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ABSTRACT

This paper presents an automated flexible pipeline design algorithm for our unique acceleration
technique called Recursive Variable Expansion. The preliminary experimental results on a kernel

of real life application shows comparable performance to hand optimized implementation in re-

duced design time. This make it a good choice for generating high performance code for kernels,

for which hand optimized codes are not available.
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1 Introduction

Loops are an important source of performance improvement, for which there exist a large
number of compiler optimizations. A major performance can be achieved through loop par-
allelization. By doing extensive loop parallelization, reconfigurable systems beat general pur-
pose processor (GPP) albeit the higher frequency of GPP. Recursive Variable Expansion
(RVE) is a technique which removes the loop carried data dependencies among the vari-
ous statements of the program to execute every statement in parallel. By doing this, we can
see the maximum parallelism that can be achieved assuming we have unlimited hardware
resources on a FPGA. To be more practical, we would like to achieve maximum parallelism
given some limited hardware resources. Pipelining is one of the widely used technique, in
which resources can be reduced with out much degradation of parallelism. In this paper,
we introduce a flexible pipelining design algorithm for RVE which not only fulfills the area
constraints on a given FPGA but also hides the memory access latency behind computation.

1.1 Recursive Variable Expansion

The basic idea is the following. If any statement Gi is waiting for some statement Hj to
complete for some iteration i and j respectively due to some data dependency, both of the

1E-mail: {z.nawaz,t.m.thomas,k.l.m.bertels}@tudelft.nl
2E-mail: stefanov@tudelft.nl



for i=1 to 5 
  A[i]=0 
  for j=1 to 4 
    A[i]=A[i]+d[j]*i 
  end for 
  A[i]=A[i]>>8 
end for 

(a) sample code

A[1]=A[1]>>8 
    =A[1]+d[4]*1>>8 
    =A[1]+d[3]*1+d[4]*1>>8 
    =A[1]+d[2]*1+d[3]*1+d[4]*1>>8 
    =A[1]+d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8 
    =0+d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8 
    =d[1]*1+d[2]*1+d[3]*1+d[4]*1>>8 
... 
A[5]=d[1]*5+d[2]*5+d[3]*5+d[4]*5>>8 

(b) RVE expanded expressions
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(c) Circuit for Figure 1b

Figure 1: Motivational example

i = i*c+i*c+i*c+i*c>>c

...

i = i*c+i*c+i*c+i*c>>c
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(a) Generic Expressions
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(b) Pipelined circuit for i*c+i*c+i*c+i*c>>c
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Figure 2: Generic expression and its pipeline circuit ??

statements can be executed in parallel, if the computation done in Hj is replaced with all
the occurrences of the variable in Gi which creates the dependency with Hj. This makes Gi

independent of Hj . Similarly, computations can be substituted for all the variables which
creates dependencies in other statements. This process can be repeated recursively till all
the statements are function of known values and all data dependencies are removed. Hence,
all the statements can be executed in parallel provided the required resources are available.
RVE can be applied to a class of problems, which satisfy the following conditions.

1. The bounds of the loops must be known at the compile time.

2. The loops does not have any conditional statement.

3. Data is read at the beginning of a kernel from the memory and written back at the end
of the kernel.

4. The indexing of the variables should be a function of surrounding loop iterators and/or
constants.

2 Pipelining for Recursive Variable Expansion

We will use the simple example shown in Figure 1a in the rest of the paper to illustrate the
RVE technique and how pipelining can be efficiently used. d[1], d[2], d[3] and d[4] are the
four inputs and A[1], A[2], ..., A[5] are the five outputs to it. After applying the RVE, we get
the expanded expressions shown in Figure 1b. As all loop carried dependencies are removed,
all the expanded statements in Figure 1b can be computed efficiently by computing all the



Table 1: Comparison of automatically optimized DCT with Xilinx hand optimized DCT

Frequency

(MHz)

Initial latency

(cycles)

Computation time for a block of 8 × 8

(cycles)

Time

(ns)

Slices

Xilinx DCT core 171.223 92 64 373.8 1213

DCT full element 121.479 13 64 526.8 9215

DCT one-third element 265.354 8 192 723.6 2031

outputs in parallel by using a binary tree structure for each output as shown in Figure 1c.
Computing like this gives a lot of parallelism, at the same time it requires a lot of area. This
area can be reduced at the cost of little degradation in parallelism if all the circuits can be
pipelined.

When a circuit is to be made from an expression, then the type and sequence of operators
along with the type of operands is important. Therefore the expanded expressions in Figure
1b can be transformed to the generic expressions in Figure 2a by replacing variables with their
types. In Figure 2a, i stands for integer and c for constant. The information in a generic ex-
pression is sufficient enough to infer the type and sequence of the operator along with the
type of operands. Figure 2a shows that the generic expression (i.e. i*c+i*c+i*c+i*c>>c) for all
outputs (A[1], A[2], ..., A[5]) is the same, which means that the sequence and type of op-
erators in circuits of all outputs is the same. Therefore, we can map a circuit for an output
along with intermediate registers on to an FPGA as shown in Figure 2b, provided it meets
the area and memory constraints. The rest of the elements can be pipelined one after the
other just by feeding the corresponding variables after each cycle in the circuit. However, if
the memory or area constraints are not met, then the expression for an element has to be di-
vided further and further into some smaller repeated equivalent sub-expressions such that
when a circuit is to be made for any of those sub-expressions, it satisfies the area and mem-
ory constraints. This smaller sub-expression can be pipelined easily as it is small enough to
satisfy the area and memory constraints and there are more than one such expression, for
which corresponding data can be provided accordingly. For example in Figure 2a, some re-
peats are: i*c+i*c repeated 10 times and i*c repeated 20 times. The corresponding pipelined
circuits are shown in Figure 2c and Figure 2d. This means that the problem of enumerating
pipelining candidates for expanded expression is equivalent to finding repeated equivalent
subexpressions or repeats in the corresponding generic expression. The chances of finding
various repeats is very high in a RVE generic expression because it is generated from loop
body without conditional statement which is doing some repetitive task, as shown in Figure
2a.

We would like to find the largest circuit which can be pipelinied and also satisfy the
area and memory requirement. It is equivalent to finding the largest repeat in the generic
expression which satisfy the area and memory requirment.

A better algorithm to find repeat is by using suffix tree [NMSB09]. It can find the optimal
repeat in O(L2) , which satisfies the area and memory requirement.

3 Experiments

The pipelining algorithm for RVE is implemented, which automatically finds the optimal
repeat and the variables that need to be transferred after every cycle. We use a Molen pro-



totype implemented on the Xilinx Virtex II pro platform XC2VP30 FPGA, which contains
13696 slices. The automatically generated code is simulated and synthesized on ModelSIM
and Xilinx XST of ISE 8.2.022 respectively. The integer implementation of DCT is used as
benchmark to demonstrate the effectiveness of our pipelining algorithm. The results of the
automatically optimized and different pipeline sizes for the DCT are compared with the
hand optimized and pipelined DCT core3 provided by Xilinx on the same platform. All the
implementations take 8-bit input block elements and output DCT of 9-bit. A kernel of DCT
outputs 64 elements whose generic expressions are the same. The repeat finding algorithm
gives the optimal repeat in generic equation to be equal to expanded expression of one of
these elements, we refer to it as full element in the experiment. This is the largest repeat
which satisfy the area and memory requirements, therefore it is the optimal repeat. How-
ever, if there is less area available on FPGA, The next largest repeat is equal to one third of
the expanded expression of the element, we refer to it as one-third element.

Table 1 shows the results for different implementation of DCT after synthesis. The Xil-
inx DCT core is hand optimized by knowing the properties of 2D DCT. 1D DCT is only
implemented with buffering and taking the transpose of the 8×8 block. Our automatic opti-
mization does not take advantage of the knowledge of the properties of 2D DCT. It takes the
unoptimized code of 2D DCT, follows some generic steps to apply the RVE and then design
a flexible deep pipeline trying to satisfy the area and memory constraints. The code gener-
ated for DCT full element is very large as compared to hand optimized, therefore it has low
frequency. However, it extracts lots of parallelism and utilizes the resources to its capacity
and produces a output of DCT block every 64 cycles with low initial latency of 13 cycles,
which is basically the depth of the pipeline. The code for DCT one-third is relatively small
but still larger than Xilinx DCT core. It produces better frequency than Xilinx core at the cost
of 3 times more cycles and low initial latency of 8 cycles to compute one DCT block. The
time to compute DCT using one third element is increased by 37% with a 78% decrease in
area as compared to computing with full element.

4 Conclusion

The results show that our pipelining design algorithm for RVE which applies on some lim-
ited type of problems gives a comparable performance at the cost of extra hardware than
the hand optimized code. Although it is not better than hand optimized in performance, the
main benefits of our approach is automated design, optimization, and HW generation of
kernels starting from a program code. Our algorithm is a good choice for kernels, for which
hand optimized codes are not available, area is not major concern and high performance
is the requirement in short design time. As a future work, we will apply our algorithm on
more kernels for real life application.
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