
High Level antitative Hardware Prediction
Modeling using Statistical methods

Roel Meeuws, Carlo Galuzzi, Koen Bertels
Computer Engineering Lab, Del University of Tenology, e Netherlands

Email: {r.j.meeuws,c.galuzzi,k.l.m.bertels}@tudel.nl

Abstract—With the increasing proliferation of heterogeneous
and reconfigurable computing, it has become essential to have
efficient prediction models to drive early HW-SW partitioning
and co-design. In this paper, we present a high level quantitative
prediction modeling approa that accurately models the rela-
tion between hardware and soware metrics, based on several
statistical teniques. e proposed approa generates models
that predict hardware performance indicators for reconfigurable
components, su as the number of slices, the number of flip-
flops, and the number of wires. It utilizes automatic model
selection, artificial neural networks, (logistic) regression, and
data transformations. ese models take a high-level language
description as input, enabling hardware prediction in the early
design stages. We calibrate the models for two sets of tools
targeting Xilinx and Altera FPGAs, where we report, for example,
and error of 14% for the number of multipliers in case of
Xilinx and an error of only 18% for the number of wires in
case of Altera. To provide a realistic evaluation, we validate
the approa using 181 kernels, contrary to the majority of the
existing teniques, whi use libraries of tens of kernels at most.

I. I

Over the years, we have witnessed an increasing prolifera-
tion of heterogeneous and reconfigurable platforms in many
computing system domains. By using specialized hardware
for computationally intensive tasks, these platforms provide
improvements in processing performance, power consumption
and, in the end, costs. Additionally, reconfigurable compo-
nents provide the flexibility needed in today’s ever-anging
markets by removing the need to develop new platforms for
ea application. However, the wide variety of components
implemented in these platforms, together with their increasing
complexity, create the necessity for tools that help the design
and partitioning of applications over the different kinds of
available components. Furthermore, with a long tradition and
a broad user base of soware development, these tools need
to fill in the gap between soware development and HW-SW
co-design.
Given an application composed of different kernels, in order

to map one of these kernels on the available resources, it is
necessary to obtain information on factors, su as the power
consumption, the speed-up, or the hardware resource consump-
tion of the kernel for ea individual processing element. At

is resear is partially supported by the Artemisia iFEST project (grant
100203), the Artemisia SMECY project (grant 100230), and the FP7 Reflect
project (grant 248976).

the early design stages, however, no implementations exist yet
for these kernels. As a result, the designer may determine the
necessary information by creating all the possible implementa-
tions for ea kernel. is can be exceedingly time-consuming,
especially in the presence of reconfigurable hardware, where
the hardware generation of many different kernels may take a
few hours to a number of days.

As a result, there is a clear need for tool support arac-
terizing a functional description for different components in a
heterogeneous platform. ipu [15], a quantitative prediction
modeling approa for early design space exploration, provides
models that address this need. ese models are able to predict
the performance of kernels on reconfigurable components. ey
take a High Level Language (HLL) description (C code) as input
and estimate area, interconnect, static power, clo period,
and other FPGA-related measures. Although estimates are less
accurate than the actual values, the time to obtain the former
is several orders of magnitude smaller than the time to obtain
the laer. As a result, the designers can quily spot the overall
effects of anges in their design, saving hours or even days
per design iteration.

As a proof of concept, we integrated ipu models into
the Del Workben (DWB) [23], a semi-automatic tool plat-
form supporting integrated HW-SW co-design targeting het-
erogeneous platforms containing reconfigurable components.
e DWB addresses the entire design process from profiling,
optimization, VHDL generation and compilation, up to the final
evaluation. e produced ipu models predict the hardware
aracteristics of the FPGA configurations generated by the
DWB.

In this paper, we present a new high level quantitative
prediction modeling seme that accurately models the relation
between hardware and soware metrics, based on a number
of statistical teniques. We added this seme to the existing
ipu modeling approa. e main contributions proposed in
this paper are the following:

• e demonstration of the ability of the proposed approa
to generate comparable and appropriate prediction models
for two independent tool-ains and platforms.

• e introduction of artificial neural networks, model
selection, logistic regression, and data transformations in
the prediction methodology. As a result, the proposed
methodology exhibits an error ranging from 15% to 34%,
whi is an improvement of up to 45% compared to the
results presented in [17] and [15].

978-1-4577-0801-5/11/$26.00 ©2011 IEEE 140

• e detailed prediction of the interconnect resources dis-
tinguishing between different parameters, su as clo
wires, logic wires, and power wires.

• e validation of the produced models by using a set of
181 kernels, contrary to the majority of similar teniques,
whi use libraries of tens of kernels at most. is is also
an improvement over our previous work, where we used
a set of 127 kernels only.

e remainder of the paper is organized as follows. First,
in Section II, we review the related work and we establish
the need for the ipu modeling approa. In Section III, we
discuss the ipu modeling framework, its key components,
and the statistical methods it employs. An discussion of model
evaluation is presented in Section IV. Section V presents
the experimental setup and methodology. e evaluation of
the experimental results is presented in Section VI. Finally,
Section VII concludes the paper and presents future work.

II. R W

Over the years, many hardware performance estimation
semes have become available. Part of these semes drive
low-level design processes, for example, in the placement and
route phases. Others, including our work, operate on a HLL
description su as C. Most of the high-level methods focus
either on a specific application domain or on a specific kind of
design. Other high-level methods are only applicable to certain
types of platforms.
In [8], for example, the authors performed area-time estima-

tion for the controller of a design. e input of their tenique
was a H-CDFG generated from C-code using the Trimaran
compiler infrastructure. e authors reported prediction errors
of 3.8% for flip-flops and 10.3% for slices. ey validated their
tenique by using a set of only 10 kernels. Additionally, this
estimation seme did not provide estimations for the complete
design, and it was strictly targeting the Trimaran compiler,
whi makes it not applicable in different contexts.
In the industry, we also see efforts to provide early design

estimates. For example, Xilinx presented a resource estimation
algorithm from a HDL specification, based on an estimation
seme that mimics the actual synthesis tool-ain [19]. e
authors reported an average prediction error of 14.2% for flip-
flops and 21.9% for slices. ey verify their model with a set
of 90 VHDL designs. e main problem with this seme is its
limitation to the Xilinx synthesis tool-flow. Furthermore, the
seme operates on VHDL code, and, as su, does not take
into account the effects of C-to-VHDL translation. As a result,
it is difficult to apply this approa in a broader spectrum of
tools and platforms.
In [11], we find another estimation seme targeting regular

tasks without extensive control circuits. is seme requires
a DFG description of an algorithm, whi is then summarized
using various parameters, su as the number of certain
operators and their bit-widths. e authors presented a set of
custom equations for area and timing and they validate their
seme using only 6 kernels. Although the seme exhibited a
prediction error of approximately 12% for area and 29% for

frequency, the small number of kernels makes this claim weak
at best.

In [14], the authors presented an approa for FPGA area
estimation from SA-C. is language is a C-dialect adapted for
image processing. e idea of the paper was to build prediction
models for ea type of DFG node. Linear Regression (LR) was
performed on a set of DFG nodes with varying parameters
to determine the coefficients of these models. e authors
reported an error of 5.3% based on only 4 kernels from the
image processing domain. e estimation method that the
authors presented is tightly coupled to the SA-C compiler that
they use and, as su, cannot be easily recalibrated for another
set of tools or platforms. As a result of the small validation
set and the requirement of the SA-C language, this approa
is not suitable for more general use during HW-SW co-design.

By using the popular Polyhedral model, [9] presented an
estimation seme targeting loop controllers. e authors es-
tablished the effect of the number of statements and the nesting
depth of a loop on their hardware generation seme. Based
on these values, they performed LR to predict the number of
slices and the frequency. By using a set of only 12 kernels,
they reported an error of 7.14%. As this paper focuses on
loop controllers in a polyhedral model, the prediction model
has a relatively narrow scope and cannot be used in a more
general context.

In [10], the authors presented an area and power prediction
method based on linear regression. e approa generates
specific estimation models for ea component, based on the
parameters of the design. ese models are targeted to the
estimation of IP cores in larger designs. e paper uses a
dataset of only 21 data points based on 5 IP cores to validate
their model, although the models are generated using 50
different configurations for ea IP-core. e authors report
an error of 8% for the number of slices. e main difference
between this approa and our approa is that we provide
a generic model applicable to many kernels in an application,
while the method proposed in [10] provides specific component
models for individual IP cores only.

Another approa using statistical methods can be found
in [6]. e authors present an area estimation seme from
SystemC descriptions. eir approa splits the modeling into
two parts: the translation to VHDL and the low level synthesis.
e final model is based on design parameters extracted from
the SystemC description and the VHDL description. Principal
Component Analysis is performed to prune the number of
parameters. Subsequently, classic linear regression is performed
on a set of 20 designs to generate the model. e paper validates
the model by using only 5 designs. e error is measured for
ea different system component (FSM, MUXs, etc.) and, then,
weighted to obtain a total error of 36.8% for the number of
LUTs. By using only a small set of kernels to build and validate
the models, this approa does not sufficiently substantiate
their claims. Furthermore, ipu differs from this approa
as it considers ANSI C code as input instead of SystemC; the
laer has far more low-level hardware details incorporated in
the language.

141

Paper Reference Object Predicted hardware measures Input specification Error Size of the validation set

[8] Controller flip-flops, slices, LUTs, delay HLL (C) 10.3% 10
[11] Entire design slices, frequency DFG (RTL) 12% 6
[14] Entire design LUTs HLL (SA-C) 5.3% 4
[10] IP-core specific slices, power Matlab 8% 21
[9] Loop Controller slices, frequency Polyhedral model 7.14% 12
[6] Entire Design LUTs, flip-flops SystemC specification 36.8% 5
[18] Entire Design unspecified area metric FIR specification 19% 250
[19] Entire design flip-flops, slices, LUTs, etc. (V)HDL 21.9% 90
ipu Entire design all above and more HLL (C) 26% 181

TABLE I
C     , ,    .

As shown in Table I, all these works based their claims on
the quality of their models in terms of error on validation sets
containing between 4 to 12 kernels. However, if the target is to
report errors that are not biased to a small data set, a larger set
of validation data, su as the one used in this paper, becomes
vital. Let’s suppose, for example, one validates a model using a
set of only 12 kernels. It is very unlikely that these kernels can
represent the whole spectrum of possible kernels. For one, with
su a limited set of kernels, the possibility of erry-piing
your validation set increases. Secondly, an anomalous kernel
that is not well modeled by a certain model can adversely affect
the validation error when one uses a small set of kernels.

In [18], we find one method in this direction. e authors in-
troduce an estimation seme to predict resource consumption
of systems composed of FIR filters. ese systems are composed
of a set of 7 basic modules. For ea of these modules a
neural network predicts the resource consumption based on the
module parameters. Also, a neural network is used to predict
the system level resource consumption, based on the number of
modules and on the sum of all estimated modules. e system
estimates are based on 250 combinations of basic components.
By using this data set an error of 19% for an unspecified
area metric is obtained. ese results are different from our
approa in two main aspects. First, their approa is very
specific to their FIR structures and cannot be used for a high
level language description as our approa does. Furthermore,
the dataset is formed by varying the different parameters of
only a few basic components, instead of using actual different
kernels.

In this paper, we present the ipu modeling approa
for prediction of hardware resource consumption targeting
reconfigurable components. is method targets HLLs su as
C, in order to drive early design space exploration and to
provide models for different reconfigurable platforms and tool-
ains. Contrary to existing similar approaes, we validate our
approa with 181 real soware kernels using models produced
for the DWB tool-ain as a case study. In our previous work,
we validated other ipu models using 127 kernels. As a result,
this earlier library was not well balanced over the different
application domains and, as su, lead to models biased to the
application domains that were over-represented. Finally, we
validate the general applicability of our approa by providing
models for different tools and platforms

III. T M F

e work in this paper is presented in the context of the
ipu modeling approa, whi we have developed and
presented in [16], [17], and [15]. e approa is generic
and not limited to any particular platform or tool-ain by
allowing the generated models to be automatically recalibrated
for different tools and platforms. is is in contrast with the
majority of the existing teniques, whi require manual
reimplementation for different contexts. In this paper, we
employ this approa to generate models for a combination
of the DWARV C-to-VHDL compiler [25] and the Xilinx ISE
Synthesizer for the Virtex4 platform [1]. Notwithstanding,
ipu can provide models for other combinations as well, su
as, the Altera Stratix IV FPGA and the C-to-Verilog compiler
from the Haifa University [3], [4]. Ea specific model instance
is calibrated using the output data of su a combination
of tools and platform. Note that this set of calibration data
can vary also depending on certain tool options. For example,
area measurements will be mu lower when optimizing for
area compared to when optimizing for speed. Most options
concerning high level optimizations can be accounted for by
the ipu Metrication tool (refer to Section III-B). In other
cases, the user may want to consider generating models for
ea option value. It is obvious that this only applies to options
that have a significant effect, as minor differences have no
significant effect on the relatively large error at the early
stages of development. Another approa would be to use some
common option values as model parameters instead.

ere were several limitations in the previous iterations of
our approa. Firstly, the reported error was still relatively
large in some cases. Secondly, the interconnect prediction was
not able to distinguish between the different types of wires that
co-exist in a design. Furthermore, the kernel library was not
properly balanced, with some application domains represented
by only two kernels, and others by tens of kernels. Finally, the
portability of our approa to different sets of platforms and
tools had not been shown.

In the following, we first define the models and the criteria.
Subsequently, we discuss the key components of the ipu
approa. Last but not least, the newly developed teniques
that constitute our approa are discussed in detail.

142

A. e Models and the Criteria
It is essential to quantify the aracteristic aspects of the

soware description at hand, when we consider the modeling
of hardware from soware descriptions. In [17] and [15], we
have introduced Soware Complexity Metrics (SCMs) as a way
to address this. SCMs are indicators of specific aracteristics
of the soware code. Examples of SCMs are the number of
operators, the number of loops, or the cyclomatic complexity,
but also more complex metrics involving data-flow analysis
or grouping operations in different types of functional units.
Currently, we use a set of 58 SCMs as a base for our model.
To aracterize hardware performance in terms of area,

interconnect, power, and other parameters, we measure and
predict 49 different hardware performance indicators. For
instance, the number of slices, the number of wires, the
number of LUTs, and the number of clo wires. Most of these
parameters are related to interconnect and provide specific
information on wires, nets, route-throughs, or swit-boxes,
further subdivided for logic, power, or clo resources. Note
that the power data was obtained by the Xilinx XPower
Analyzer [24] and did not use simulation output for enhanced
accuracy.
Given these criteria, we look for a model that describes the

relation between hardware and soware:

yHW = g(x̃SCM) + ϵ. (1)

is is the theoretical optimal model relating some hardware
metric yHW to the SCMs x̃SCM ¹⁾ with the ideal relation
g(·) and some error ϵ inherent to the problem at hand.
In practice, an ideal model cannot be found. Instead, any
modeling seme is an approximation to some level. erefore,
we model the relation g(·) with an approximated relation
ĝ(·) ²⁾. is results in the introduction of some error ϵ̂ inherent
to our approximation seme:

ŷHW = ĝ(x̃SCM) + ϵ̂. (2)

e approximation ĝ(·) can be, for example, an ad-hoc model,
a Linear Regression Model (LRM), or an Artificial Neural
Network (ANN). In case of LR teniques, ĝ(·) is a linear
equation:

ŷHW = âx̃SCM + b̂+ ϵ̂, (3)

where â is a vector of coefficients âi corresponding to the
element xi of the set of SCMs x̃SCM obtained for some kernel
that correspond to the hardware metric ŷ, and b̂ is the offset
of the linear model. Note that these variables are stoastic
variables. is means that reporting a simple percentage error
is not enough. As a result, the aracterization of the error
distribution must be addressed as well.

B. e Tools and the Kernel Library
ipu consists of a set of tools and a kernel library, as

depicted in Fig. 1. In the modeling flow, ipu extracts

¹⁾e arrow in x⃗ signifies a vector.
²⁾e hat in ĝ(·) signifies an approximation.

Do
ma
in

Ke
rn
els

Siz
e

Bi
t-B
as
ed

Str
ea
mi
ng

Co
nt
ro
l

Compression 12 47.6 (14-95) x x
Cryptography 57 192.2 (15-1107) x x some
DSP 12 32.3 (10-110) x x some
ECC 13 74.8 (10-496) x x x
Mathematics 29 33.9 (5-100)
Multimedia 42 81.8 (6-1107) some x x
General 13 72.9 (22-163) x

Total 181 102.6 (5-1107)

avg. size in number of statements (range).

TABLE II
O    ,       

     .

SCMs and hardware performance indicators from a kernel
library. is is a library of 181 kernels from a wide variety
of application domains, contrary to many existing teniques,
whi use libraries of tens of kernels at most. is allows us
to build models that are generally applicable. It is also possible
to build domain-specific models by using, for example, only
the 57 Cryptography-related kernels out of the 181 kernels
considered. An overview of the kernels in this library is
provided in Table II. e 58 different SCMs can be extracted
using the ipu Metrication tool, whi produces an XML file
containing SCM measurements for ea kernel. e metrication
tool can measure metrics at source code level and also aer
performing different optimizations. In this way, we can provide
useable input data for tool-ains that perform different levels
of optimization.

K
e

rn
e

l

L
ib

ra
ry

Synthesis

Toolchain

HW Measurement

Tool

Metrication

Tool

HW

Data

Metrics

XML

Modeling

Scripts

Model

XML

Application

Source

Code

Application

Binary Code

Metrics

XML

Predictions

XML

Prediction

Tool

gprof

QUAD

Toolset

Modeling Flow

Prediction Flow

Fig. 1. An overview of the ipu modeling approa, its tools (the boxes with
thi border), and the accompanying tools (the boxes with dashed borders).

Another tool is the ipu Hardware Measurement tool,
whi measures 49 different hardware parameters, su as
area and interconnect, from synthesized hardware targeted at
Xilinx FPGAs. e tool keeps tra of all nets and components
in the design by processing the XDL file generated by the
Xilinx synthesis tool-ain. It provides detailed interconnect
measurements, su as the number of clo wires or the
number of power nets. For Altera FPGAs, su a tool is not

143

needed, as the report files generate detailed numbers on the
interconnect usage automatically.
e gathered SCMs and hardware measurements are run

through a set of modeling scripts that automatically evaluate
different modeling teniques. e output model XML file can
be used in the prediction flow, where, based on SCM inputs,
the ipu Prediction tool provides estimates of any required
hardware aspects. All intermediate files in the prediction flow
are saved in XML format for an easy integration. For example,
the results of execution and memory profiling tools might be
integrated as depicted in Fig. 1.

C. e Regression Teniques

In our previous works [17] and [15], we introduced Lin-
ear Regression Models (LRM), Generalized Linear regression
Models (GLM), and Partial Least Squares Regression (PLSR)
as the core teniques for the ipu modeling approa. In
the following, we discuss the regression teniques employed
in this paper. In Section III-C1, we discuss the problem of
collinearity and we address this problem by using stepwise
model selection. en, in Section III-C2, we show that non-
linear relations between some SCMs and hardware parameters
require data transformations to be applied effectively in re-
gression analysis. Aer that, in Section III-C3, we introduce
the use of advanced non-linear maine-learning methods for
our prediction modeling approa. Finally, in Section III-C4,
we address the specific problem with modeling small count
values, like the number of multipliers, and suggest the use of
logistic regression to improve the prediction of su values.
1) Stepwise Model Selection: e collinearity between the

different SCMs in our model poses a problem. Due to the
collinearity, some metrics measure more or less the same aspect
of the code. is is problematic for regression analysis as
certain aspects are now overrepresented. In [17], we proposed,
by using Principal Component Analysis (PCA), to reduce the
number of metrics. e drawba is that we don’t control how
the resulting metrics are composed. An original metric might
partially influence the value of principal component values,
although it does not affect the modeled dependent variable at
all.
Another common approa to reduce the number of pre-

dictors (SCMs) is Stepwise Model Selection (SMS). Starting
from a preliminary model, SMS successively adds and removes
metrics step-by-step. At ea step, the significance of ea
metric, given the current model instance, is calculated and
the most significant variable is added to the model. Aer
that, any variable that can be removed without increasing
the error is removed. is procedure continues as long as
there are possible steps that improve some quality criterion.
When there are no more single variables that could be added
or removed to improve this criterion the process stops. e
resulting model is a local optimum. Beer models might be
found by using a brute-force algorithm, or a heuristic, su
as simulated annealing. For our purposes, we used a stepwise
heuristic using Akaike’s An Information Criterion (AIC) [2]

as the quality criterion. is criterion rewards goodness of fit
(R2) and penalizes overfiing.

In this paper, we perform the model selection only with
respect to GLM models. e neural networks, whi we also
present, are evaluated separately. e model selection we em-
ployed, performs linear regression O(n) times and, thus, takes
more time. However, the model calibration is performed only
once, where the models themselves can be used indefinitely.

2) Data Transformations: During our analysis, we found
out that in addition to the collinearity problem, many metrics
also do not have a clear linear relation with the predicted
hardware aracteristics. Consequently, it is useful to trans-
form the metrics, where possible, to beer relate to the
hardware aracteristics. e Box-Cox power transform [5] is
a widely used transformation of the data. is transformation
preprocesses the data in order to reduce the variance of the
dataset as well as to make the sample distribution more similar
to the normal distribution. e transformation is defined as
follows:

x
(λ)
i =

{
xλ
i −1
λ , for λ ̸= 0

log(xi), for λ = 0
(4)

where xi are the observations of the independent variables, λ
is the estimator used to determine the transformation, and x

(λ)
i

is the transformed observation. By using a Box-Cox estimator
in the R statistical computing environment, we determined
that λ is close to zero for many predictors. erefore, we
considered log-transformations for all metrics in our model
selection procedure. e transformed metrics were considered
in all different modeling teniques employed in this paper.

3) Artificial Neural Networks: In the previous section,
we have addressed the non-linear relation between individual
hardware and soware parameters. Nevertheless, the combined
problem at hand remains non-linear to some degree. ere are
several teniques that tale su problems. One well-known
method of non-linear regression analysis is to fit Artificial
Neural Networks (ANNs) [7]. An ANN is composed of a set of
nodes that are arranged in layers. Ea layer uses the outputs
from the previous layers as inputs. Ea node is a weighted
linear combination of inputs. e value of this combination is
transformed using an activation function passed on to the next
layer:

netj = f(
n∑

i=0

xiwij), (5)

where netj is the output of node j, f(·) is the activation
function, xi(i ∈ 0, . . . , n) are the outputs of n nodes in the
previous layers, and wij is the weight for the input from node
i to node j. We use the ANN training paage nnet from
the R statistical computing environment. is paage trains
networks with a single hidden layer with possible skip-layer
connections and nodes with a sigmoid activation function.
Neural networks are prone to overfiing, when there are too
many nodes in the network or the learning rate is too high. In

144

this case, the fied model will be extremely accurate for the
fied data points, i.e. training data, but will not be usable for
prediction purposes. In order to prevent this, we investigated
many different configurations of these two parameters to find
the model with the smallest prediction error.
4) Logistic Regression and Count Regression: Apart

from collinearity and non-linearity, we found also that some of
the hardware parameters that we consider, contain only non-
negative values. In these cases, it makes sense to divert from
the regular LR teniques and use GLMs. GLMs allow us to
use error distributions other than the normal distribution. In
case of discrete non-negative values, for instance, we might
beer model the data as a count. e error of su a model is
more accurately modeled using a Poisson or Negative Binomial
distribution. In [15], we have applied this tenique to ipu.
However, count regression is not possible if a dataset contains
many zeroes. For this reason, a decision model is needed that
predicts whether a zero or a count is expected. Su a model
can be fied using Logistic Regression (LogR), where the odds
for a one are modeled instead of the count. Assume yi is
binomially distributed as B(ni, pi), i.e. there exists a bound
set of values ni, in this case zero and one. en, LogR models
the logit of the probability pi for yi to be 1 as follows:

logit(pi) = log(
pi

1− pi
) = ĝ(x̃SCM) + ϵ̂. (6)

is logistic function of the probability of encountering a 1
for yi is assumed to be linearly dependent on the SCMs. By
using the inverse logit, we can predict the probability of ea
possible value. In our case, we can predict a zero in case the
probability is closer to one and a count when it is closer to
zero. In case a count is expected, we can use a count regression
model based on only the count data, by using the Poisson
or Negative Binomial distributions. A dataset where all zero
values are removed, is called a zero-truncated dataset.

IV. M E

In order to validate the predictive quality of statistical
models, we need to perform cross-validation. is is the process
of using part of the available data to calibrate the model and
another part to determine the prediction error. e simplest
form of cross-validation is the Holdout cross-validation [13],
where the data are split into two sets: a training set and a
validation set. When using a relatively small set of data points,
this method has the disadvantage that the training set may
not be representable for the calibration set. is leads to huge
variance in the reported error depending on the data points
that are selected for ea set.
Another cross-validation method is the K-fold cross-

validation [13]. In this method, the data is split over K subsets.
Ea subset is then used as validation set once, ea time the
remaining K-1 subsets are used collectively as training set.
e average of the resulting error statistics can then be used
as cross-validation error. Common instances of K-fold cross-
validation are 10-fold cross-validation (K=10) and Leave-One-
Out cross-validation (K=n). In this paper, we use 10-Fold cross-

validation to validate our models, as suggested in [13] and [20].
e most common error summary statistic used in this type of
cross-validation is the 10-fold cross-validated Relative Rooted
Mean Square Error of prediction (RMSEp%):

RMSEp% =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1 yi

. (7)

is summary statistic captures the overall predictive perfor-
mance of our model. Also the goodness of fit was determined
by using the cross-validated coefficient of determination (R2):

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
, (8)

where yi are the observed values, ŷi are the predicted values,
and ȳ is the mean observed value. R2 shows how mu of the
variance of the original dataset is explained by the model and
not contributing to the error.

V. M  E S

A. Measurement

We compiled a kernel library of 181 C-kernels from many
different application domains in order to evaluate our modeling
approa. e goal of using a diverse set of kernels is to build
models that are generally applicable, and not restricted to a
specific aritecture as with existing approaes. We collected
58 different SCMs for ea of the kernels by using the ipu
Metrication tool. e collection process took 8.8 seconds on
a dual-core Intel E8500 running at 3.16GHz. We obtained
the VHDL for ea kernel by using the DWARV 1.3.4 C-to-
VHDL compiler. DWARV performs several optimizations on
the input code, su as simplified scalar replacement, static
single assignment, common sub-expression elimination, and
dead code elimination. ese optimizations were accounted
for by using the correct optimization level in the metrication
tool. Additionally, we generated Verilog for ea kernel by
using the C-to-Verilog compiler developed at the University of
Haifa [4] and available via a web interface [22]. is tool uses
optimizations su as resource sharing and pipelining.

We synthesized the VHDL designs by using the Xilinx ISE
11.5 targeting the Xilinx Virtex4 LX200 FPGA (xc4vlx200-
ff1513-10). We collected 49 different resource measures out of
the synthesized designs. ese include, among others, slices,
flip-flops, logic wires, and clo wires. All interconnect re-
lated measures for the Xilinx platform were determined using
our ipu Hardware Measurement tool, whi is capable of
traing ea individual net, wire, and pin in the design.
We synthesized the Verilog code for ea kernel by using
the artus II 9.0 Build 235 synthesizer targeting the Altera
Stratix IV EP4SE530 FPGA (EP4SE530F43C2ES). We collected
13 different resource measures from the generated bitstreams.
ese include, among others, ALUTs, registers, and total inter-
connects.

145

Measured number of Flip−Flops

P
re

d
ic

te
d

 n
u

m
b

e
r

o
f

F
lip

−
F

lo
p

s

0

10000

20000

30000

40000

50000

l
l l

ll

l

l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l ll

l

ll
l

ll

l

l

l

l
l

l

l

ll
l

l
l

l
l

l

l

ll
l

l

l

l

l

l

l

l

ll
l

l

l
ll

l

l
l

l

l

l

l

ll

l

l

l

l
l
ll

l

l

l

l

l
lll

l

l
l
l

l

l

l

l

l
l

l

l
l

l

ll

l

l
l

l

ll

l

l

l

l

l

ll

l
l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l
l

l

l

l

l

l

l

l

0 10000 20000 30000 40000 50000

Fig. 2. e actual number of flip-flops vs. the predicted number of flip-flops
in the DWARV/Xilinx case.

B. Model Calibration

Aer obtaining the necessary measurements, we performed
stepwise model selection in the statistical analysis suite R
by using the stepAIC method from the MASS paage [21].
Different error distributions and data transformations were
considered. Additionally, ANNs were trained in R based on
the data using the nnet paage [21]. e neural networks
consisted of one hidden layer with varying numbers of neu-
rons. e model with the smallest error was selected. Note
that this process was performed automatically. e training
of these models is a time-consuming procedure and it took
about 6 hours on an 8-core Intel X5550 running at 2.67GHz
with 8Mb cae and 32GB memory to calibrate the models
for all hardware metrics. When the assessment of ANNs was
omied calibration took only 30 minutes. e model calibration
was performed for both the DWARV/Xilinx flow and the C-to-
Verilog/Altera flow. Aer the calibration of the models for a
particular platform and tool-ain, the models can be employed
efficiently and indefinitely. Note again that the calibration is
a one time step.

VI. R

A. Results for the DWARV/Xilinx case

We have generated models for 49 different hardware ar-
acteristics. e 8 most important ones are summarized in
Table III. It is worth to note that the Rooted Mean Square
Error of Prediction, as a percentage of the mean (RMSEp%),
has improved by at least 3.4% for flip-flops and up to 45% for
slices. For the models based on neural networks, we observe
that the corresponding GLM model (RMSEp% (GLM)) accounts
for the largest improvements from the old set of results. is
implies that, aer the model selection, the training of a neural
network has marginally less effect. Still, the use of neural
networks decreased the error by at least 0.7% for flip-flops
and up to 7% for the number of LUTs.

Measured number of Flip−Flops

A
b

s
o

lu
te

 r
e

la
ti
v
e

 p
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

50

100

150

200

250

300

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

0 10000 20000 30000 40000 50000

Fig. 3. e actual number of flip-flops vs. the relative prediction error of the
total number of flip-flops in the DWARV/Xilinx case.

Measured number of Total Wires

P
re

d
ic

te
d
 n

u
m

b
e
r

o
f
T
o
ta

l
W

ir
e
s

0

500000

1000000

1500000

2000000

l

ll

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l
l

lll
ll

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

ll
l

l

l

l

l
l

ll

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l
ll

l

ll

l

l

l
ll

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l
ll

l

l

lll l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

ll

l

l

l
l

l

l
l

l

l

l

l

0 500000 1000000 1500000 2000000

Fig. 4. e actual total number of wires vs. the predicted total number of
wires in the DWARV/Xilinx case.

A special case is the model for the number of multipli-
ers (DSP48 blos). e data for the number of multipliers
contained many zeroes, whi polluted the regular modeling
procedure. We built a binomial LRM on the binary decision
variable Z = Multipliers > 0. e accuracy of this
model was 99.43%. e dataset without the zero values (zero-
truncated) was used to build a count model by using the
negative binomial distribution. We were able to predict the
number of multipliers within an error of only 14.76%.

Note that the error of 2.98% for power is also relatively low,
although the R2 indicates that less than 80% of the variance of
the data is explained by the model. is model apparently fits
the data substantially worse than the other models in Table III.
Indeed, the percentage error is mainly small for these measures
because there is a large constant offset in the model, whi
makes the percentual contributions of the error small.

146

Toolain Response RMSEp%[15] RMSEp% MAPE R2 Model type Topology  RMSEp% (GLM)
X
ili
nx

/
D
W
A
R
V

Slices 71% 26.53% 42.87% 96% Neural Network 29-11-1 31%
Flip-flops 28% 24.64% 38.48% 98% Neural Network 28-7-1 29%
LUTs 67% 33.07% 57.78% 94% Neural Network 30-5-1 40%
Multipliers  30% 14.76% 36.35% 98% GLM (negative binomial) n/a n/a
Total Nets 31% 27.54% 34.49% 92% Neural Network 29-1-1 30%
Total Wires n/a 33.67% 48.44% 92% Neural Network 31-11-1 37%
Clo Wires n/a 23.82% 31.56% 94% GLM (normal) n/a n/a
Power n/a 2.98% 2.09% 74% GLM (normal) n/a n/a

A
lte
ra
/

C
-t
o-
V
er
ilo

g ALMs n/a 16.90% 45.05% 99.1% Neural Network 38-5-1 23%
Registers n/a 12.92% 38.21% 99.5% Neural Network 31-5-1 15.3%
ALUTs n/a 16.19% 52.73% 99.3% Neural Network 38-3-1 17.3%
Multipliers n/a 81.78% Inf% 98% GLM (negative binomial) n/a n/a
Total Wires n/a 17.82% 44.46% 98.9% Neural Network 43-5-1 19.35%

 Number of nodes in the input layer - hidden layer - output layer.
 is is a zero-truncated count model of the multipliers. e additional zero prediction model has an accuracy of 99.43% based on a binomial logistic regression model.

TABLE III
S      A/X    DWARV/H’ CV   .

Measured number of Total Wires

A
b

s
o

lu
te

 r
e

la
ti
v
e

 p
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

100

200

300

400

500

600

700

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

0 500000 1000000 1500000 2000000

Fig. 5. e actual total number of wires vs. the relative prediction error of
the total number of wires in the DWARV/Xilinx case.

It is also worth to note, that the predictions on the number
of clo wires are substantially beer than the predictions on
the total number of wires. is may be explained by assuming
a more regular layout of clo distribution nets over an FPGA.
In Fig. 2 - Fig. 5, we provide plots of the predicted data and

the percentage error for two neural network models. Fig. 2
and Fig. 3 show the results for the Flip-Flops model and Fig. 4
and Fig. 5 show the results for the Total Wires model. ese
plots make use of cross-validated predictions as data points.
We ose these figures as representative illustrations of the
behavior of all the factors we estimate. Observe in Fig. 2 that
the predictions visually correlate quite well with the observed
values. e line y = x represents the ideal case. ere are
no noteworthy outliers. In Fig. 4, we see a similar behavior.
Here, we also find a good visual correlation and no noteworthy
outliers. We can see in this plot that there are a number of zero
estimates. Indeed, in 11 cases, the model predicted a negative
value whi gets truncated to zero.
In Fig. 3, we see the percentage error on ea data point.

Measured number of Multipliers

P
re

d
ic

te
d
 n

u
m

b
e
r

o
f
M

u
lt
ip

lie
rs

0

20

40

60

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l ll l
l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

lll

l

0 10 20 30 40 50 60 70

floyd_warshall

Fig. 6. e actual total number of multipliers vs. the predicted total number
of multipliers in the DWARV/Xilinx case.

Interestingly, we see that the percentage error is not normally
distributed. When we consider that the used regression te-
niques aim to minimize the absolute error as an amount, this
error will be normally distributed when the number of data
points is large. erefore, it makes sense for the percentage
errors to have an inverse relation with the measured values.
We ploed the theoretical standard error σ as a percentage of
the measured values in the plot to compare. Similar behavior
can be seen in Fig. 5 for the number of total wires.

Fig. 6 and Fig. 7 show the prediction quality and percentage
error for the composed model for multipliers, i.e. both the
decision and count model. We observe similar behavior as with
the neural network models. e predictions are close to the
ideal line. Note in Fig. 6 that the measured values are capped at
72 multipliers. e predictions show a larger error at this point.
is can be explained by the fact that some kernels would
use more multipliers if available, while synthesis assigned

147

Measured number of Multipliers

A
b

s
o

lu
te

 r
e

la
ti
v
e

 p
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

0.5

1.0

1.5

2.0

2.5

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

0 10 20 30 40 50 60 70

Fig. 7. e actual total number of multipliers vs. the relative prediction error
of the total number of multipliers in the DWARV/Xilinx case.

Measured number of Registers

P
re

d
ic

te
d

 n
u

m
b

e
r

o
f

R
e

g
is

te
rs

0

10000

20000

30000

l

ll

l

l
ll

l

l
l

l

l

l

l

ll
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l l

ll
l l

l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l
l

l

l

lll
llll

l

l

l

l

l

lll l
l

l
l

l
l

l

l

l

l

l

0 10000 20000 30000

Fig. 8. e actual number of registers vs. the predicted number of registers
in the C-to-Verilog/Altera case.

at most 72 multipliers. Furthermore, it’s worth to observe,
that one kernel is erroneously predicted to have a number
of multipliers, while this is not the case. Additionaly, the
plot shows one outlier, identified as the floyd_warshall kernel,
whi had a code feature not supported by DWARV. erefore,
the produced VHDL file was not correct. e synthesis tool
then removed 3 32-bit multiplications during optimization,
ea accounting for 4 multiplier blos (8x18 multiplier). is
surmounts to a difference of 12 multipliers in the observed
value for this kernel. is discrepancy explains the large offset
of this prediction.

B. Results for the C-to-Verilog/Altera case
In this paper, we have validated our claim that the ipu

modeling approa can easily recalibrate models for different
combinations of tools and platforms. In Table III, we observe

Measured number of Registers

A
b
s
o
lu

te
 r

e
la

ti
v
e
 p

re
d
ic

ti
o
n
 e

rr
o
r

(%
)

1

2

3

4

5

6

7

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l ll lll

l l

ll

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

ll

l

l

l ll

l

ll
l

l

ll

l l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

ll

l

l

l

l l

l

l

l

ll
l

ll

10000 20000 30000

Fig. 9. e actual number of registers vs. the relative prediction error of the
total number of registers in the C-to-Verilog/Altera case.

that the reported errors for the number of ALMs, Registers,
ALUTs, and wires, all are well below the prediction errors
for the models we have generated for the DWARV/Xilinx
case. First, note, that this shows that our approa can be
recalibrated for another set of tools. Secondly, we observe that
the results produced by the combination of C-to-Verilog, the
artus II synthesis, and the Stratix IV FPGA exhibits a more
linear transformation from C. It is not likely that the FPGA
structure itself is debit to this fact, as the Stratix IV FPGA
also is a fairly complex device. It is more likely that the C-
to-Verilog and artus II tools produce more regular designs
when using no particular optimization flags. It is our suspicion
that the C-to-Verilog tool, in particular, does not use complex
optimizations. is needs to be further investigated using its
source code.

Furthermore, we can also observe similar behavior from
Fig. 8 and Fig. 9. In Fig. 8, we observe that the predicted values
correspond quite good with the actual values. We do note one
outlier on the top-le of the figure. is data point represents
the idct kernel in the kernel library. is kernel is aracterized
by having many constant multiplications. Apparently, the C-
to-Verilog or Altera tools do not perform the strength reduction
optimization in all cases, whi makesipu underestimate the
number of multipliers and overestimate the number of shis
and additions in the design. is outlier clearly shows the need
to investigate the different optimizations that are performed
in ea modeled tool. is misrepresentation of the number
of multiplications is also the main reason for the problematic
prediction model for multipliers in the Altera case. As can be
seen from Table III, this prediction model exhibits an error
of 82%. We expect that the accuracy will improve when we
have accounted for the correct optimizations employed in the
C-to-Verilog tool.

148

C. Summary of Results
e presented approa provides relevant results that are

generally applicable due to our large library of kernels and, as
su, it is not aracterized by erry-piing certain kernels.
However, we can see from Table I, that we have larger
errors than other teniques. For the number of slices, we
report an error of 26% compared to 7-10% for teniques
that don’t take into consideration the entire design, 5% for a
method that uses a customized C dialect with regular structure,
and 12% compared to a seme that requires DFG repre-
sentations. Nonetheless, the increased error compared with
other teniques is expected, as we estimate entire designs
at a particularly early level from normal C code. Moreover,
our approa is general and not restricted to any particular
platform or tool. In addition, it is very fast, as it takes 8.8 sec
to estimate 181 kernels. Most of that time is spent in parsing
the source code.
Finally, we would like to address an important issue con-

cerning the usual method of aracterizing the error in existing
approaes. Almost all teniques calculate the Mean Absolute
Percentage Error (MAPE) to aracterize the error involved in
their prediction method:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (9)

As we observed in Fig. 3 and Fig. 5, individual percentage
errors tend to be larger when closer to the zero. As su, MAPE
will be adversely influenced by datasets with more relatively
small kernels. is observation has already been made in other
fields of resear, e.g. [12], [20]. Other error summary statistics,
su as the RMSEp or the Mean Absolute Error, can be good
alternatives for measuring the error, possibly as percentages of
the mean.

VII. C

In this paper, we proposed a high level quantitative predic-
tion modeling approa with model selection, neural networks,
logistic regression, and data transformations. A kernel library
of 181 kernels was used to build and validate this method by
using 10-Fold cross-validation. We have shown the recalibra-
tion of our approa to different tool-ains and problems. For
the Xilinx case, we reported errors in the range of 15% and
34%, while for the Altera case errors ranged from 13% to 82%.
More specifically, for the Xilinx case, we reported an error of
34% for the number of wires, 26% for the number of slices,
and only 14% for the number of multipliers. For the Altera
case, we reported an error of 18% for the number of wires,
17% for the number of ALMs, but 82% for the number of
multipliers, due to the misrepresentation of the specific strength
reduction optimization used int the C-to-Verilog tool in the
measurement procedure. An important aspect that we want to
address in the near future is the validation of our approa
in the context of a HW-SW co-design framework. Especially,

we need to evaluate whether our approa can help drive early
HW-SW partitioning. Anyhow, we leave this to future resear.

A

e authors would like to thank dr. Eric Cator for his advise
on the statistical analysis of our work.

R

[1] Virtex-4 family overview, August 2010. DS112 (v3.1).
[2] H. Akaike. A new look at the statistical model identification. IEEE Trans.

Autom. Control, 19(6):716 – 723, dec 1974.
[3] Y. Ben-Asher and N. Rotem. Synthesis for variable pipelined function

units. In Proc. SOC’08., pages 1–4, nov. 2008.
[4] Y. Ben-Asher and N. Rotem. Automatic memory partitioning: increasing

memory parallelism via data structure partitioning. In Proc. CODES’10,
pages 155–162, New York, NY, USA, 2010.

[5] G. E. P. Box and D. R. Cox. An analysis of transformations. J. of the
Royal Statistical Society. Series B, 26(2):211–252, 1964.

[6] C. Brandolese, W. Fornaciari, and F. Salice. An area estimation method-
ology for fpga based designs at systemc-level. In Proc. DAC’04, pages
129–132, New York, NY, USA, 2004.

[7] R. Callan. Essence of Neural Networks. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998.

[8] L. M. Chuong, S.-K. Lam, and T. Srikanthan. Area-Time Estimation of
Controller for Porting C-Based Functions onto FPGA. In Proc. RSP’09,
pages 145–151, 2009.

[9] T. Degryse, H. Devos, and D. Stroobandt. FPGA Resource Estimation for
Loop Controllers. In Proc. ODES’08, pages 9–15, Boston, MA, USA, 2008.

[10] L. Deng, K. Sobti, and C. Chakrabarti. Accurate models for estimating
area and power of fpga implementations. In Proc. ICASSP’08, pages 1417
–1420, apr. 2008.

[11] R. Enzler, T. Jeger, D. Coet, and G. Tröster. High-Level Area and
Performance Estimation of Hardware Building Blos on FPGAs. In
Proc. FPL’00, pages 525–534, London, UK, 2000.

[12] W. Guang, M. Baraldo, and M. Furlanut. Calculating percentage pre-
diction error: A user’s note. Pharmacological Resear, 32(4):241 – 248,
1995.

[13] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proc. IJCAI’95 - Vol. 2, pages
1137–1143, San Francisco, CA, USA, 1995.

[14] D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi. Compile-time
area estimation for LUT-based FPGAs. ACM Trans. Des. Autom. Electron.
Syst., 11(1):104–122, 2006.

[15] R. Meeuws, K. Sigdel, Y. Yankova, and K. Bertels. High level quantitative
interconnect estimation for early design space exploration. In Proc.
FPT’08, pages 317 –320, dec 2008.

[16] R. J. Meeuws. A quantitative model for hardware/soware partitioning.
Master’s thesis, Del University of Tenology, Del, Netherlands, Del,
Netherlands, May 2007.

[17] R. J. Meeuws, Y. D. Yankova, K. Bertels, G. N. Gaydadjiev, and
S. Vassiliadis. A quantitative prediction model for hardware/soware
partitioning. In Proc. FPL’07, pages 317–320, August 2007.

[18] Á. Monostori, H. H. Frühauf, and G. Kókai. i estimation of resources
of fpgas and asics using neural networks. In Proc. LWA’05, pages 210–215.
DFKI, 2005.

[19] P. Sumaer and P. Jha. Fast and accurate resource estimation of rtl-
based designs targeting fpgas. In Proc. FPL’08, pages 59 –64, sep. 2008.

[20] L. B. Sheiner and S. L. Beal. Some suggestions for measuring predictive
performance. J. of Pharmacokinetics and Pharmacodynamics, 9:503–512,
1981. 10.1007/BF01060893.

[21] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S.
Springer, New York, fourth edition, 2002. ISBN 0-387-95457-0.

[22] C-to-verilog. hp://www.c-to-verilog.com/.
[23] Del workben. hp://ce.et.tudel.nl/DWB/.
[24] S. Wenande and R. Chidester. Xilinx takes power analysis to new levels

with XPower. XCell Journal, 41(3):26–27, 2001.
[25] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vassil-

iadis. Dwarv: Delworkben automated reconfigurable vhdl generator.
In Proc. FPL’07, pages 697 –701, 27-29 2007.

149

