
Reconfigurable Multithreading Architectures:

A Survey

Pavel G. Zaykov, Georgi K. Kuzmanov, Georgi N. Gaydadjiev

Computer Engineering, EEMCS, TU Delft, The Netherlands
{ P. Zaykov, G.K.Kuzmanov, G.N.Gaydadjiev} a tudelft·nl

Abstract. This paper provides a survey on the existing proposals in the
field of reconfigurable multithreading (ρMT) architectures. Until now,
the reconfigurable architectures have been classified according to imple-
mentation or architectural criteria, but never based on their ρMT ca-
pabilities. More specifically, we identify reconfigurable architectures that
provide implicit, explicit or no architectural support for ρMT. For each of
the proposals, we discuss the conceptual model, the limitations and the
typical application domains. We also summarize the main design prob-
lems and identify some key research questions related to highly efficient
ρMT support. In addition, we discuss the application prospectives and
propose possible research directions for future investigations.

1 Introduction

Many applications running on modern embedded devices are composed of mul-
tiple threads, typically processing (exchanging) data among multiple sources.
During the quest of maximum performance and flexibility, the hybrid architec-
tures combining one or more embedded General Purpose Processors (GPPs) with
reconfigurable logic have emerged. There is a clear trend which shows that in
the near future there will be more embedded systems integrating reconfigurable
technology [1], [2], [3]. It is envisioned that multithreading support will become
an important property of such systems.
One of the fundamental problems in multithreaded architectures is efficient sys-
tem resource management. This has been successfully solved in contemporary
GPPs using various implicit and explicit methods. In literature [4], the explicit
techniques have been further partitioned into three main categories: Block Multi-
threading (BMT) - employing Operating System (OS)/ compiler approaches and
Interleaved/ Simultaneous Multithreading (IMT/ SMT) using hardware tech-
niques. However, none of these solutions can be applied straightforwardly for
managing reconfigurable hardware resources. The main reason is that the recon-
figurable hardware is changing its behavior per application, unlike the GPPs,
which have fixed hardware organization regardless the programs running on
them. Yet, current state-of-the-art architectures do not provide efficient holistic
solutions for accelerating multithreaded applications by reconfigurable hardware.
In this paper we approach the reconfigurable multithreading (ρMT) architectural



problems both from the hardware and the software prospective. The specific con-
tributions of this paper are as follows:
– We analyze a number of existing reconfigurable proposals with respect to their
architectural support of ρMT. Based on this analysis, we propose a taxonomy
with three main classes, namely: reconfigurable architectures with explicit, im-

plicit and no ρMT support ;
– We summarize several design problems and state open research questions ad-
dressing performance efficient management, mapping, sharing, scheduling and
execution of threads on reconfigurable hardware resources;
– We provide our vision for promising research directions and possible solutions
of the identified design problems;
The paper is organized as follows: in Section 2, a taxonomy covering related
projects is presented. More details about the design problems and the status of
the current state-of-art, completed with our vision on some possible application
prospectives and potential research directions are described in Section 3. Finally,
the concluding remarks are presented in Section 4.

2 A Taxonomy Of Existing Proposals

A taxonomy on Custom Computing Machines (CCM) with respect to explicit
configuration instructions has been already proposed in [5]. However, that study
did not consider multithreading support as a distinguishing feature. In this sec-
tion, we introduce a taxonomy of existing reconfigurable architectures with re-
spect to the ρMT support they provide. We identify three main classes of such
architectures, namely: with explicit, with implicit, and with no architectural ρMT
support. Note, the meaning that we relate to the definitions of explicit and im-

plicit ρMT, is different what is used in GPP systems. In general purpose systems,
the classification is based on multithreading support from algorithmic point of
view [4]. In our taxonomy we use as a distinguishing feature the presence of
architectural/ µ-architectural extensions for creation/ termination of multiple
threads on reconfigurable logic. If we classify the ρMT research projects based
on the GPP explicit multithreading technique, our taxonomy would look like as
follows:
– Reconfigurable Block Multithreading (ρBMT): e.g. [1], [6], [7];
– Reconfigurable Interleaved Multithreading (ρIMT): e.g. [8];
– Reconfigurable Simultaneous Multithreading (ρSMT): e.g. [9], [10];
In this paper, we consider a different classification prospective. In architectures
with no ρMT support, application threads are mapped into reconfigurable hard-
ware using software techniques – either at the OS or at the compiler level. This
software approach provides unlimited flexibility, but the performance overhead
too often penalizes the overall execution time especially for real-time implemen-
tations. On the other hand, architectures with implicit ρMT support, provide
performance efficient solutions at the cost of almost no flexibility due to the
fixed underlying microarchitecture (µ-architecture) facilitating multithreading.
To exploit the flexibility provided at both the software level, as well as at the



architectural and the µ-architectural level and to achieve higher system per-
formance, a third emerging class of architectures is identified and termed as
architectures with explicit ρMT support. Hereafter, we enlighten the proposed
taxonomy through examples of existing reconfigurable architectures. A concep-

Fig. 1. A Conceptual Behavioral Model of ρMT Related Projects

tual behavioral model of an ρMT system is depictured in Figure 1. It represents
the basic steps in the management and execution process of multiple threads. Ini-
tially, the programmer creates applications (tasks – Section A) or kernel service
(Section B) composed of multiple threads. Later, during run-time when an ap-
plication is selected for execution, depending on the system status information,
the Top-level Scheduler (Section C) passes threads to local schedulers (Section D
and E). The local reconfigurable scheduler (Section E) accommodates multiple
units - queues, scheduling algorithm, placement technique and loading process.
The synchronization between different threads is managed by e.g. semaphores
(Section F). The different sections of the behavior model, depicted in Figure 1,
are implemented either at the software level, or at the µ-architectural level, de-
pending on the particular architecture. Hereafter, we shall reveal how different
popular reconfigurable proposals manage the scheme from Figure 1 and based
on their architectural support for ρMT, we shall classify them.

2.1 Modern state-of-the-art reconfigurable architectures

The reconfigurable hardware allows the designer to extend the processor func-
tionality both statically and at run-time to speed up the application by executing
its critical parts in hardware. In [11], a survey on architectural proposals target-
ing GPP cores extended with reconfigurable logic is presented. However, that



paper has not considered ρMT as a classification criterion. In the years after,
a few more reconfigurable proposals have been introduced, capable to be sup-
ported by an OS without any specific hardware modifications. We choose to
briefly introduce the following two of these later reconfigurable projects, uncov-
ered by [11], because we consider them as a natural evolution of contemporary
embedded systems and potentially good candidates for future explicit ρMT ex-
tensions:
MOLEN: We choose The Molen Polymorphic Processor [1] proposed by CE
Lab, TUDelft, The Netherlands, as an example of tightly coupled (processor/
co-processor) fine-grained reconfigurable architecture. It combines a GPP with
several reconfigurable Custom Computing Units (CCU-es). The processor has an
arbiter, which partially decodes and issues instructions to either of the GPP or
the reconfigurable coprocessor. In the Molen original papers, multithreading has
not been discussed, but a follow-up research towards multithreading has been
reported in [9]. An overview of this enhanced MT version of Molen is examined
in the Subsection 2.3.
Montium TP: As an example of a Coarse Grained Reconfigurable Array pro-
cessor core, we choose Montium TP [2], designed by RECORE Systems. This
architecture has the following features: once configured, it does not issue any
instructions (just processes the data). It does not have a fixed instruction set
architecture (ISA) - the application is encoded at microcode level and has fast
reconfiguration response time, because of its coarse-grained hardware structure.
In its current implementation, the Montium TP is capable to support execution
of multiple threads (applications) but only at the OS level. The processor was
originally targeting the domain of streaming applications.

2.2 Architectures with no ρMT support

As we have already classified architectures with no ρMT support provides simul-
taneous execution of multiple threads at the software level only – either by the
OS or by the compiler without any explicit support.
OS support for ρMT – In this section, we group all known OS targeting re-
configurable devices and implementing in software - Section A, B, C, D, E and F
from Figure 1. The first proposal, which identifies some of the necessary services,
that an Operating System for reconfigurable devices should support, is presented
in [6] and [12] by a research group at the University of South Australia.
BORPH [13]: The research work presented by the University of California -
Berkeley, identifies that application migration from one reconfigurable comput-
ing platform to another, using conventional codesign methodologies, requires
from the designer to learn a new language and APIs, to get familiar with new
design environments and re-implement existing designs. Therefore, BORPH is
introduced as an OS designed specifically for reconfigurable computers, sharing
the same UNIX interface among hardware and software threads, which speeds
up the design process. The proposal has the following limitations - hardware
executed threads are executed on but do not share reconfigurable resources. Ex-
perimental results are produced from simple applications such as: wireless signal



processing, low density parity check decoder and MPEG-2 decoding.
SHUM-uCOS [14]: Another design, tackling the problems caused by the es-
sential differences between software and hardware-tasks is the SHUM-uCOS by
the Fudan University, China [14]. The authors propose a real-time OS (RTOS)
for reconfigurable systems employing an uniform multi-task model. It traces and
manages the utilization of reconfigurable resources, improves the utilization and
the parallelism of the tasks with hardware task preconfiguration. The limitations
on the current implementation of SHUM-uCOS are in the static scheduling ap-
proach and the resource reusage, supported by the compiler only. For evaluation
of the system, the authors use benchmarks and VOIP algorithms.
Compiler techniques for multithreading on reconfigurable platforms

The most common feature of the architectures grouped in this subcategory is the
responsibility of the compiler for task partitioning, scheduling and management
of the system resources. The major reason to employ multithreading in these
architectures is to hide reconfiguration latencies.
MT-ADRES [7]: In MT-ADRES by IMEC, Belgium, the compiler framework
has been extended to support several threads. The most significant limitation of
this proposal is the inability to execute/ terminate threads at run-time which is
posed by the compiler static scheduling and optimization algorithms, operating
with Control Data Flow Graph (CDFG). Control decisions, such as hiding the re-
configuration latencies and resource management are taken at compile time. All
experiments providing information about MT-ADRES performance are achieved
through multimedia simulations.
UltraSONIC [15]: Another proposal falling in this category is the UltraSONIC
project, represented by Sony Research Labs, UK. It is a reconfigurable architec-
ture optimized for video processing. It has a list of Plug-In Processing Elements,
connected through several buses. The programmer receives an architecture ab-
straction through an API interface. Multitasking is achieved through an algo-
rithm (implemented in the compiler) working on the application Directed Acyclic
Graph.

2.3 Architectures with implicit ρMT support

The proposals from this category share one common feature - the detailed mul-
tithreading support on reconfigurable threads is implicit, i.e. hidden from the
system programmer. The ISA does not have dedicated special instructions for
thread creation and termination procedures. The functionality is achieved with
µ-architectural extensions while preserving the architectural model.
Reconfigurable Extensions for the CarCore Processor: In [9], the authors
combine a simultaneous multithreading (SMT) processor with a Molen style re-
configurable coprocessor [1]. To minimize the complexity of the implementation,
the authors employ several constrains to the architecture. They modeled a hard-
ware scheduler, which supports execution on reconfigurable logic of only one
thread at a time, preserving the real-time capability for it. Once a thread is
started for hardware execution, it could not be interrupted until it is finished
(no context-switching). There is no additional ISA extensions for reconfigurable



thread management. Meanwhile, other non-real-time threads can continue their
execution employing the latencies of the real-time thread. The implementation
includes two scheduling policies – fixed-priority and round-robin, over four active
threads.
Hthreads [10]: The Hthreads(Hybrid Threads) model presented by University
of Kansas is multi-layer computational architecture which aims to bridge the gap
between the programmers and complex reconfigurable devices. Some of the main
system features are migration of thread management, synchronization primitives
and run-time scheduling services (Figure 1, Section F) for both hardware and
software threads into dedicated hardware module accessed from the GPP only
through an universal bus. The authors represent hardware threads with user
defined component, state controller and universal interface (Register Set). Syn-
chronization procedures are performed through semaphores. Because of the fact
that the system does not have modifications at architectural and µ-architectural
levels, the proposal is classified as an implicit ρMT. The experimental results
are provided in the image processing application domain.

2.4 Architectures with explicit ρMT support

The basic idea of this ρMT class is to combine the flexibility of the software
and the reconfigurable hardware with the potential performance efficiency of the
latter and to support ρMT, both at the software level and at the µ-architectural
level. There are several partial solutions in the literature which do not provide
such a compete mixed model of ρMT - the software and the hardware corporate
together to provide simultaneous execution of multiple threads. In such a model,
the system services (e.g. scheduling, resource management) should be optimally
separated between software and µ-architectural levels. Combined with efficient
memory management and thread/function parameters exchange through ded-
icated registers, an architecture with explicit ρMT support would potentially
reduce the intra- and inter- thread communication costs. Similar approaches are
taken in the following proposals:
OS4RS [16]: In [16], a research group at IMEC, Belgium, investigates the con-
cepts and reveals some of the open questions, raised by the run-time multi-
threading and interconnection networks for heterogeneous reconfigurable SoC.
The novelty of their approach resides in the integration of the reconfigurable
hardware in a multiprocessor system completely managed by the OS (OS4RS).
The system maintains several threads by a two-level scheduler. In their current
implementation, the top-level scheduler (Figure 1, Section C) is implemented in
software. The low-level/ local scheduler can be implemented in software (Figure
1, Section D) or hardware (Figure 1, Section E) depending on the type of the slave
computing resources (GPP or reconfigurable logic). In their current implemen-
tation, the local-level hardware (reconfigurable) scheduler is not implemented,
yet. The authors also propose a proof-of-concept method for context-switching
and migration between heterogeneous resources by saving the task state. The
OS4RS has been tested in JPEG frame decoding and experimental 3D video
game.



Reconfigurable Multithreaded processor [8] by University of Wisconsin-
Madison. The authors augment multiprocessor system, composed by multithreaded
Digital Signal Processor(DSP) and RISC processor, with multiple Polymor-
phic Hardware Accelerators (PHAs) - reconfigurable hardware units. The PHAs
are implemented as a functional units at the execution stage of the processor
pipeline. The instruction set is extended with four instructions for read/ modify
the PHA state/ mapping procedure. The multithreading is mainly employed to
hide the reconfiguration time. Once configured, in case of identical PHA instruc-
tions, the PHA could be reused by different threads. Because of the fact that
PHAs are not sharing the same reconfigurable area, there is no necessity for
placement algorithm. The architecture is limited to Interleaved Multithreading
called Token Triggered Threading. The authors argue the choice of such an ap-
proach instead of Simultaneous Multithreading, because of the possible power
consumption reduction. The authors propose two PHA binding techniques -
static & dynamic. The implementation includes only static (compile time) map-
ping approach. In case of a run-time binding, the system should provide realtime
constraints by restricting PHA reusage among threads.

2.5 Summary of the Proposed Taxonomy

Based on the criteria of the provided ρMT support, the aforementioned archi-
tectures can be briefly classified as follows. More elaborated discussion and full
list of references could be found in [17]:
I. No architectural ρMT support:

I.1. OS support for ρMT: Molen [1], Montium [2], Convey hybrid-core HC-1 [18],
RAMP [19], South Australia [6], BORPH [13], SHUM-uCOS [14];
I.2. Compiler techniques for ρMT: MT-ADRES [7], UltraSONIC [20];
II. Implicit architectural ρMT support :
CarCore Processor extensions [9], REDEFINE [21], Hthreads [10], ρMT Archi-
tectural Model [22], University of Karlsruhe [23];
III. Explicit architectural ρMT support :
III.1. µ-architecture + OS: Reconfigurable Architectures of this kind are just
emerging. This approach is promising for high performance efficient scheduling
and execution of threads on reconfigurable hardware due to the hardware &
software co-design of the ρMT managing mechanisms. OS4RS [16];
III.2. µ-architecture + compiler: Reconfigurable Multithreaded processor [8].

3 Design Problems & Open Research Questions

The very basic design questions related to thread scheduling on reconfigurable
resources are:
– Which threads to execute, schedule or preempt at certain instance of time
(e.g., when the requested reconfigurable area of prepared for execution hard-
ware threads is higher than the available area)?
– Where to place a thread (in case of several possibilities)?



– When to reallocate the newly created threads and how to efficiently hide the
reconfiguration latencies?
Depending on model assumptions, from complexity point of view, the scheduling
problem on reconfigurable logic could be reduced to several well-known NP-Hard
problems [24], [25], [26]. Therefore, one of the ways to be solved is by introduction
of an advanced heuristic algorithm. Some open research questions and several
partially and completely solved design problems, grouped by topic, are presented
below. For more details, the interested reader is referred to [17].
Hiding reconfiguration latencies: In reconfigurable systems, the reconfigu-
ration latency is caused by the time needed for the configuration bitstream to set
the reconfigurable device for the particular operation. Typically, configuration
latency is introduced during the initial task loading (tasks are composed of one
or multiple threads). This is one of the major system delays and causes severe
performance degradation in case of frequent reconfigurations. In literature, the
most common ways to hide or minimize the reconfiguration latency are:
1. Compressing the task’s bitstream. Different techniques are examined in [27];
2. Employing prefetch technique for earlier reconfiguration (overlap with com-
putation) and local caching. The existing proposals could be grouped into three
categories:
– Static – predictions are performed at design time by the compiler; (e.g., The
Molen compiler [28]);
– Dynamic – at runtime by the reconfigurable scheduler, which stores most
recent configurations [29];
– Hybrid (combining the Static & Dynamic approaches) [29]. In case of misspre-
diction, alternative Hybrid methods [29] always pay time penalty, by delaying
the reconfiguration;
Scheduling and placement algorithms: In the research work presented in
[30] by ETH Zurich, the authors propose several algorithms to manage the shar-
ing of resources in the reconfigurable surface. Their proposal includes system ser-
vices for a partial reconfiguration, which by scheduling the dynamically incoming
threads solve the problems with complex allocation situations. The primary idea
of the project is to separate threads into two groups according to their arriving
times - synchronous and arbitrary, which are scheduled by different heuristic
algorithms. Each one of the scheduling techniques is combined with optimized
placement methods.
The algorithms are further enhanced by a research group at Fundan Univer-
sity [25]. The authors prove that the combination of a scheduling algorithm
with a recognition-complete placement method does not result to a recognition-
complete technique. They also investigate the cases of potential thread migration
– a newly arrived thread is started either in software or in hardware. Slightly
different approach is proposed in [31] by a research group at the Paderborn
University. They enhance a single processor algorithm (e.g., a stochastic server)
with preemption support (limited only during the time of reconfiguration) for
hardware tasks.
Context switching: In [32], the authors clearly identify the two possible tech-



niques for context switching of hardware threads in partially reconfigurable FP-
GAs. The techniques are named as follows:
1) Thread Specific Access Structures – when the scheduler decides to switch a
thread, it’s current state is saved in an external structure. The major advantages
of the approach are the high data efficiency and the architecture independence.
The disadvantages come from the fact that each thread is different and it is
difficult to design a standard generic interface. In [33], the authors explore the
control software required to support thread switching as well as the requirements
and features of context saving and restoring in the FPGA coprocessor context.
Similar approach is taken in [34] - each hardware thread is represented by one
complicated finite state machine.
2) Configuration Port Access – the thread bitstream is completely downloaded
from the FPGA chip and the state information is filtered. In [32], the authors
design custom tools for offline bitstream processing. The advantages of this ap-
proach is that additional design efforts and its information about internal thread
behavior are not needed. In [35], the authors additionally compress the bitstream
to minimize the size and delay of downloaded data.
Real-time support for reconfigurable hardware threads: In the litera-
ture, there are two basic approaches (described below) capable to deliver real-
time support for software/ hardware heterogeneous platforms:
1) Per-case solutions using Heuristic Algorithms – many of the proposed algo-
rithms support “Commitment Test” - each newly created hardware thread is
checked for successful termination before its deadline and critical affects (e.g.,
delays) on other executing threads. Unfortunately the proposed ideas (heuristic
algorithms) are designed only for independent hardware threads with known ex-
ecuting times, therefore they are not applicable for hardware threads with data,
resource or communication dependencies.
2) Complete Solutions on Conventional Reconfigurable Platforms (e.g., BORPH
[13], UltraSonic [20], Hthreads [10]) – none of them supports reconfigurable re-
source sharing among executing threads. In case reconfigurable area is shared,
all possible resource collisions are solved at compile time.
Application Prospective & Potential Research Directions: One of the
direct gains from employing a ρMT architecture, after solving the open ques-
tions from Section 3, would be the capability for time efficient run-time creation,
termination and management of multiple threads sharing the reconfigurable re-
sources without critically affecting (delaying) each other. Possible future research
could extend the functionality and overcome some limitations, e.g.:
1. Real-time and runtime support of multiple hardware threads through archi-
tecture agnostic hardware scheduler. It could support run-time creation and
termination of multiple threads mapped into reconfigurable logic and hardware
system implementation.
2. More sophisticated scheduling policies capable to fairly distribute resources
among multiple resource-dependent hardware threads. Introduction of a metric
evaluating the resource distribution and potential thread starvation.
3. Hiding of reconfiguration latencies and efficient thread-preemption and mi-



gration model with estimation of performance costs. For periodic and sporadic
threads, the migration might take place right after the end of the current itera-
tion. The following list summarize the topics presented in Section 3:
Partially [PS] & Completely[CS] Solved Design Problems:

[CS] - Hiding reconfiguration latencies by prefetching, context switching and re-
source reusage among threads; [36], [29], [27]
[PS] - Optimized inter-thread communication scheme; [34]
[PS] - Real-time thread support by the reconfigurable architecture; [9], [20], [10]
[PS] - Preemptive techniques [context switching] for threads with arbitrary ar-
riving times. Consider inter-thread data dependencies, free reconfigurable area
and communication profile; [30], [25], [24]
[PS] - Thread migration between software and hardware; [33], [32], [35]
[PS] - Consider virtualization and protection; [37], [22]
[PS] - Rescheduling of threads, depending on the workload; [31]
[PS] - Run-time creation and termination of threads; [34], [13]
Open Research Questions [O]:
[O] - Hardware scheduler agnostic to the employed embedded GPP processor;
[O] - System performance evaluation parameters;
[O] - Intra-thread management by the scheduler;

4 Conclusions

In this paper, we provided a survey and proposed a taxonomy of existing re-
configurable architectures with respect to their support of multithreading on
reconfigurable resources. We identified three main classes – explicit, implicit and
no ρMT support, each one of them with several sub-categories. We further sum-
marized a number of identified design problems and several research questions,
which addressed performance efficient management, mapping, sharing, schedul-
ing and execution of threads on reconfigurable hardware resources. We provided
our vision for potential research directions and possible solutions of some open
research topics. We marked which of the identified design problems have been
partially or completely solved and which research questions remain open.

Acknowledgments

This work was supported by the HiPEAC European Network of Excellence -
cluster 1200 (FP6-Contract number IST-004408) and by the Dutch Technology
Foundation STW, applied science division of NWO (project DSC.7533).

References

1. S. Vassiliadis, S. Wong, and S. D. Cotofana, “The MOLEN µρ-coded processor,”
in (FPL), Springer-Verlag (LNCS) Vol. 2147, August 2001, pp. 275–285.

2. P. M. Heysters, “Coarse-grained reconfigurable computing for power aware appli-
cations,” in ERSA, 2006, pp. 272–280.



3. K. Seno and M. Yamazaki, “Virtual mobile engine (VME) LSI that “changes
its spots” achievies ultralow power and diverse functionality,” CX-News -
http://www.sony.com, vol. 42, 2005.

4. T. Ungerer, B. Robic, and J. Silc, “A survey of processors with expliclicit multi-
threading,” ACM Computing Surveys, vol. 35(1), pp. 29–63, 2003.

5. M. Sima, S. Vassiliadis, S. D. Cotofana, J. T. J. van Eijndhoven, and K. A. Vissers,
“Field-programmable custom computing machines - a taxonomy,” in FPL’02, 2002,
pp. 79–88.

6. G. B. Wigley and D. A. Kearney, “The first real operating system for reconfigurable
computers,” in ACSAC. IEEE Computer Society Press, Jan. 2000, pp. 129–136.

7. K. Wu, A. Kanstein, J. Madsen, and M. Berekovic, “MT-ADRES: Multithread-
ing on coarse-grained reconfigurable architecture,” in ARC, ser. LNCS, vol. 4419.
Springer, 2007, pp. 26–38.

8. S. Mamidi, M. Schulte, D. Iancu, and J. Glossner, “Architecture support for re-
configurable multithreaded processors in programmable communication systems,”
in ASAP. IEEE Press, 2007, pp. 320–327.

9. S. Uhrig, S. Maier, G. K. Kuzmanov, and T. Ungerer, “Coupling of a reconfig-
urable architecture and a multithreaded processor core with integrated real-time
scheduling,” in RAW, 2006, pp. 209–217.

10. W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,
“HTHREADS: a computational model for reconfigurable devices,” in FPL, 2006,
pp. 885–888.

11. K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and
software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, 2002.

12. O. Diessel and G. B. Wigley, “Opportunities for operating systems research in
reconfigurable computing,” in ACRC, 1999.

13. H. K.-H. So and R. Brodersen, “A unified hardware/software runtime environment
for FPGA-based reconfigurable computers using BORPH,” ACM Transactions on
Embedded Computing Systems, vol. 7, no. 2, pp. 1401–1407, 2008.

14. B. Zhou, W. Qui, and C.-L. Peng, “An operating system framework for reconfig-
urable systems,” in CIT, 2005, pp. 781–787.

15. J. Noguera and R. M. Badia, “Multitasking on reconfigurable architectures: mi-
croarchitecture support and dynamic scheduling,” Trans. on Embedded Computing
Sys., vol. 3, no. 2, pp. 385–406, 2004.

16. T. Marescaux, V. Nollet, J.-Y. Mignolet, A. Bartic, W. Moffat, P. Avasare, P. Co-
ene, D. Verkest, S. Vernalde, and R. Lauwereins, “Run-time support for heteroge-
neous multitasking on reconfigurable SoCs,” Integration, vol. 38(1), pp. 107–130,
2004.

17. P. G. Zaykov, G. K. Kuzmanov, and G. N. Gaydadjiev, “State-of-the-art reconfig-
urable multithreading architectures,” Technical Report - CE-TR-2009-02, 2009.

18. “The convey HC-1 computer, architecture overview (white paper)-
http://www.conveycomputer.com,” p. 11, 2008.

19. G. Gibeling, A. Schultz, and K. Asanovic, “The RAMP architecture & description
language,” in WARFP, 2006.

20. S. D. Haynes, H. G. Epsom, R. J. Cooper, and P. L. McAlpine, “UltraSONIC:
A reconfigurable architecture for video image processing,” in FPL’02. Springer-
Verlag, 2002, pp. 482–491.

21. A. Satrawala, K. Varadarajan, M. Lie, S. Nandy, and R. Narayan, “Redefine: Ar-
chitecture of a soc fabric for runtime composition of computation structures,” in
FPL, 2007, pp. 558–561.



22. S. Wallner, “A reconfigurable multi-threaded architecture model,” in APCSAC,
vol. 2823. Springer, 2003, pp. 193–207.

23. L. Bauer, M. Shafique, S. Kreutz, and J. Henkel, “Run-time system for an ex-
tensible embedded processor with dynamic instruction set,” in DATE, 2008, pp.
752–757.

24. C. Steiger, H. Walder, and M. Platzner, “Heuristics for online scheduling real-time
tasks to partially reconfigurable devices,” in FPL, 2003, pp. 575–584.

25. X. Zhou, Y. Wang, X.-Z. Huang, and C.-L. Peng, “On-line scheduling of real-time
tasks for reconfigurable computing system,” in FPT, 2006, pp. 57–64.

26. J. Angermeier and J. Teich, “Heuristics for Scheduling Reconfigurable Devices with
Consideration of Reconfiguration Overheads,” in Proceedings 15th Reconfigurable
Architectures Workshop, Miami, Florida, 2008.

27. J. Resano, D. Mozos, D. Verkest, and F. Catthoor, “A reconfiguration manager for
dynamically reconfigurable hardware,” IEEE Design & Test of Computers, vol. 22,
no. 5, pp. 452–460, 2005.

28. E. M. Panainte, “The Molen compiler for reconfigurable architectures,” Ph.D. dis-
sertation, TU Delft, 2007.

29. Z. Li and S. Hauck, “Configuration prefetching techniques for partial reconfigurable
coprocessor with relocation and defragmentation,” in FPGA, 2002, pp. 187–195.

30. C. Steiger, H. Walder, M. Platzner, and L. Thiele, “Online scheduling and place-
ment of real-time tasks to partially reconfigurable devices,” in RTSS. IEEE Com-
puter Society, 2003, pp. 224–235.

31. F. Dittmann, “Methods to exploit reconfigurable fabrics - making reconfigurable
systems mature,” Ph.D. dissertation, University of Paderborn, 2007.

32. H. Kalte and M. Porrmann, “Context saving and restoring for multitasking in
reconfigurable systems,” in FPL. IEEE Press, 2005, pp. 223–228.

33. H. Simmler and L. Levinson, “Multitasking on FPGA coprocessors,” in FPL.
Springer-Verlag, Nov. 2000, pp. 121–130.

34. M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen Slot Machine: A
dynamically reconfigurable fpga-based computer,” VLSI Signal Processing, vol. 47,
no. 1, pp. 15–31, 2007.

35. A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich, “Task scheduling for
heterogeneous reconfigurable computers,” in SBCCI, 2004, pp. 22–27.

36. Y. Chen and S. Y. Chen, “Cost-driven hybrid configuration prefetching for partial
reconfigurable coprocessor,” in IPDPS. IEEE Press, 2007, pp. 1–8.

37. S. Wallner, “Micro-task processing in heterogeneous reconfigurable systems,” J.
Comput. Sci. Technol, vol. 20, no. 5, pp. 624–634, 2005.


