single-

executing, non-switched programs. Therefore, the accuracy

and performance of the various branch-prediction schemes

reported hereafter is pure and not not subject to deterioration

due to context switching, as Pasricha and Veidenbaum have

shown to occur [22].

IV. EVALUATION STUDY

In this study we have evaluated 10 different branch-predictor

configurations, as shown in Table IV. The first two are

the always-taken and always not-taken static predictors. The

remaining eight entail the bimodal predictor, as discussed in

the previous section, with an increasing number of entries for

the BTB. The last one of those utilizes an unrealistically large

BTB of 4K-entries - in effect, an infinite BTB - used as a

reference for (almost) perfect predictions.

Besides, most implantable systems we have studied so

far feature separate caches (or memories, in general). Cache

organizations for our envisioned biomedical-implant processor

have already been evaluated and (near-)optimal design points
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feature value feature value

ISA 32-bit ARMv5TE-compatible BTB 1-entry fully-assoc. / direct-mapped
Pipeline depth / width 7/8-stage, super-pipelined / 32-bit Branch Predictor 4cc mispred. lat. (32-entry ret. addr. stack)
RF size 16 registers Mem. bus width 1B (1 mem. port)
Issue policy in-order INT ALUs 1
Instruction window single-instruction Clock frequency 2 MHz
I/D Cache L1 (separ) var-size, 2-way assoc. (1-cc hit / 170-cc miss lat.) Implem. technology 0.18 µm @ 1.5 Volt

TABLE III

XTREM (MODIFIED) ARCHITECTURE DETAILS.

bpred configuration scheme BTB #entries

bc01 TAKEN n/a
bc02 NOTTAKEN n/a

bc03 BIMOD 2
bc04 BIMOD 4
bc05 BIMOD 8
bc06 BIMOD 16
bc07 BIMOD 32
bc08 BIMOD 64
bc09 BIMOD 128
bc10 (perfect) BIMOD 4K

L1-cache configuration I-cache, 2-way D-cache, 2-way

cc01 (min) none none
cc02 128B 64B
cc03 1KB 512B
cc04 8KB 4KB
cc05 32KB 16KB
cc06 (opt) [23] 64KB 32KB

TABLE IV

BRANCH-PREDICTION AND I/D-CACHE CONFIGURATIONS USED.

have been identified for both the I-cache and the D-cache

structures [23]. To make the study more involved and identify

subtler interactions among the various processor components,

we have also chosen, along with the different predictor con-

figurations, to co-vary also the L1 I/D-cache structures. Based

on previous findings, we have selected two extreme cache

configurations (one with no L1 caches and one with optimally-

sized L1 caches) as well as four intermediate configuration

nodes, as shown also in Table IV. The combination of the

branch-predictor and cache configurations brings the total

number of processor-simulator configurations up to 60, that

is, for each cache configuration, all predictor configurations

have been evaluated. The 8 benchmark applications presented

above, have been run for each possible predictor/cache com-

bination and their results have been averaged over all possible

configuration combinations.

A. Performance analysis

We first evaluate the performance of the processor with

improving the branch-predictor scheme utilized. In Fig.3,

normalized1 IPCs for all six cache configurations are plotted.

Overall, we can see that for our simulated simple and slow (2−
MHz clock frequency) processor, IPC gains with improving

predictor schemes are diminishing (up to about 8% w.r.t. the

baseline) with increasing cache sizes, although the total branch

miss rate drops considerably.

Relatively speaking, cache configurations cc01, cc02 and

cc03 benefit the most from improved branch prediction. That

1Normalized values to the per-category minimum value are used in the
following discussion to make the differences between the various presented
schemes more clear.
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Fig. 3. Normalized to minimum, averaged, average IPCs (left y-axis values)
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bpred/cache configurations.
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Fig. 4. Normalized to minimum, averaged, total power consumption for
various bpred/cache configurations.

is, a processor with larger caches hides the branch mis-

prediction penalties better than one with smaller caches by

capturing more instruction fetch requests from main memory.

Configuration cc01 (no cache), in particular, displays the most

impressive IPC gain compared to the other cache configu-

rations. Inversely, this means that processors with smaller

caches ought to benefit the most from an efficient branch

prediction (bpred) scheme. Last, we can observe that both

static schemes (predictor configurations bc01 and bc02) impact

IPC minimally (they form the baseline) and in a similar fashion

for all cache sizes while significant speedup is observed

from configurations bc05 or bc06 and up for most cache

configurations.

B. Power analysis

The next metric we investigate is the average power con-

sumption. In Fig. 4, total power figures are plotted for all

configuration combinations. The bc10 configuration results in

excessive power consumption in the BTB component of the
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Fig. 5. Normalized to minimum, averaged, total power consumption per
instruction per cycle (i.e. instruction efficiency w.r.t. power) for various
bpred/cache configurations.

processor ranging from 338 mW 2 (or 376% normalized w.r.t.

the baseline) for cc01 to 563 mW (or 962% normalized w.r.t.

the baseline) for cc06. This is due to its excessive size and has

been omitted from the current and following plots to maintain

a good resolution for the other nine bpred configurations.

The main observation in this figure is that smaller-cache

processor configurations increase their power consumption at

a slower pace with improving bpred schemes. When combined

with Fig.3, this implies that small-cache processors achieve

relatively higher IPC gains when improving their bpred

scheme while incurring relatively smaller power increases.

That is, more useful (cf. overhead) computations take place

and the power consumed per executed instruction is reduced.

This is clearly visible in Fig.5 which shows the normalized

figures for the power consumed (in mW) per instruction per

cycle, i.e. the normalized instruction power efficiency.

Last, the minimal impact the two static predictors (bc01

and bc02) have on the IPC is revealed in Fig.4, as well.

Since they promote instruction-level parallelism (ILP) the

least, they also don’t stress the core much compared to the

other bpred schemes, resulting in the lowest power profiles

across all evaluated schemes. The IPC boost observed in Fig.3

starting in the locus of bc05 to bc06 is followed by a related

increase in power consumption across the majority of cache

configurations.

C. Energy analysis

Apart from average power consumption, for embedded sys-

tems with a very constrained energy budget such as implants

are, it is also important to examine the overall energy spent

by the processor for executing all assigned tasks. Energy, by

definition, depends heavily on program execution time and,

thus, energy plots are not necessarily identical to average-

power plots.

In Fig. 6 overall energy budgets for different bpred/cache

configurations are plotted. Opposite to the case made on power

before, the metric at hand (i.e. energy) achieves a minimum

value when moving to more complex bpred configurations,

showing a dramatic improvement from configuration nodes

2The XTREM simulator has not been initially designed for modeling a µW

processor. Thus, the relative differences between (not the absolute values of)
the power figures reported here should be considered.
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Fig. 6. Normalized to minimum, averaged, total energy expenditure for
various bpred/cache configurations.
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Fig. 7. Normalized to minimum, averaged, total energy expenditure per
instruction per cycle (i.e. instruction efficiency w.r.t. energy) for various
bpred/cache configurations.

bc07 and bc08 and onwards. When seen from the cache

perspective, the cache configurations that lead to the highest

energy savings are the larger-cache ones (cc04, cc05 and

cc06), opposite to the power results. Choosing between a

power-efficient and an energy-efficient configuration depends

on the priorities imposed on the design specifications of the

processor.

In the locus of bc05 or bc06 where IPC shows a non-trivial

speedup, energy expenditure does not visibly drop for almost

all cache configurations. This hints toward the fact that, at that

point, the power costs to sustain the higher IPC outperform

the benefits on speedup. To illustrate further, Fig.7 plots the

instruction energy efficiency of the various configurations.

With the exception of cc01, the lines do not drop as radically

around the locus of bc5 and bc06.

D. Area analysis

In this part of our analysis, it also makes sense to consider

the area cost of the various bpred schemes when moving

to more advanced techniques. We have, therefore, properly

configured and run CACTI v3.0 to collect area-utilization

figures for various predictor circuits. Area for the static

predictors as well as for the first two bimodal configurations

have been based on estimations. CACTI v3.0 (instead of any

newer versions) has been used since it is suitable for modeling

simpler (older) cache-like structures (such as the BTB) and

at an implementation technology identical to the one of the

simulator (0.180µm). CACTI results are illustrated in Fig. 8.

Please notice the logarithmic scale of the plot.
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TOLERANCE LEVELS

n cc01 cc02 cc03 cc04 cc05 cc06

IPC 0.985 0.990 0.985 0.995 1.000 1.000

power 0.990 0.990 0.990 1.000 1.000 1.000

energy 0.990 0.990 0.990 1.000 1.000 1.000

area 0.980 0.985 0.980 0.995 0.995 0.995

TABLE V

TOLERANCE LEVELS FOR IPC, POWER, ENERGY AND AREA IN OBJECTIVE

FUNCTION (1) FOR ALL CACHE CONFIGURATIONS WHEN AREA IS

CONSIDERED.

E. Optimal-branch/cache configuration selection

For selecting the best bpred configuration for different I/D-

cache geometries, we have based our evaluation on perfor-

mance, power consumption, energy expenditure and area. As

a performance metric, we have chosen the IPC instead of

the branch miss rate since we do not wish to study the

bpred techniques in an isolated environment but, rather, we

wish to capture overall system performance as a function

of predictor type. That is why we have used a processor

(rather than branch-predictor) simulator as our testbed. For

the very same reason we have also used total average power

consumption and total energy budget as our second and third

metric, respectively.

To find optimal bpred schemes for each cache configuration,

we have used the following formula as our objective function

for minimization:

Fn(x) = IPCn
PD(x)+Pn

PD(x)+En
PD(x)+An

PD(x), (1)

where x represents a single bpred node and n a single cache

node. Each term VARPD(x) represents the percentage differ-

ence between the VAR value at node x and the best VAR value

across all bpred nodes (maximum value for IPC, minimum

value for power, energy and area). This percentage difference

is given by the formula:

VARPD(x) =
|VAR(x)−VAROPT |

(1/2)∗ (VAR(x)+VAROPT)
∗100, (2)

where VAROPT = max(VAR(x)) or min(VAR(x)), with x in

the range [bc01,bc10]. We have chosen to use percentage

differences in our objective function (1) so as to normalize

all involved variables by calculating their ”relative” deviation

from the per-case optimal value.

We have sought a bpred configuration for each cache node

that optimizes all four imposed metrics. Table V shows, per
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Fig. 9. Normalized results to the minimum value for various cache
configurations of objective function (1) when area is included.

cache node, the tolerance levels we have used for all metrics.

The closer to ’1.000’ a metric’s tolerance level is, the more

strictly constrained the objective function (1) becomes and

the more close to optimal is the solution. In the table above,

tolerance levels have been iteratively decreased until a single

solution (i.e. the optimal) to each objective function was found.

In the absence of accurate processor design constraints3

we have imposed an intuitive ordering to the metrics used

in the objective function. In order of decreasing importance,

the metrics have been ranked: power and energy first, then

IPC and, last, area. It is with this order that we have adjusted

the tolerance levels in search of the best solution for all six

objective functions.

We can readily see from Table V that as we move from

configuration cc01 to cc06 (i.e. to higher cache sizes), the

tolerance levels become increasingly higher, that is, stricter.

This indicates that with increasing cache sizes, optimal values

across the four metrics are less scattered; thus, the solution is

more straightforward.

The results of the optimization process are graphically

depicted in Fig.9. With deviations of 1% or less between them,

the static predictors ALWAYS TAKEN and ALWAYS NOT-

TAKEN minimize the objective function across all cache con-

figurations. The remaining configurations follow with signifi-

cantly worse ranking, although we can see that smaller-cache

configurations would benefit more from the bimodal predictors

of any size, compared with larger-cache configurations.

Some commenting on this result is needed here. In the

objective functions above we have included the area metric.

However, area calculation has been done through CACTI,

outside the XTREM simulator. As a result, the area utilization

for specific bpred configurations as well as the modeling of

the BTB with CACTI has been to a certain degree based on

speculations and assumptions.

3Previous, related work does not provide solid or intuitive data for properly
adjusting the metric weights, i.e. to contribution of the different metrics, in
formula (1). To avoid unfair biasing of the results, we have assumed here a
policy of equal weights.

174



TOLERANCE LEVELS

n cc01 cc02 cc03 cc04 cc05 cc06

IPC 0.980 0.980 0.990 0.995 0.999 0.999

power 0.980 0.990 0.990 0.999 0.999 0.999

energy 0.980 0.990 0.990 0.999 0.999 0.999

area 0.000 0.000 0.000 0.000 0.000 0.000

TABLE VI

TOLERANCE LEVELS FOR IPC, POWER, ENERGY AND AREA IN OBJECTIVE

FUNCTION (1) FOR ALL CACHE CONFIGURATIONS WHEN AREA IS NOT

CONSIDERED.
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10000

bc01 bc02 bc03 bc04 bc05 bc06 bc07 bc08 bc09 bc10

cc01 cc02 cc03 cc04 cc05 cc06

Obj. function

(-)

Fig. 10. Normalized results to the minimum value for various cache
configurations of objective function (1) when area is not included.

For fear of skewing the optimization results and for purposes

of completeness we have also optimized the objective function

(1) once more after disregarding the area metric APD(x). In so

doing, the tolerance levels of the remaining metrics have also

been readjusted, as illustrated in Table VI. The new tolerance

levels are somewhat lower than before to compensate for the

area variable, yet they exhibit the same trend as in the previous

case; that is, they can be raised higher with increasing cache

sizes.

Graphical depictions of the objective-function results in this

case are shown in Fig.10. Most suitable bpred configurations

for almost all cache sizes are, as before, the ALWAYS TAKEN

and ALWAYS NOT-TAKEN static schemes. However, the

general objective-function trends are different in this case. We

can observe that for smaller-cache configurations the objective

function is not monotonously increasing but, rather, features

more than one (local) minimum. As a result, when the area

metric is factored out of the equation, more solutions than the

TAKEN/NOT-TAKEN schemes can be found, especially for

smaller-cache configurations. To exemplify, for cache config-

uration cc03 the optimal bpred configuration is in fact bc08,

i.e. a bimodal predictor with a 64-entry BTB, followed by

the typical TAKEN/NOT-TAKEN schemes. These suboptimal

configuration nodes could become the nodes of choice in a

design where e.g. a lower threshold on IPC is imposed; thus,

in cases of constrained optimization.

Overall, and to combine the results of both Fig.9 and

Fig.10, it becomes clear that - even by factoring the area

component out of the optimization function - the cost of

bimodal predictors of any BTB size is too high to justify the

overheads incurred to the processor, across all cache sizes.

Practically speaking, this means that the reduction in branch

mispredictions offered does not improve performance to the

point that introduced power penalties of a dynamic predictor

can be justified.

V. CONCLUSIONS

In this paper we have provided a detailed investigation

of various branch-prediction configurations in conjunction

with different I/D-cache configurations, tested on a specially

modified, low-power, cycle-accurate processor simulator. We

have fed the machine with benchmarks suitable for profiling

biomedical-implant applications and have focused on perfor-

mance, power, energy and area results. We have, then, run

iterative optimization (minimization) functions on the specified

design space and have identified best branch-predictor candi-

dates per I/D-cache node for our end goal which is the design

of a novel implant processor. Findings indicate that, under

(relaxed) area constraints, the optimal selections for branch

prediction interchangeably are the static schemes ALWAYS

TAKEN and ALWAYS NOT-TAKEN, regardless of proces-

sor cache size. This means that for slow-performing, ultra-

low power processors and the given biomedical workloads,

dynamic-prediction schemes are too expensive to implement,

their drawbacks outperforming their benefits.

A second interesting result, however, is that processor

configurations with smaller caches (i.e. for I/D-cache sizes up

to 1024KB/512KB, respectively) benefit from efficient bpred

schemes more. Especially under relaxed area constraints, more

suboptimal configurations but close to the optimal one exist.

In lack of more accurate data from the literature, in this work

we have imposed loose design constraints on the evaluated

metrics. Yet this last observation can be particularly useful

under highly constrained processor design.

As a final contribution, the paper offers a sound method-

ology and, at the same time, defines a suitable starting

point for the design-space exploration work for our envi-

sioned processor. Besides, the methodology we have used,

supported by a cycle-accurate power/performance simulator

and our developed toolflow, can be used to find optimal

branch-predictor/cache configurations for different application

scenarios. Updating objective functions with more variables

(i.e. design parameters) is straight-forward and adjusting their

contribution (weight) and tolerance levels to the optimization

problem can be modified just as easily. Last, this work to our

best knowledge is the first attempt to study branch-predictor

behavior under different cache geometries for the application

field of biomedical implants. Based on our previous profiling

study and the current work, our future work entails the

full (micro)architectural specification and prototyping of our

targeted biomedical-implant processor.
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