OpenMP extensions for FPGA Accelerators

Daniel Cabrera!'?, Xavier Martorell'2, Georgi Gaydadjiev®, Eduard Ayguade!?, Daniel Jiménez-Gonzélez'?
'Barcelona Supercomputing Center
¢/Jordi Girona 31,
Torre Girona,
E-08034 Barcelona, Spain

2Universitat Politécnica de Catalunya
c/Jordi Girona 1-3,
Campus Nord-UPC, Modul C6,
E-08034 Barcelona, Spain
{dcabrera, xavim, eduard, djimenez} @ac.upc.edu

Abstract—Reconfigurable computing is one of the paths to
explore towards low-power supercomputing. However, pro-
gramming these reconfigurable devices is not an easy task and
still requires significant research and development efforts to
make it really productive. In addition, the use of these devices
as accelerators in multicore, SMPs and ccNUMA architectures
adds an additional level of programming complexity in order to
specify the offloading of tasks to reconfigurable devices and the
interoperability with current shared-memory programming
paradigms such as OpenMP. This paper presents extensions
to OpenMP 3.0 that try to address this second challenge and
an implementation in a prototype runtime system. With these
extensions the programmer can easily express the offloading
of an already existing reconfigurable binary code (bitstream)
hiding all the complexities related with device configuration,
bitstream loading, data arrangement and movement to the
device memory. Our current prototype implementation targets
the SGI Altix systems with RASC blades (based on the Virtex
4 FPGA). We analyze the overheads introduced in this imple-
mentation and propose a hybrid host/device operational mode
to hide some of these overheads, significantly improving the
performance of the applications. A complete evaluation of the
system is done with a matrix multiplication kernel, including
an estimation considering different FPGA frequencies.

I. INTRODUCTION

The gigahertz race to which we were used to in the last
decade has stopped due to power dissipation problems. The
extra transistors that are available for new designs are not
used to increase the complexity of superscalar architectures,
out of order or multithreaded. The technological increase in
transistor count is used to include more that one core in the
same chip (homogeneous multicore) and/or to incorporate
accelerators (heterogeneous multicore) well suited for cer-
tain application domains, such as for example GPU units in
[1] or vector units in the Cell/B.E.[2]. For these accelerators,
the exploitation of the potential parallelism available is not
an easy task, and relies on the use of specific SDKs.

3Delft University of Technology
Mekelweg 4,
2628 CD Delft,
The Netherlands
g.n.gaydadjiev @its.tudelft.nl

The use of specialized devices designed to compute some
specific function (ASIC circuits) is another alternative to
benefit a specific kind of applications. For example an ASIC
to compute fast Fourier transforms can clearly eliminate
the computation bottlenecks found in some bioinformatics
applications. Field Programmable Gate Arrays (FPGA) are
accelerators whose specific functionality can be retargetted
to different domains at runtime. However, efficiently pro-
gramming these specific functionalities requires the use of
low-level hardware description languages (HDL), such as
Verilog or VHDL, to which general-purpose programmers
are not used to.

The productive parallelization of applications for het-
erogenous multicore architectures that include one or more
of such accelerators requires programming models able to
express the proper offloading of tasks and the data that is
needed to perform the computation. This is the purpose
of this paper, and in particular, to show a proposal that
extends OpenMP 3.0 tasking [3] to target heterogeneous
architectures with FPGA-based accelerators. OpenMP 3.0
task pragmas completely fits with the idea of using one or
more FPGAs as accelerators. In this paper we are assuming
that the bitstreams that corresponds to the computations to
be offloaded in tasks are either existing IP cores or are gen-
erated using other compilation tools. This may impose some
restrictions in the behavior of the tasks to be offloaded, such
as for example on the use of synchronization constructs.

In order to motivate our extensions to OpenMP 3.0 and
their implementation in the runtime system, Figure 1 shows
part of the code that is necessary to offload the execution
of a matrix multiplication bitstream matmul_fpga to one of
the FPGAs available on the SGI RASC architecture [4],
using the SGI RASCIib library [5]. In addition to this, the
programmer needs to change the memory association of
data in the host when transfers to/from the FPGA device

(pack/unpack), which may also require the use of blocking
in order to fit the requirements of the accelerator bitstream
and memory. Our proposed extensions and runtime imple-
mentation try to hide all these complexities, making the
parallelization and offloading of tasks in accelerators more
productive.

The rest of the paper is organized as follows: Section II
presents the extensions proposed for OpenMP. Section III
shows implementation details of the runtime system. Sec-
tions IV details the experimental setup. Sections V and VI
show experimental evaluation. Section VII presents related
work, and we conclude with Section VIII.

II. PROPOSED OPENMP EXTENSIONS FOR FPGA

Tasks are the most important new feature of OpenMP 3.0.
A programmer can define deferrable units of work, called
tasks, and later ensure that all the tasks defined up to some
point have finished.

#pragma omp task [clause-list]
structured-block

Clauses can be used to specify data scoping (shared,
private or firstprivate) and conditional execution
as a task (if), mainly. The runtime system launches the
execution of the code in structured-block in the
scope of the parent task, following the data scoping at-
tributes indicated. The current execution model assumes that
a thread in the current team of threads will execute the task.
The proposal in [6] extended the task construct with some

1 void matrix_multiplication (float A[BS][BS],
2 float B[BS][BS],

float C[BS][BS])
{

/« Configure device x/

res = rasclib_resource_configure ("matmul_fpga",
num_devices, NULL);

9 algorithm_id = rasclib_algorithm_open ("matmul_fpga",

10 RASCLIB_BUFFERED_IO) ;

1

12/« Send inputs x/

L N S

13 res = rasclib_algorithm_send (algorithm_id, "a",
14 A, sizeof(A));

15

16 res = rasclib_algorithm_send (algorithm_id, "B",
17 B, sizeof (B));

18/« Execute x/

19 rasclib_algorithm_go (algorithm_id);

20

21/« Receive outputs x/

22 res = rasclib_algorithm_receive (algorithm_id ,
23 C, sizeof (C));

24

25/« Commit commands and wait x/

26 rasclib_algorithm_commit (algorithm_id , NULL);
27 rasclib_algorithm_wait (algorithm_id);
28 rasclib_resource_return ("matmul_fpga",
29

30 }

nen

num_devices);

Fig. 1. Basic example programmed using RASClib. Error check has been

omitted

additional clauses to derive dependencies among tasks at
runtime

e input (data-reference-1list)

e output (data-reference-1list)

e inout (data-reference-1list)

The information provided in these clauses will be used
by the runtime system to analyze the dependencies among
tasks and guarantee the proper order execution of them
as proposed in [6]. Although in some cases the compiler
can analyze the code and determine the input and output
data sets, we provided these additional clauses to modify or
augment the compiler analysis.

In an heterogeneous multicore architecture, we need some
additional information in order to appropriately assign the
execution of the task to any of the available devices, a GPU,
an vector unit, FPGA device, ... Our proposals leverages on
previous proposals that allow the specification of depen-
dencies between tasks [6], loop blocking transformations
specified at the pragma level [7], and the use of accelerators
[8], all of them in the scope of OpenMP 3.0. In the following
subsections we comment each one of the new pragmas that
we use and/or extend in order to consider FPGA-based
accelerator architectures.

Figure 2 shows the full version using our new pragmas in
OpenMP 3.0 (pragmas details in Section II). Task offloading
to fpga device is specified in the header function mat-
mul_fpga (line 8 in Figure 2), and the appropiate blocking
and packing/unpacking of data is expressed through the
block pragma (line 17) and the specification of the direc-
tion of the arguments (line 7,19, 20). The runtime system
will take care of efficiently implementing them and hiding
their possible overheads.

1 float A[DIM_SIZE |[DIM_SIZE];

2 float B[DIM_SIZE |[DIM_SIZE];

3 float C[DIM_SIZE][DIM_SIZE];

4

s #pragma omp target device(fpga) \

6 implements(block_matmul) \

7 copy_in(A,B) copy_inout (C)

s extern void matmul_fpga(float A[BS][BS],

9 float B[BS][BS], float C[BS][BS]);

10
...

12

Bint i, j, k;

0; i < DIM_SIZE; i++) {

14 for (i =

15 for (j = 0; j < DIM_SIZE; j++) {

16 for (k = 0; k < DIM_SIZE; k++) {

17 #pragma omp block nest(3) factor(BS,BS,BS) \
18 #pragma omp task label(block_matmul) \

19 input (A[i][k],BIkI[j1) \
20 inout (CLill[j])

21 CLillj] += Alillk] = B[kI[j];

2

23

24}

Fig. 2. Matrix multiplication using the proposed OpenMP extensions

A. Target device pragma

The following pragma [8] may precede any existing
pragma task or function declaration or header

#pragma omp target device (device-name-list)
[clause-1list]
{pragma—-task]|
function-definition|
function-header}

It is used to specify that the execution of the task
could be offloaded to any of the devices specified in
device-name-1list. The names used in this list are
vendor specific (i.e. cell, cuda, ...). In the case of using
FPGA accelerators, the device—name should be fpga.
Then, when a task is ready for execution (i.e. it has no
dependencies with other previously generated tasks) the
runtime can choose among the different available targets to
decide in which device to execute the task. If no resource is
available (or not configured yet), the runtime could execute
the default implementation on the host or stall until one of
the resources becomes available.
Some additional clauses can be used with this pragma
device:
e copy_in(data-reference-list)
copy_out (data-reference-1list)
copy_inout (data-reference-1list)

e implements (function—name or label-name)

The first three clauses, which are ignored for the shared-
memory architectures, specify data movement for the
shared variables used inside the task. Copy_in will
move variables in data-reference-list from host
to device memory. Copy_out will move variable in
data-reference-1ist back from device to host mem-
ory. Copy_inout will do both. Once the task is ready for
execution, the runtime system will move variables in the
copy_in or copy_inout lists. Once the task finishes ex-
ecution, the runtime will move variables in the copy_out
or copy_inout lists, if necessary.

Clause implements (function-name) is used to
specify an alternative implementation for a function that
is invoked as a task. For instance, in the following code
excerpt:

#pragma omp task input (A[BS][BS], B[BS][BS])
inout (C[BS] [BS])
extern void matmul (float A[BSIZE] [BSIZE],
float B[BSIZE] [BSIZE],
float C[BSIZE] [BSIZE]);

’

#pragma omp target device (fpga) \
implements (matmul) \
copy_in (A, B) copy_inout (C)
extern void matmul_fpga (float A[BS] [BS],
float B[BS][BS],
float C[BS][BS]);

The programmer specifies that matmul_fpga is an

alternative implementation of matmul when offloading
the execution of that function to an FPGA device. In
addition the programmer is specifying a change in mem-
ory association of the blocks used in the host imple-
mentation (matmul) and in the offloaded implementation
(matmul_fpga). Notice that the accelerator version uses
blocks of BSxBS contiguous elements, while in the host
the block of BSxBS elements is part of a larger matrix of
BSIZExBSIZE elements.

B. label—-name clause

In order to allow the specification of a alternative im-
plementations for structured code blocks, we extend the
task pragma with an additional 1abel-name clause. The
input, output and inout clauses in task together
with the copy_in, copy_out and copy_inout clauses
in target are used to match variables used in the struc-
tured code block with arguments in the function used to
implement it.

For the example shown in Figure 2, the programmer
specifies that matmul_fpga bitstream will be used to offload
the execution of the structured code block block_matmul to
the FPGA device.

In the case of function calls, it is not necessary to specify
the label clause since the function name is used as label
to identify alternative implementations.

C. Block pragma

When offloading the execution of tasks to accelerators,
it is necessary to fit the problem to the limitations (for
example memory) of those accelerators. In the case of
FPGA accelerators, the specific hardware implementation
of the task code in the FPGA can introduce additional
constraints. In this paper we propose the use of pragmas
to drive program transformations that are necessary to fit
the task into the accelerator device. In particular the use
of loop blocking, a well-known compiler technique used to
optimize the exploitation of data locality.

The block pragma is introduced to block perfectly
nested loops whose body is to be offloaded into the ac-
celerator.

#pragma omp block nest (block-dimension)
factor (block—-size—-1list)
task-code

The nest (block-dimension) clause specifies that
block-dimension consecutive loops are affected by
the blocking, being the inner loop the one that con-
tains the block pragma. On the other hand, the
block-size-1list on the factor clause specifies the
blocking size that should be used for each loop and induc-
tion variable. In addition to the loops, the pragma also trans-
forms all the references in the data-reference-1lists
that are included in input, output and inout clauses.

To illustrate the effect of this pragma, Figure 3 shows
how a source-to-source restructurer would transform the
block pragma in Figure 2. The code transformation shown
in Figure 3 should be manually applied by the programmer
if the proposed block clause would not exist. This block
pragma makes programming for such accelerators much
more productive, avoiding the writing of the bounds of
the block of elements that have to be moved to/from the
accelerator.

Other more complex blocking strategies will have to
be manually introduced by the programmer. However, the
simple one proposed here is widely applied.

III. RUNTIME SYSTEM IMPLEMENTATION

The runtime system should provide support to offload
the execution of bitstreams and the required data transfers
for the SGI RASC technology following the OpenMP 3.0
pragma extensions described in Section II. In addition to
this support, an implementation should also include the
following main features:

« Bitstream cache and support for hybrid computation.

o Transparent change of memory association, providing
data packing and unpacking when transferring data
between host and FPGA device.

o Multithreaded FPGA library interface.

In the following subsections we detail a possible imple-
mentation of these features.
A. Bitstream cache and hybrid computation

As we will analyze in Section V, the time required to
configure a bitstream in the FPGA can be significantly high.

1
2 #pragma omp target device(fpga) \

3 implements(block_matmul) \
4 copy_in(A, B) copy_inout(C)

s extern void matmul_fpga(float A[BS][BS],
6 float B[BS][BS],
7 float C[BS][BS]);
8

oint i, j, k;
0; i < DIM_SIZE; i+=BS)

1 for (i =
2 for (j = 0; j < DIM_SIZE; j+=BS)
13 for (k = 0; k < DIM_SIZE; k+=BS) {
14 pragma omp task label(block_matmul) \
s input (A[i:i+BS—1][k:k+BS—1], \
16 Blk:k+BS—1][j:j+BS—1]) \
17 inout (C[i:i+BS—1][j:j+BS—1])
18 {
19 for (i_b = i; i_b < i+BS; ib++)
20 for (j_b = j; j_b < j+BS; jb++)
21 for (k_b = k; k_b < k+BS; kb++)
22 Cli_b][j_b] += A[i_b][k_b] = B[k_b][j_b];
23 }
24 }
25
Fig. 3. Restructured version of the matrix multiplication using the

proposed OpenMP extensions, after blocking

To avoid unnecessary configurations, the runtime system
implements a fully associative cache structure to keep infor-
mation about the bitstreams currently loaded in the FPGA
devices. When a task pragma is found, the runtime checks
if the bitstream that implements the function or structured
code block associated with the task is already configured. A
hit in the bitstream cache produces the effective offloading
of the task execution. If the runtime detects a miss in the
bitstream cache, it will apply a least frequently used (LFU)
replacement policy, initializes the FPGA device associated
to replace the bitstream and configure the FPGA device with
the new bitstream. The number of entries of the bitstream
cache is the number of FPGA devices we have. In case of
having partial reconfigurations, the bitstream cache should
take them into account.

In order to hide the FPGA configuration time that happens
on a miss, the runtime applies what we call a hybrid
computation policy. In this hybrid computation mode, when
a miss occurs the runtime checks if the configuration for
that task is already in progress; if it is not in progress, the
runtime will launch the configuration of the bitstream. In
both cases, the runtime will execute the task in the host
processor overlapping with the configuration process. Once
the bitstream is configured, the runtime will detect a hit
in the bitstream cache and offload the execution of future
instances of that task to the FPGA device.

B. Memory association changes: pack/unpack

The data transfer bandwidth between the host and the
FPGA device can be a bottleneck depending on the appli-
cation characteristics, and the system you are running on.
Our runtime system deals with this issue doing data pack-
ing and unpacking, as indicated by the different memory
associations detected by the source-to-source compiler.

C. Multithreaded FPGA library interface

The FPGA library interface should be implemented using
threads in order to avoid the application to be blocked in
FPGA management operations. For instance, a thread can
be configuring the FPGA device meanwhile another one is
doing useful work in the host side (hybrid computation).
There are one master and one worker threads. The master
thread queues operations in a consumer-producer structure
that the worker reads. The master thread will be blocked
if the queued operation is synchronous, otherwise it will
continue. The worker thread is in charge of performing the
queued operations and will unblock the master thread when
necessary.

IV. EXPERIMENTAL SETUP

Our experiments have been run on a SGI Altix 4700
system equipped with 128 Itanium processors. The system
we used also includes a RASC RC100 FPGA blade (with
two Xilinx Virtex 4 LX200). The prototype runtime system

targets the SGI RASC library 2.2 and Core Services [5].
The source-to-source code transformation process has been
implemented as a new pass in the Mercurium infrastructure
(version 1.2.1) developed at BSC [9]. We use gcc 4.1.2
as backend for compilation to binary code. For all the
compilations we have used -O3 as optimization level for
the software part. Also, we have utilized all the Makefiles
that SGI provides to compile the HDL codes and generate
the configuration files. Those Makefiles use Xilinx ISE 9.1
to generate the bitstream. All timing results are obtained
using the gettimeofday() system call.

In our current prototype implementation, an abstract layer,
that is easily adaptable to other FPGA based architec-
tures, has been implemented to manage the FPGA devices.
Currently, such a layer does not consider neither multiple
FPGA accelerators, nor partial reconfigurations. Finally, our
current runtime implementation is not dealing with task
dependencies.

V. IMPLEMENTATION ANALYSIS

We have tested our extensions and runtime with the
RASC library examples (the data flow algorithm which is a
pattern matching program and the simple algorithm which
performs logic manipulations) to evaluate the communi-
cation and the programming model cost. Furthermore, we
perform a detailed analysis of our implementation using a
matrix multiplication kernel.

A. Communication Costs

Bitstream loading cost: We define the bitstream loading
cost as the accumulated time of reading the bitstream file
and the configuration of the reconfigurable device. For the
4MB size of the matrix multiplication bitstream this time is
1 second. In fact, this is a cost that you can save if you keep
information of which bitstream is already configured in the
FPGA device. Our runtime system keeps a bitstream cache
with that information, reducing that time to 4ms (since there
is some work to be done in any case).

In any case, the first time that the FPGA device has to
be configured we will have to pay that large amount of
time. Therefore, our runtime system performs an hybrid
computation of the task that has to be offload to an FPGA
device, in the sense, that if there is a bitstream cache miss,
the runtime system will spawn a thread to configure the
bitstream in the FPGA device meanwhile executing the same
task in an available device target.

Host-SRAM Communication Bandwidth: In order to eval-
uate the DMA transfer bandwidth from host to the SRAM
of the FPGA board in the SGI Altix System, we have done a
modification of one of the examples of the RASClib library,
the simple algorithm which performs logic manipulation.
These measures have been taken using the RASC driver
in BUFFERED IO mode. The modified bitstream reads the
last element of a large chunk of data that has to be written in

Runtime System Operation Time (ms) | Executions

Initialization FPGA 13.562 1

Spawn to FPGA 4.651 n

Write Input Data to FPGA 0.186 n

Reset of FPGA 0.113 n

Write InOut Data to FPGA 0.112 n

Wait Execution FPGA 11.602 n

Read InOut Data from FPGA 0.111 n

Unload Bitstream 0.547 n

Uninit FPGA 0.090 1
TABLE I

RUNTIME SYSTEM OVERHEAD FOR PATTERN MATCHING ALGORITHM

EXAMPLE

the memory of the FPGA and, when that value is valid, the
algorithm finalizes, signaling the host part of the program.
Using this bitstream we have a very good approximation
of the real DMA transfer bandwidth between host and the
SRAM of the FPGA: 0.8GB/s.

We have also evaluated the bandwidth of the non-DMA
transfers measuring their execution time. The RASClib
allows us to send a command to the FPGA using a register.
The function that performs this operation finishes when the
data has been sent. The non-DMA data transfer bandwidth
is 630KB/s.

B. Programming Model Costs

In Table I we can see the operations used by our runtime
system. Last column specifies the number of times that
this operation has to be performed in the application:
1 for configuration/deconfiguration operations and n for
application dependent operations, where n is equal or larger
than 1. Results are for the pattern matching example that
comes with the RASCLib library. As we can see, the
most time consuming operations are: initialization of the
FPGA device, spawn of the bitstream to the FPGA, and
waiting for the FPGA to finish. The initialization time is not
significant since it is only done once, and the waiting for
the FPGA depends on the application. Finally, the spawn to
the FPGA time shown in the Table is the bitstream loading
cost commented above, when there is a hit in the bitstream
cache implemented in our runtime system.

In the case of using the blocking technique, we may have
to pay a cost of packing/unpacking blocks of consecutive
memory to send/receive them to/from the FPGA device.
Figure 4 shows the packing/unpacking process of a data
block of matrix C. That cost is host architecture dependend.
In the case of our matrix multiplication, using blocking,
we have analyzed which is the overall application cost of
packing/unpacking when doing a matrix multiplication of
256x256 elements in the SGI Altix 4700 machine. Table II
shows the overall execution times of packing/unpacking of
the data varying the block size from 32x32 upto 128x128,
for a 256x256 matrix multiplication. The larger the block,

Packing

Consecufive
Block C

Put the block

consecutive DMA
in memory

transfer

Consecuive
Black

DM,
transfer

Consecutive
Block C

Host FPGA board
Select (Block C Mem
. block .
Matrix G | — Matrix C FPGA
2

>

Unpacking

Fig. 4. Packing/Unpacking process for a data block of matrix C.

Block size | Pack/Unpack (ms)
32x32 7.9
64x64 2.8
128x128 2.1
TABLE 11

OVERALL EXECUTION TIME OF PACKING/UNPACKING BLOCKS IN THE
MATRIX MULTIPLICATION OF 256X256 ELEMENTS

the better the performance we achieve since we save block
data management overheads, which is very significant for
32x32 blocks. Other memory transfer strategies to process
all the blocks of whole matrix may help to improve the
performance of the matrix multiplication.

VI. CASE OF STUDY: MXM

The objective of this section is not a performance eval-
uation of the FPGA in the SGI Altix 4700, neither a
comparison between two different architectures, but to show
a real example using our proposed extensions.

We have used a matrix multiplication core for up to
128x128 double precision elements, which works at 50 MHz
in the FPGA. This is a version of the MxM in [10] adapted
to the RASC interface. We use this core in order to perform
a hardware blocked matrix multiplication using our blocking
directives as shown in Section II.

The blocking directives let us use the matrix multipli-
cation core as a block matrix multiplication, being able
to multiply matrices larger than 128x128 elements (also
smaller). Figure 2 shows the code we use in the evaluation.

Figure 5 shows execution time for three different versions
of a 256x256 matrix multiplication: software version (256
sw), software version using blocking (256 sw-blocking),
and blocking FPGA version (256 hw). In the case of the
blocking version, block sizes of 32x32, 64x64 and 128x128
have been tested. The blocking software versions show
better results than hardware version. Some of the reasons
are: the extra overhead to execute in the FPGA, and the

Matrix multiplication

3500
3000 =
2500
w1
2 2000 M 2565w
B W 256 sw —
L 1500 blocking
= O 256-hw
= 1000
500
o B B e
3z 64 128
Block Size
Fig. 5. Blocking comparison
Block size | rasclib_algorithm_open (ms)
32x32 2160.2
64x64 271.6
128x128 35
TABLE IIT
TIME TO PERFORM THE RASCLIB_ALGORITHM_OPEN 256X256
ELEMENTS

frequency of the matrix multiplication bitstream (S0MHz).
However, the execution time for the case of 32x32 blocks is
very large and we analyzed it in detail. We figured out that
the rasclib_algorithm_open function, used in the spawn of
the thread to the FPGA to start executing the code, increases
its execution time in each invocation. We cannot give any
reason why this function is wasting that time since we do not
have access to the SGI RASClib code. Table III shows the
overhead produced by the rasclib_algorithm_open function.
However, although any mechanism to reduce the number
of times rasclib_algorithm_open is called will improve
the overall performance of the matrix multiplication, the
packing/unpacking overhead cost (shown in Table II), and
other overhead costs per block, will still exist. Therefore,
the best performance is achieved for the largest block size
tested.

Finally, we wanted to evaluate the performance of the
blocked hardware version if we have had a matrix multipli-
cation with higher frequency than SOMHz. Therere, we have
estimated the execution times of the matrix multiplication
using 100MHz and 200MHz frequencies, properly scaling
the execution time of the FPGA execution part. Figure 6
shows the execution time of the hardware version when
the frequency is SOMHz (the real frequency of our matrix
multiplication core), I00MHz and 200MHz. Results show
that hardware version with larger frequencies will overcome
the software version (256 sw-blocking in the Figure).

Estimated time

3500
3000
2500
- [256-50MHz
5 2000 [256-100MHz
D 1e0n M 256-200MHz
= W 256 sw -
= 1000 blocking
~ L T
0 [H=s |
32 64 128
Block Size
Fig. 6. Matrix multiplication estimated execution times.

VII. RELATED WORK

Hardware description languages (HDL), like Verilog and
and VHDL, are employed to develop programs for FPGA
Those languages are difficult to use for the software devel-
opers because programming should be spatial programming
and at a very low level; being hard to debug.

In order to solve these problems of programming,
new models have appeared. Most of these models are
C extensions. There are many of them: Impulse C [11],
ROCCC [12], Streams C [13], Mitrion C [14], Molen
programming paradigm [15] etc. In these models, the pro-
grammer uses C language on those sections of code that
should be offloaded the FPGA as a task. Usually, there are
two strategies to accelerated/offload a section of code. In
the first strategy, the section of code to be offloaded to
the FPGA is translated from C to VHDL. This strategy is
followed by Streams C, Impulse C and ROCCC. In all of
these models we have a software/hardware solution where
the developers only have to use a C subset and the API
to do the communications. More in detail, Streams C and
Impulse C are focused on the communications between the
core running on the FPGA and the application. In both
models, the authors provide us an API for communications,
allowing the developers to program communications like
C streams. ROCCC is oriented to HPC, focusing on loop
optimizations and how to exploit the parallelism of them
using reconfigurable computing.

The second strategy is to map a soft processor into the
FPGA, and translate the source code to be executed to the
code that this soft processor understands. This strategy is
followed by Mitrion C, where the compiler generates code
for a Mitrion Virtual Processor (a customizable processor
created by Mitrionics). In both strategies the compiler man-
ages communications to improve transparency in program-
ming. In our work, we do not generate code from C to any
HDL or any assembler for a soft core. We use the OpenMP

standard to use existings bitstreams in the applications.

On the other hand, there are other programming models
that are close to our proposal (HMPP [16] and PGI [17]) in
the sense of offloading tasks to accelerators. However, their
current release just supports GPU accelerating coprocessors.

The HMPP [16] approach is to declare, by means of
directives, functions (named codelets) suitable for hardware
acceleration and callsites to them. It also includes directives
to help the generator to produce efficient code (e.g. unroll-
and-jam to increase register exploitation and decrease the
number of loads and stores per operation). At execution,
the HMPP runtime takes care of discovering the attached
accelerators and their availability. When a codelet is indi-
cated to be run on an accelerator, if the device is available
and if the shared library corresponding codelet is present,
HMPP loads it just as a software plug-in. Otherwise the
native version is run on the host CPU or in a worker thread.
The HMPP approach is quite similar to our proposal, since it
also annotates functions to be loaded in the accelerators that
are specified in the target clause. However, we think that our
approach is better integrated in the OpenMP specification
and supports hybrid computation of tasks so that the runtime
can overlap computation of the task on the host CPU
meanwhile the accelerator is being configured. Our also
proposal integrates loop blocking pragmas that naturally
interact with the clauses used to express data movement.

The directives and programming model defined by PGI
[17] allow programmers to specify the regions of a host
program (mainly loops) to be targeted for loading to an
accelerator device, without the need to explicitly initialize
the accelerator and manage data or program transfers be-
tween the host and accelerator. PGI is based on compiler
technology to optimize the loading of loops in accelerators
and the data movement between the memories, not by the
runtime system like in our proposal.

In [18], [19] the authors define which directives from
OpenMP 2.0 can be synthetized. Furthermore, they im-
plement a framework that generates SystemC code from
OpenMP directives. This code is simulated but they do not
generate real hardware from these pragmas because they
cannot be synthetized. Our approach is orthogonal to the
ideas on that work as we are mostly focused on the new
task pragma of OpenMP 3.0.

VIII. CONCLUSIONS

In this paper, we have presented a runtime system imple-
mentation of the OpenMP 3.0 extensions to offload tasks to
different target devices. In particular, we have implemented
those extensions inside the Mercurium compiler framework
in a SGI Altix architecture to use FPGA devices. Those
OpenMP extensions helps programmability and reduce de-
veloping cost.

We have seen some bottlenecks on the SGI Altix archi-
tecture and environment, like the DMA transfer bandwidth

and the rasclib_algorithm_open function, that penalize the
overall performance of the application. We will improve
our bandwidth using using DIRECT_IO mode in the RASC
driver in a future release. Another time consuming function
of RASCIib library is rasclib_resource_configure(). This
function has to read the bitstream from the hard disk, load
it in the main memory, send it through the NUMAlink
connection and configure the Virtex 4 FPGA. In particular,
we have observed that most of the time is spent reading
from the hard disk and configuring the FPGA. Our runtime
system hides this time using hybrid computation and a
bitstream cache. This hybrid computation allows to execute
the host (software) version of the code to be offloaded
meanwhile the bitstream is configured. That has been done
using the bitstream cache in the runtime system to avoid
unnecessary configurations. That process is transparent to
the programmer and significantly improves the performance
of the application. Our experiments show that hybrid com-
putation of the task can significantly improve the use of
target devices whose initialization cost is large.

Finally, we have done an evaluation of the bottlenecks
of SGI Altix architecture and programming model imple-
mentation using several kernels, showing some results for a
blocked matrix multiplication on the SGI Altix System.

A. Current and Future work

We are currently working on supporting several FPGAs
in the SGI Altix System. Therefore, future implementations
will consider multiple FPGA accelerators, or multiple accel-
erators in an FPGA and then, the runtime system will use
those parameters to properly schedule the task executions.

As future work, we plan to get involved on the definition
of the standard CPU-FPGA interface (CoreLib [20]), to
connect bitstreams to the code generated by our compiler.
Our idea is to use a toolchain from C to bitstream for those
parts of code that will be mapped to the FPGA device.

Other future lines are the optimization of the data
movements so that the runtime system can advance them
(prefetching), new packing/unpacking techniques, runtime
partial reconfiguration, OpenMP extensions to synchronize
CPU and FPGA threads, etc.

ACKNOWLEDGMENTS

The researchers at BSC-UPC were supported by the
Spanish Ministry of Science and Innovation (no. TIN2007-
60625, CSD2007-00050 and TIN2006-27664-E), the Euro-
pean Commission in the context of the SARC project (no.
27648) and the HIPEAC Network of Excellence (no. IST-
004408), and the Marelncognito project under the BSC-
IBM collaboration agreement. We also wants to thank Mihai
Lefter, from Delft University, for providing us the matrix
multiplication bitstream used in some of our evaluations.
Also, special thanks to Roger Ferrer for providing us

Mercurium compiler and for solving all the questions about
the compiler.

REFERENCES

[1] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan, “Larrabee: a many-core x86
architecture for visual computing,” ACM Trans. Graph., vol. 27, no. 3,
pp. 1-15, August 2008.

[2] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,
J. Kahle, and et al., “The Design and Implementation of a First-
Generation Cell Processor,” in IEEE International Solid-State Circuits
Conference (ISSCC 2005), 2005.

[3] “The OpenMP API specification,” www.openmp.org/wp/openmp-
specifications/, urls visited on April 3rd, 2009.

[4] “SGI Altix 4700,” http://www.sgi.com/products/servers/altix/4000/.

[5] “SGIRASC Guide,” http://techpubs.sgi.com/library/manuals/4000/007-
4718-007/pdt/007-4718-007.pdf.

[6] A. Duran, J. M. Pérez, E. Ayguadé, R. M. Badia, and J. Labarta,
“Extending the openmp tasking model to allow dependent tasks,”
in 4th International Workshop on OpenMP, IWOMP 2008, West
Lafayette, IN, USA, May 12-14, 2008, ser. Lecture Notes in Computer
Science, vol. 5004, pp. 111-122.

[71 R. Ferrer, M. Gonzalez, F. Silla, X. Martorell, and E. Ayguade,
“Evaluation of memory performance on the cell be with the sarc
programming model,” in Proceedings of the 9th Workshop on Memory
Performance: Dealing with Applications, systems, and architecture
(MEDEA’08), Toronto, Canada, October 2008.

[8] E. Ayguade, R. M. Badia, D. Cabrera, A. Duran, M. Gonzalez,
F. Igual, D. Jimenez, J. Labarta, X. Martorell, R. Mayo, J. M.
Perez, and E. S. Quintana-Ortiz, “A proposal to extend the openmp
tasking model for heterogeneous architectures,” in To appear in 5th
International Workshop on OpenMP, INOMP 2009.

[9] R. Ferrer, M. Gonzalez, X. Martorell, and E. Ayguade, “Mercurium

c/c++ source-to-source compiler.”

Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-

bit floating-point fpga matrix multiplication,” in FPGA '05. New

York, NY, USA: ACM, 2005, pp. 86-95.

“Impulse C website,” http://www.impulsec.com/.

W. A. Najjar, “Compiling code accelerators for fpgas,” in CASES

'07: Proceedings of the 2007 international conference on Compilers,

architecture, and synthesis for embedded systems. New York, NY,

USA: ACM, 2007, pp. 1-2.

M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-

oriented fpga computing in the streams-c high level language,”

Field-Programmable Custom Computing Machines, Annual IEEE

Symposium on, vol. 0, p. 49, 2000.

“Mitrion-c,” http://www.mitrionics.com.

S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. M. Panainte, “The

molen programming paradigm,” in in Proceedings of the Third

International Workshop on Systems, Architectures, Modeling, and

Simulation, 2003, pp. 1-10.

S. B. R. Dolbeau and F. Bodin, “HMPP: A hybrid multi-core parallel

programming environment,” First Workshop on General Purpose

Processing on Graphics Processing Units, 2007.

T. P. Group, “PGI Fortran and C Accelerator Compilers and Pro-

gramming Model Technology Preview.”

P. Dziurzanski and V. Beletskyy, “Defining synthesizable openmp di-

rectives and clauses,” in International Conference on Computational

Science, 2004, pp. 398-407.

P. Dziurzanski, W. Bielecki, K. Trifunovic, and M. Kleszczonek, “A

system for transforming an ansi ¢ code with openmp directives into

a systemc description,” in DDECS ’06: Proceedings of the 2006

IEEE Design and Diagnostics of Electronic Circuits and systems.

Washington, DC, USA: IEEE Computer Society, 2006, pp. 151-152.

M. J. Wirthlin, D. S. Poznanovic, P. Sundararajan, A. J. Cop-

pola, D. Pellerin, W. A. Najjar, R. Bruce, M. Babst, O. Pritchard,

P. Palazzari, and G. Kuzmanov, “OpenFPGA CoreLib core library

interoperability effort.” Parallel Computing, vol. 34, no. 4-5, pp. 231-

244, 2008.

(10]

(11]
[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

