
A Polymorphic Register File
Architecture
Cătălin Ciobanu∗, Georgi Kuzmanov∗,
Alex Ramirez†,‡, Georgi Gaydadjiev∗
∗Delft University of Technology, Computer Engineering Laboratory, The Netherlands
†Polytechnic University of Catalonia, Computer Architecture Department, Spain
‡Barcelona Supercomputing Center - CNS, Spain

ABSTRACT
Previous vector architectures divided the available register file space in a fixed number of registers
of equal sizes. We propose a novel register file organization which allows dynamic creation of a
variable number of multidimensional registers of arbitrary sizes - the Polymorphic Register File.
We have selected Floyd 64x64 as our benchmark. Simulation results suggest a speedup of up to
8X compared to an idealized Cell PPU scalar processor and a large reduction in the number of
executed instructions. Preliminary results indicate that the proposed architecture outperforms the
Cell SPU by around 50% without exceeding the 256KB storage size of the Local Store.
KEYWORDS: Vector processors, Vector register file, Polymorphism, Cell, DLP, Vector ISA

1 Introduction
In classic vector architectures such as the IBM/370 [Buc86], the number of data elements
which can be stored in one vector register is a micro-architectural parameter - the section size
of the machine. More recently, the Single Instruction Multiple Data extensions used fixed
width vector registers (128-bit wide for Altivec [IBM08]) which can store multiple data el-
ements. In both approaches, the number of the available registers is clearly defined in the
architecture (16 vector registers for the IBM/370, 32 registers in the case of Altivec).

In this poster, we propose a novel register file organization - the Polymorphic Register
File (PRF), which targets the efficient processing of multidimensional arrays of different
sizes and dimensions. The total size of the register file amounts up to a fixed volume, while
the actual number of dimensions and sizes of the vector registers is parameterizable during
runtime, and multiple register sizes and dimensions can be used simultaneously. Currently,
only 1D and 2D matrices are supported by the architecture, but it can be extended for any
number of dimensions.

The main advantages of the Polymorphic Register File are:
• Code compression - achieved by reducing the number of overhead instructions re-

quired for address generation and looping;
• Storage efficiency - Polymorphism eliminates the need for padding of small matrices

and allows the programmer to make full use of the available register storage space by
supporting variable section sizes and vector dimensions;
• Variable number of registers - depending on the workload, the programmer has the

freedom of dividing the available storage in an arbitrary number of registers of conve-
nient sizes and dimensions;

1E-mail: {c.b.ciobanu, g.k.kuzmanov, g.n.gaydadjiev}@tudelft.nl, aramirez@ac.upc.edu, alex.ramirez@bsc.es
2This work was partially supported by the European Commission in the context of the Scalable computer ARChitectures (SARC) inte-
grated project #27648 (FP6), the Dutch Technology Foundation STW, applied science division of NWO, the Technology Program of the
Dutch Ministry of Economic Affairs (project DCS.7533).



• Improved performance - increased performance by allowing vectorization on multi-
ple directions and therefore increasing the average vector length.

The paper is organized as follows: in Section 2, we provide motivation for a Polymorphic
Register File. In Section 3, we describe the architecture of the proposed Polymorphic Regis-
ter File. In Section 4, we present a simple application and simulation data. Future work is
presented in Section 5. Finally, the paper is concluded in Section 6.

2 Motivation
Let us assume the product computation of two matrices: A[2][4] and B[4][3] with the result
stored in C[2][3]. We are considering a scalar processor using the Cell PPU PowerPC instruc-
tion set and a 2D polymorphic register file-augmented vector co-processor. We also assume
that the dimensions of the matrices are small enough so that no sectioning instructions are
required. In both cases, the data type used is 64-bit floating point.

By compiling the C code for the Cell PPU, the scalar PowerPC assembly code contains 41
instructions, and a total of 269 instructions are committed on our simulator. By connecting a
vector co-processor to the PPU, the assembly code is reduced to 26 PowerPC and 11 vector
instructions, excluding the synchronization overhead. Only these 37 instructions are com-
mitted as we can eliminate both the looping and most of the address generation overhead
instructions. Figure 1 shows how the two dimensional registers can be configured to store
A, B, and C in a hypothetical 2DPRF.

Based on this example, we can clearly identify several key motivating benefits from us-
ing a 2D polymorphic register file: Static code compression - the assembly code using the
2DPRF consists of 10.1% less instructions compared to the PPU; Storage efficiency - the
registers were defined to contain exactly as many elements as required, eliminating storage
waste; Variable number of registers - we defined three registers to store the operands; Po-
tential performance gain - reduced number of committed instructions. This reduction of
7.27 times compared to the PowerPC further reduces Flynn’s bottleneck [Fly66].

3 The Polymorphic Register File architecture

Figure 1: Defining the three
example matrices in the
Polymorphic Register File

Figure 2: The Polymorphic Register File
Figure 2 illustrates an organization of our polymorphic register file, assuming that the

size of the physical register file is 128x128 elements. The logical registers are defined using



the Register File Organization (RFORG) Special Purpose Registers (SPR). When defining a
logical register, we only need to specify the Base, the Horizontal Length and the Vertical
Length of the register. The Base of a register can be computed from the 2D coordinates of
the upper-leftmost element of the register. The D flag indicates whether a logical register has
been defined and RN is the total number of available logical registers. The power-on orga-
nization can, for example, partition the available storage in 16 logical registers containing
32x32 64-bit elements. A special instruction restores the configuration of the register file to
the initial state.

Both 1D and 2D register operations are supported simultaneously, using the same in-
structions. A Bit Mask register is implicitly defined for each logical register, offering support
for conditional processing. A special instruction enables or disables the masked execution
mode, therefore the same instruction opcodes are used for both masked and non-masked
mode. By adding 3 additional bits to each entry of the RFORG table, we can also specify
the data type stored in the logic register (32/64-bit floating point or 8/16/32/64-bit integer),
avoiding the duplication of the instructions for each data type.

4 Simulation results - Floyd
Floyd’s algorithm [Flo62] computes the shortest paths between all pairs of vertices in a
weighted, directed graph. Given a graph G = (V, E) with N nodes and an NxN weight
matrix W, the algorithm computes the cost matrix d, where dij represents the shortest path
from node i to node j and path - the predecessor matrix. The implementation consists of
three nested loops, and the basic operation is dij = min(dij, dik +dkj). While a 1D vector pro-
cessor can only process one line (N elements) of the cost matrix at a time , our proposed 2D
Polymorphic Register File is able to process up to N2 elements with one vector instruction.

We have implemented the Polymorphic Register File as part of a Scientific Vector Ac-
celerator (SVA) in a cycle accurate simulator written in Unisim [ACG+07], an extension of
SystemC. The processor module implements the instruction set of the PowerPC Processor
Unit (PPU) in the Cell processor [KDH+05]. We assume each scalar instruction is executed
in one cycle with perfect Instruction and Data caches having one cycle latency. The Vector
Accelerator assumes that all data are available in the Local Store, and the performance re-
sults do not measure the data transfer overhead between the main memory and the Local
Store.

Figure 3: 2D vectorized Floyd 64x64 performance vs. the scalar PPU implementation

The latency of a memory access from the vector accelerator to the Local Store was set to
16 cycles in order to take into account the overhead incurred by the 2D memory accesses.
The bandwidth between the Local Store and the vector unit was set to 16 bytes, equal to the
bandwidth used in the Cell processor. The execution model assumes that two fully pipelined



Table 1: Code compression rates for Floyd, 64 nodes
Reg. Size 1x8 1x16 1x32 1x64 2x64 4x64 8x64 16x64 32x64 64x64
Compression 4.3 8.6 17.2 34.4 68.8 136.9 271.4 532.7 1027.6 1918.9

arithmetic units, each having 5 stages, are available for each vector lane. The data type used
for the cost matrix is double precision floating point (64-bit).

The instruction compression rates without taking into consideration the synchronization,
initial parameter passing and outer loop overhead are presented in Table 1. The number of
instructions committed by the vector accelerator is significantly lower compared to the same
benchmark running on the PPU, with compression rates up to 1919 times.

Figure 3 presents the speedups obtained by using the 2D polymorphic register file com-
pared to the PowerPC processor. Speedups up to 8X can be achieved when 16 vector lanes
are used and the vector registers can store 64x64 elements. This provides additional scaling
when comparing with the maximum speedup obtained by only using a 1D register - 5.4X in
the case of the 1x64 register. We observe that 4 vector lanes are sufficient to sustain 89% of
the peak performance.

5 Future Work
Preliminary benchmarking results against the Cell BE using a Playstation3(PS3) indicate
that our proposed register file architecture is around 50% faster when running Floyd 64x64
with 16 vector lanes and 64-bit floating point data compared to one Cell SPU executing
the 32-bit integer version of the same benchmark. We assumed equal clock frequency and
we limited the total size of the Polymorphic Register File and the Local Store used by our
Scientific Accelerator to 256KB - the Local Store size in Cell SPE. If 4 vector lanes are used,
our accelerator is around 40% faster than the SPU. The 32-bit integer PS3 SPU code runs
Floyd 64x64 4.33 times faster compared to the 32-bit scalar PS3 PPU, without considering
the DMA transfer time to the Local Store. The 32-bit integer version of Floyd running on the
PS3 PPU is around 20% faster than the 64-bit floating point Floyd running on our idealized
PPU simulator. Future work includes a detailed performance comparison to the Cell BE
and PowerXCell 8i processors as well as evaluating the hardware complexity and power
consumption of the Polymorphic Register File.

6 Conclusions
We have performed an initial evaluation of our proposed register file organization. Simula-
tion results suggest a potential performance gain of up to 8 times compared to an idealized
scalar processor as well as an important reduction in the number of executed instructions.
Preliminary results indicate a performance improvement of around 50% compared to the
Cell SPU.
References
[ACG+07] D. August, J. Chang, S. Girbal, D., Gracia-Perez, G. Mouchard, D. Penry, O Temam, and N. Vachharajani. Unisim: An open

simulation environment and library for complex architecture design and collaborative development. IEEE Comput. Archit.
Lett., 6(2):45–48, 2007.

[Buc86] W. Buchholz. The IBM System/370 vector architecture. IBM Systems Journal, 25(1):51–62, 1986.
[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.
[Fly66] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54:1901–1909, December 1966.
[IBM08] IBM. Cell Broadband Engine Programming Handbook Including the PowerXCell 8i Processor, 1.11 edition, May 2008.
[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction to the CELL multiprocessor. IBM

J. Res. Dev., 49(4/5):589–604, 2005.


	Introduction
	Motivation
	The Polymorphic Register File architecture
	Simulation results - Floyd
	Future Work
	Conclusions

