
Range Trees with Variable Length Comparisons
Ioannis Sourdis, Ruben de Smet, and Georgi N. Gaydadjiev

Computer Engineering

EEMCS, TU Delft, The Netherlands

{sourdis, ruben, georgi}@ce.et.tudelft.nl

Abstract— In this paper we introduce a new data structure
for address lookup, a new tree structure which improves on
the existing Range Trees allowing shorter comparisons than the
address width. The proposed scheme shares among multiple
concurrent comparisons common address prefixes and suffixes
and also omits address parts not required for computing a
next node branch. In so doing, for a given memory bandwidth,
we achieve a larger number of concurrent comparisons than
the original Range Tree. This results in less memory accesses
and lower latency per lookup. Performance scales better as the
address width and the number of address ranges increase. We
describe the rules employed to construct the proposed structure
and offer two heuristics which generate the “configuration” of the
decision tree given a set of address ranges. The proposed Range
Tree with variable-length comparisons (RT-VLC) has up to 50%
less tree-levels than the original Range Tree and its memory
requirements are 50% to 2× that of a linear search approach.

Index Terms— Address Lookup, IP Lookup, Range Tree.

I. INTRODUCTION

Address lookup is an essential function that finds application

in several domains: primarily in IP lookup [1] and packet

classification [2, 3], but also in interprocessor communication

-at the newly proposed progressive address translation [4].

Internet backbone routers use packet’s destination address to

determine the next hop of a packet, they contain hundreds

of thousands entries in their tables and require to perform

millions of lookups per second. The rapid growth of internet

traffic and the growing size of routing-tables make more

difficult to keep pace with the increasing need for faster

processing rates. IPv6 growth increased 300% in the past two

years and coupled with the IPv4 exhaustion poses the need

for solutions scalable with the address width [5].

Although a plethora of algorithms have been proposed,

several of the above challenges remain open. On one hand,

various Trie-based data structures may provide fast updates but

they are either unbalanced or require high memory resources.

Their latency does not scale well with the address width -

especially when they rely on a long first-stride to reduce their

height [6]. On the other hand, Range Trees are balanced and

hence have lower latency [6], but the number of node branches

is limited to the ratio of memory bandwidth to address width.

The above leave as the main commercially available solution

the power hungry and not scalable TCAMs.

In this paper we introduce a Range Tree with variable-

length comparisons (RT-VLC), a new data structure for address

lookup, and attempt to address the above challenges. As

opposed to the original multiway Range Tree which per-

forms comparisons of complete addresses, in the RT-VLC

comparisons of fewer bits suffice to select the correct node

branch. More precisely, address prefixes and suffixes can be

omitted from processing when certain constraints are met,

while common address prefixes and suffixes of concurrent

comparisons are shared. In so doing, we increase the number

of comparisons per node for a given memory bandwidth

and thus reduce the number of required tree levels, memory

accesses, and lookup latency. In addition, the above improve

the scalability in terms of lookup latency as the address width

and the routing table size increase.

The remainder of the paper is organized as follows: section

II offers some background on address lookup algorithms. In

section III we describe the RT-VLC and the heuristics em-

ployed to generate the configuration of the proposed scheme.

Then, in section IV we evaluate the performance, memory

requirements and scalability of the RT-VLC. Finally in Section

V we draw our conclusions.

II. BACKGROUND

Various algorithms have been proposed for address lookup.

They have been summarized in several surveys such as the

ones by Gupta and McKeown [2] and by Taylor [3] which

focus on packet classification (lookup in multiple fields), or

the one by Ruiz-Sanchez et al. that emphasizes more the

algorithmic side of the various approaches [1].

As illustrated in Figure 1(a), the set of different address

ranges can be expressed as intervals, where the complete bit

patterns of the addresses can be compared to perform a lookup,

or prefixes out of which the longest matching one should be

reported (Longest Prefix Match). Ruiz-Sanchez et al. indicate

that address lookup involves searching in two dimensions:

length and value [1].

Tries can be considered a “search on length” approach as

they perform a sequential search on the length dimension,

matching at step n prefixes of length n. Improvements on

the basic Trie structure may include binary search on length

instead of sequential [7], path compression e.g. PATRICIA [8],

and fixed or variable-stride multibit tries e.g. [9]. Figure 1(b)

depicts an example of a simple Trie structure. We can observe

that the resulted decision tree can be significantly unbalanced;

as indicated in [1] it is difficult to control the height of a Trie

which does not scale in the address width. Furthermore, the

memory requirements of the Tries are relatively high. Multibit

tries improve on the tree height but not on the scalability, while

they significantly increase their memory consumption.

A typical “search on values” approach is the Range Tree,

which is depicted in Figure 1(c). Range Trees avoid the

Prefixes
R1: 0*
R2: 0011*
R3: 0100*
R4: 0101*
R5: 011*
R6: 1*
R7:
11100

Intervals
R1: [00000,00110)
R2: [00110,01000)
R3: [01000,01010)
R4: [01010,01100)
R5: [01100,10000)
R6: [10000,11100)
R7: [11100,11101)
R6': [11101,100000)

(a) Set of address ranges as prefixes or
intervals.

0 2n

R1
R5

R6
R4R2 R3

0

0 1

1

R2

1

R1

0

R3

0

R4

1

1

R5

1

1
R6

R7

1

0

R7

0

(b) Trie

R1 R5 R6R4R2 R3

0 2n

R7 R6'

L G E
11100

L G E
00110 01010

L G E
10000 11101

L

G E

R1 R2

L

G E

R3 R4
L GE

R5 R6

L

G E

R7 R6

01100

01000

(c) Range Tree

R1 R5 R6R4R2 R3

0
R7 R6'

R1 R2 R3 R4 R5 R6 R7 R6

L G E

--11-

L

G E

--

01--- 1----

L

--01- --10-

L

G E L

G E L

G

CP: -110-

----1
E

L G E

G E

2n

(d) RT-VLC: Range Tree with Variable Length Comparisons.
CP: Common Prefix, ‘-’: bit not necessary to be processed, L: less, E:
equal, GE: greater or equal, G: greater.

Fig. 1. Data structures for address lookup: Tries, Range Trees and the
proposed Range Tree with variable length comparisons.

length dimension performing comparisons on the expanded

prefixes (full addresses). They perform one or many address

comparisons at each step creating a balanced decision tree.

Range Trees need to store the complete addresses to be

compared at each stage and therefore consume considerable

memory size. Multiway Range Trees read and compare at

every step multiple addresses; this limits their number of

ways to the available memory bandwidth and reduces their

scalability with respect to the address width.

III. RT-VLC: RANGE TREE WITH VARIABLE LENGTH

COMPARISONS

The Range Tree with Variable Length Comparisons (RT-

VLC) is a multi-way tree that allows processing of fewer

address bits per comparison and therefore, given a memory

bandwidth, increases the total number of comparisons per-

formed in a single step. In doing so, the decision tree has

more branches per node and consequently its height is reduced

vs. the original Range Tree which uses the same memory

bandwidth and compares complete addresses.

Range Tree nodes closer to the root compare addresses that

are sparser in the address space and therefore their suffixes

can be omitted without creating imbalance on the tree. In

addition, nodes closer to the leafs compare addresses that

are denser in the address space and therefore their prefixes

can be either omitted or shared. We capitalize on the above

observations to create the RT-VLC. It is expected that a RT-

VLC will start comparing address prefixes at the root node

omitting the suffixes. Then, gradually at the next levels will

continue with the address infixes and will end up comparing

suffixes at the leafs. Intuitively, as we traverse the RT-VLC

the common address prefixes will gradually get longer and

the shared or omitted address suffixes will get shorter. That

is because the search space will gradually reduce and better

“precision” will be required.

The RT-VLC has the following properties:

• A node maps to an address range of the address space.

The union of the children node address ranges is the

address range of their parent node.

• Address suffixes can be omitted from processing, when

they are zero. 1

• Comparing common address prefixes and suffixes is

shared among concurrent comparisons.

• The common prefix of the node borders can be omitted

from processing.

Figure 1(d) illustrates a RT-VLC which increases the num-

ber of node branches at the decision tree comparing fewer

address bits. In this example we assume available memory

bandwidth of 5 bits equal to the one of the Range Tree in

Figure 1(c). We next discuss the above RT-VLC example, and

show how comparing fewer address bits can be sufficient,

while address parts can be omitted or shared. At the root

node, comparing the two most significant bits “01---” and the

most significant bit “1-----” is the equivalent of comparing

the complete addresses “01000” and “10000”. In the second

iteration and after taking the middle root branch, we do not

need to compare the two most significant bits since after the

first step we know the incoming address is “01xxx”. Similarly,

after taking the right branch of the root node we know that

the most significant bit is “1xxxx”. Then, the two addresses

to be compared (“11100” and “11101”) have a common

prefix (“-110x”) which is shared and compared separately. The

decision of that node is based on the outcome of the common

prefix comparison and (if needed) the comparison of the least

significant bit. The above example, results in a well balanced

1During the construction of a RT-VLC one may force an address suffix to
zero, loosing in precision, but reducing the required address bits.

Na Nb

R1 RkR2
[Na,A1)

Rk+1

A1 A2 Ak-1 Ak

[A1,A2) [Ak-1,Ak) [Ak,Nb)

Na≤ AIN<Nb

RT-VLC node

Fig. 2. Generic view of a RT-VLC node N.

decision tree which is less deep than the one of the Range

Tree using less memory bandwidth.

A. RT-VLC Rules

The RT-VLC exploits four rules to increase the number of

branches per node given a specific memory bandwidth in order

to reduce the depth of the decision tree. Below we describe

these rules. We consider a RT-VLC node N as illustrated in

Figure 2 that maps to the address range [Na, Nb) and divides

it in k+1 subranges R1, R2, ..., Rk+1 defined by the unique

addresses (of width W) Ai ∈ [Na, Nb), ∀i ∈ N, i ≤ k, such

that R1 = [Na, A1), .., Ri = [Ai−1, Ai), ... Rk+1 = [Ak, Nb).
Then an incoming address AIN ∈ [Na, Nb) needs to be

compared against the addresses Ai in order to determine

the subrange Ri to which it belongs. It is noteworthy that

a single comparator reports whether the AIN is “L: Less”

or “GE: Greater or Equal” to an address Ai (A common

prefix comparator reports also equality). The construction of

a RT-VLC is based on the following rules (formal proofs

omitted due to lack of space):

Rule 1: Omit the common prefix of the node borders:

When there is a common prefix of length L (L < W) of the

node borders Na and Nb then the L most significant bits of

the addresses Ai can be omitted from the comparisons at the

node.

That is because all addresses Ai, AIN ∈ [Na, Nb) will

have the same common prefix of their L most significant bits.

This means that the comparison of the L MSbits between

AIN and Ai will always result in equality, enabling the

comparison of the W − L LSbits to produce the result.

Rule 2: Omit address suffix of value ‘0’. Let an address

Ai have a suffix of length L, where L < W , that is zero.

Then, this suffix of Ai does not need to be compared against

the L last bits of AIN .

In order for the comparison of the L-bit suffix to affect the

final result of the comparison, the W − L prefix comparison

would result in equality (which translates into “GE”). In

that case however, the comparison between the AIN and

Ai L-bit suffix will always be “GE” since the Ai L LSbits

are zero. Then, since “GE” is already the result reported by

the prefix comparison we can omit the zero suffix comparison.

Rule 3: Share addresses’ common prefix. The Common

Prefix ACP
i of the addresses Ai of length L (L < W)

can be shared among concurrent comparisons and processed

separately. Then if the AIN prefix of length L is Less than

ACP
i , then AIN ∈ R1 (the first address range of the node), if

it is “Greater” than ACP
i then AIN ∈ Rk+1 (the last address

range of the node), else we consider the result of the W − L

bits suffix to determine where AIN belongs to.

The comparison of two numbers is performed starting from

the MSbit towards the LSbit, then the Common Prefix ACP
i

of the addresses Ai can be shared and processed separately.

In case of prefix equality between ACP
i and the L MSbits of

AIN the suffix comparisons will determine the final result,

otherwise the result is determined by the prefix comparison

and is either the first R1 or last Rk+1 address range when

AIN prefix is Less or Greater than ACP
i , respectively.

Rule 4: Share addresses’ common suffix. The common

suffix ACS
i of the addresses Ai, of length L (L < W)

can be shared among concurrent comparisons and processed

separately. Let Rp = [Ap−1, Ap) (p ∈ N, 1 ≤ p ≤ k + 1) be

the address range that the comparisons of the W − L MSbits

of Ai and AIN indicate. Then AIN ∈ Rp−1 = [Ap−2, Ap−1)
IFF all three statements below are true:

(i) the AIN W − L MSbits are equal to the ones of Ap−1,

(ii) the AIN suffix of length L is less than ACS
i ,

(iii) Rp 6= R1

Otherwise AIN ∈ Rp.

In essence, the suffix comparison will change the result from

Rp to Rp−1 only when (i) the AIN prefix is equal to the prefix

of the low bound of Rp (Ap−1), otherwise the comparison

result is already determined by a more significant bit, (ii) the

result of the suffix comparison (between AIN and ACS
i) is

“Less”, otherwise we already have the correct address range

Rp, and (iii) the prefix comparison does not output the address

range R1 since in that case R−p − 1 = R0 which is not valid.

The above RT-VLC Rules can be applied independently

as they do not affect each other. For example, we can omit

common node prefix (Rule 1), omit any zero suffix (Rule 3) ,

then share address common prefix (Rule 2) and suffix (Rule 4)

of the remaining address bits, and finally separately compare

the remaining bits for each Ai.

B. Constructing a RT-VLC

We propose two heuristics to construct a RT-VLC based on

an arbitrary set of address ranges. Both use recursive functions

which generate the configuration of a tree node or tree level.

We follow two approaches, namely a top-down and a bottom-

up. The top-down heuristic creates the root node first and then

similarly moves to its children and towards the leafs of the

tree. The bottom-up heuristic constructs the leaf nodes first

and subsequently their address bounds are used for the next

tree level; this is repeated until the root of the tree is reached. A

heuristic should be tailored for a specific implementation and

hence may allow comparisons of only few address lengths and

only a single length in simultaneous comparisons.

a) Top-Down Heuristic:

1) Apply the RT-VLC rules 1 and 2.

2) Select a comparator length that maximizes the possible

number of branches, i.e., 8-bits.

3) Consider all addresses in the set to be processed with

the above comparison length. Omit address suffixes

that cannot be compared (due to comparison length)

assuming they are equal to zero (and apply accordingly

Rule 2).

4) Based on the above create the defined from the compar-

isons groups/intervals.

5) If necessary merge neighboring groups until the number

of comparisons are reduced to the available comparator

resources. Take into account the RT-VLC rules 3 and

4. Merging aims at creating groups which contain a

balanced number of address ranges. The resulted groups

are the node branches and the groups’ borders the

comparisons to perform.

6) Recursively repeat for the created children nodes.

7) Terminate when each node branch points to a single

address range.

Figure 3(a) illustrates a simple example of choosing address

bounds to be included in a node in a top-down heuristic.

In this example there are no common address parts to be

shared or omitted. Addresses A1, ..., A6 are available in the

node that maps to [Na, Nb). Let us assume we have 32-bits

available for storing addresses to be compared in a node. This

means that considering 32-bit comparisons only one address

can be included in the node, e.g., A4. Considering 16-bit

comparisons, assuming the 16 LSbits of each address are ‘0’,

we may choose 2 out of 5 available addresses to be compared,

e.g., A′

3 and A′

5. Finally, for 8-bit comparisons we can perform

all three possible address comparisons A′

1, A′

4, and A′

6, which

appears to be the most efficient choice.

b) Bottom-Up Heuristic:

1) Select the first b addresses Ai > Na (where Na initially

is 0) that can be compared in one node after applying

the RT-VLC rules (e.g., addresses Ai, Ai+1, ...Ab).

2) Set node’s upper bound Nb a point in the address space

where Nb < Ab+1 that Na has a long suffix of 0’s2. The

resulted node maps to an address range [Na, Nb).
3) Repeat the above starting from the upper bound of the

previous group (Nnew
a = N

prev
b) until all addresses Ai

in the address space are grouped.

4) Recursively repeat the above steps for the next upper

tree level L−1 using as new set of addresses AL−1

i the

borders NL
i of the previous level.

5) Terminate when all addresses in the list are processed

in a single (root) node.

Figure 3(b) illustrates a simple example of choosing node

address bounds in a bottom-up heuristic. Staring from Na

and assuming 32-bits available for storing node address parts,

then, addresses A1, A2, and A3 can be included in a single

2The longer the zero suffix the fewer the bits that need to be processed
at the upper level. There may be a threshold set on the minimum number of
addresses Ai to be included in the node, e.g. 75%; the rest of the addresses
can be given away in exchange for a “better” group bound with longer suffix
of zeros.

0 232A1 A2 A3 A6

A1: 0x1A010134
A2: 0x1A019043
A3: 0x1A026772
A4: 0x1B019087
A5: 0x1B026783
A6: 0x1C019021

A1': 0x1A010000
A3': 0x1A020000
A4': 0x1B010000
A5': 0x1B020000
A6': 0x1C010000

Possible and available
16-bit comparisons

A1': 0x1A000000
A4': 0x1B000000
A6': 0x1C000000

[A 6' ,N b)[A4
',A

6')

[N a
, A 1

')

RT-VLC node

A4 A5A1' A4' A6'

Possible and available
8-bit comparisons

Possible and available
32-bit comparisons

[A
1',
A4

')

Na Nb

(a) Top-down example.

0 232A1 A2 A3

A1: 0x1A010000
A2: 0x1A510000
A3: 0x1A770000
A4: 0x1B026783

[A 3 , N b)[G
d , A

1)

A4

Set of addresses

[A2
,A3

)

Na Nb

A1: 0x1A010000
A2: 0x1A510000
A3: 0x1A770000

Nb: 0x1B000000

Selected
Upper node bound

Addresses included
in the node

[A
1,A

2)

RT-VLC node

(b) Bottom-up example.

Fig. 3. Examples of selecting addresses to be included in a RT-VLC node.

node. The addresses A1, ..., A3 have a common prefix of one

byte and zero suffixes of two bytes, consequently, the node

needs to store one byte per address and their common prefix.

Subsequently, an upper node bound Nb needs to be chosen.

The address with the longest suffix of zero before A4 is

chosen for Nb in order to minimize the required comparison

bits at the upper tree-level. In this example, this address is

Nb =0x1B000000, which will also be the low node bound of

the next node to be constructed at the same level Nnew
a .

C. Incremental Updates

Most applications using address lookup need to update

their set of address ranges frequently. For example, current

core routers receive prefix updates every five minutes [10]. A

different update mechanism needs to be employed when the

address ranges are described as prefixes or simple intervals.

However, in either case, updates may require to insert or delete

address bounds that define address ranges. In the RT-VLC this

can be easily achieved by updating the affected leaf node or

subtree performing node splits or merges using preferably the

bottom-up approach.

When address ranges are described as intervals, e.g., port

ranges in packet classification, then the above simple address

insertion or deletion is sufficient to add or remove an inter-

val. On the other hand, when prefixes are used the update

mechanism needs to store more information in order to keep

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

7
7
6

6

6
5

6

9

12

6

6
5

6
5

5

6
5

of bounds

5

5

5
4

5

5
4

5
4

4

5
4

4

4

4
3

4
3

3

3

3
3

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls
Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(a) Bottom-up, Uniform, 256b MEM width

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

7
7

7

7
6

6

6

9

12

6

6
5

6

6
5

6
5

of bounds

5

5

5

5

5

5
4

5
4

4

4

4

4

4

4
3

4

4
3

3

3
3

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(b) Top-down worst-case, Uniform, 256b MEM

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

5.9
5.8

5.1

5.6

5

5

6

9

12

5.3

4.9

4.9

4.9

4.8

4.4

4.8

4.2

of bounds

4

4.7

4

4

4.3

4

4

3.9

3.9

3.9

3.8

3.6

3.2

3.7

3.1

3

3.3

3

3

2.9

3
2.9

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(c) Top-down, average, Uniform, 256b MEM

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32

64

128

0

2

4

6

8

10

12

14

6

5

5

5

5

5

6

9

12

5

5

5

5
4

4

4

4

of bounds

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

2

2
2

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(d) Bottom-up, Gaussian, 256b MEM width

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32

64

128

0

2

4

6

8

10

12

14

6
6

6

6
5

6

6

9

12

6
5

5

5

5

5

5

5

of bounds

5

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

2

3

2

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(e) Top-down worst-case, Gaussian, 256b MEM

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32

64

128

0

2

4

6

8

10

12

14

5.1
5

4.9

4.9

4.4

4.6

6

9

12

4.9

4.3

4.1

4.1

4.2

4

4

4

of bounds

4

4

3.8

3.9

3.5

3.5

3.4

3.1

3

3.4

3

3

3

2.9

2.9

3

2.5

2.6

2.6

2

2.5
2

addr w
idth

#
 o

f
tr

e
e

 l
e

v
e

ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(f) Top-down, average, Gaussian, 256b MEM

Fig. 4. RT-VLC tree depth vs. Range Tree: Uniform and Gaussian distribution of 256-512k bounds considering 32, 64 and 128-bits address width and
256-bits memory bandwidth.

track of overlapping prefixes and multiple parts of a single

prefix. To our advantage however is the fact that the nodes

and branches of a RT-VLC can be mapped one to one to the

ones of an original Range Tree which would have unlimited

memory bandwidth. Hence the multiway Range Tree technique

of storing and updating prefixes can be followed [6] in the RT-

VLC approach as well.

IV. EVALUATION

We evaluate the RT-VLC performance and scalability count-

ing tree-levels, which correspond to memory accesses (and

latency) per lookup, and the required search memory size. We

use both synthetic and real IPv4 and IPv6 routing tables for

constructing a RT-VLC. We compare each case with the best-

case of a Range Tree3 which in terms of lookup latency is

known to scale better than trie-based solutions [1].

Figures 4 and 5 depict for the above routing tables the

number of RT-VLC tree levels and compare it with the Range

Tree. It is noteworthy that the bottom-up RT-VLC heuristic

creates perfectly balanced trees where all the leafs are at the

same level. This is not the case for the top-down heuristic and

therefore we report for it both the worst and average number

of tree-levels.

We generated synthetic sets of 256-512k bounds of 32,

64 and 128-bits address width that define address ranges

3Range Trees are constructed using B-Trees which may not maximize the
number of branches per node and therefore may require more levels [6]. In
our comparison we consider that Range Trees have the maximum number of
branches per node allowed by the memory bandwidth.

following a uniform and also a Gaussian (variance σ2 =
2 × #of bounds) distribution. Subsequently, we evaluate RT-

VLC using the bottom-up and top-down heuristic considering

256-bits read per memory access. RT-VLC performs better

for bounds with Gaussian distribution (figures 4(d), 4(e) ,

and 4(f)) rather than the uniform (figures 4(a), 4(b) , and

4(c)); that is because in the gaussian distribution the bounds

are concentrated in a smaller range and therefore have large

common prefixes. RT-VLC height and latency scales better

than the Range Tree as the number of bounds increase, even for

addresses of 32-bits width. Scalability improves even more as

we increase the address width. Moving from 32-bit addresses

to 64 and 128 bits adds one or no extra tree level for the

RT-VLC, as opposed to the Range Tree which requires 3

more levels when doubling the address width for sets of 512k

bounds. Finally, the RT-VLC memory requirements for 512K

address ranges are for the gaussian distribution 0.9, 1.1, and

1.6 Mbytes for 32, 64 and 128 bits address width respectively,

and for the uniform 3.3, 7 and 16Mbytes; that is compared to

2, 4, and 8 Mbytes that a linear search would need.

Furthermore, we used real IPv4 routing tables collected in

8/8/2008 from various locations found in [10], each one having

262,310 to 275,706 prefixes (314,756-330,445 bounds). As

depicted in Figures 5(a), 5(b) , and 5(c) the top-down heuristic

has similar worst-case numbers as the Range Tree, but saves

more than a level on average. The bottom-up RT-VLC is

one level shorter than the Range Tree which may achieve

similar height only when reading 1024 bits per memory access.

The memory requirements are 0.63-0.68 Mbytes for 256-bit

amsix
decix

jpix
linx

mix
mskix

netnod
ny

paix
pttmetrosp

ripe
sfinx

vix

256

512

1024

0

2

4

6

4
4

4

4

4

5

6

4

4

5

4

4

5

4

4

5

exchange point

4

4

5

4

4

5

4

4

5

4

4

5

4

4

5

4

4

5

4

4

5

4

5
5

m
em

 bandw
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(a) Bottom-up, RIPE IPv4, ∼270k prefixes

amsix
decix

jpix
linx

mix
mskix

netnod
ny

paix
pttmetrosp

ripe
sfinx

vix

256

512

1024

0

2

4

6

4
4

5

4

5

6

6

4

5

6

4

5

6

4

5

6

exchange point

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

5

6
6

m
em

 bandw
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(b) Top-down, worst-case, RIPE IPv4, ∼270k pref.

amsix
decix

jpix
linx

mix
mskix

netnod
ny

paix
pttmetrosp

ripe
sfinx

vix

256

512

1024

0

2

4

6

3.2
3.2

3.9

3.2

4

4.4

6

3.2

3.9

4.4

3.2

4

4.4

3.2

4

4.5

exchange point

3.2

3.9

4.4

3.2

3.9

4.4

3.2

3.9

4.4

3.2

3.9

4.4

3.2

3.9

4.4

3.2

4

4.4

3.2

4

4.5

4

4.44.5

m
em

 bandw
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(c) Top-down, average, RIPE IPv4,∼270k prefixes

Hurricane Electric

as6447

as2.0

256

512

1024

0

2

4

6

8

3

exchange point

4

3

5

4

4

4
5

8

5

4

m
em

 bandw
idth

4
5

8

6
4
5

8

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(d) Bottom-up, BGP IPv6, ∼1,6k prefixes

Hurricane Electric

as6447

as2.0

256

512

1024

0

2

4

6

8

5

exchange point

5

4

6

4

6

4
5

8

6

7

m
em

 bandw
idth

4
5

8

74
5

8

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(e) Top-down, worst-case, BGP IPv6, 1,6k pref.

Hurricane Electric

as6447

as2.0

256

512

1024

0

2

4

6

8

3.1

exchange point

3

3.2

3.9

4.1

3.2

4
5

8

4.1

4.1

m
em

 bandw
idth

4
5

8

4.7

4
5

8

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 1024b

Range Tree 512b
Range Tree 256b

(f) Top-down, av., BGP IPv6, ∼1,6k pref.

Fig. 5. RT-VLC tree depth vs. Range Tree: Real routing tables of 270k IPv4, and 1.6k IPv6 prefixes, for 256, 512, and 1024 bits per memory access.

memory width, which is almost 50% that of the linear search

which needs 1.2 Mbytes.

Figures 5(d), 5(e), and 5(f) illustrate the required RT-VLC

and Range Tree levels for real IPv6 routing tables retrieved

from Hurricane Electric, and BGP (AS6447, AS2.0) [11].

These three sets have 1631, 1597, and 1625 prefixes, respec-

tively, which map to 2997, 2558, and 2819 unique bounds.

Although, the small size of the tables reduces the benefits of

RT-VLC, it still performs better than a Range Tree having

in the worst case up to 40%, 20%, and 25% less levels for

memory bandwidth of 256, 512, and 1024-bits per access,

respectively; for the average number of levels (top-down

heuristic) this improves to 50%, 40%, and 25%, respectively.

The search memory requirements are about 16Kbytes, while

a linear search would need more than 40Kbytes.

In general, the RT-VLC trees constructed in the above

experiments have at best half the height of a Range Tree, and

require for the real routing tables about half the memory size

compared to linear search. In addition RT-VLC scales better

than a Range Tree as the number of address ranges and address

width increase.

V. CONCLUSIONS

We have introduced the RT-VLC, Range Trees with

Variable-Length Comparisons, a new data structure for address

lookup which performs comparisons in parts of addresses.

We described four rules employed to construct a RT-VLC

and reduce the required address bits to be processed per

comparison. We showed the benefits in terms of latency and

memory accesses per lookup, memory size and scalability. RT-

VLC can store 512k address ranges of 32-128 bit addresses

in up to seven tree levels which is 15-50% less levels than a

Range Tree. Our experiments further showed that RT-VLC

memory requirements are 0.5-2× that of the linear search

algorithm. In addition, RT-VLC height scales better than a

Range Tree as the routing table grows and also the address

width increases. An RT-VLC that stores 512K entries needs

only 2-3 more levels compared to one that stores only 256

entries, while doubling the address width may add only a

single extra tree level.

REFERENCES

[1] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy
of ip address lookup algorithms,” IEEE Network, vol. 15, pp. 8–23,
Mar/Apr 2001.

[2] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE

Network, vol. 15, pp. 24–32, Mar/Apr 2001.
[3] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”

ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.
[4] M. G. H. Katevenis, The Future of Computing, essay in memory of

Stamatis Vassiliadis, ch. Interprocessor communication seen as Load-
Store Instruction Generation, pp. 55–68. September 28, 2007.

[5] NRO: IPv6 Growth Increases 300 Percent in Two Years,
“http://www.nro.net/documents/press release 031108.html,” Dec 2008.

[6] P. Warkhede, S. Suri, and G. Varghese, “Multiway range trees: scalable
ip lookup with fast updates,” Comput. Netw., vol. 44, no. 3, pp. 289–303,
2004.

[7] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed ip routing lookups,” in SIGCOMM ’97: Proceedings of the ACM

SIGCOMM ’97 conference on Applications, technologies, architectures,

and protocols for computer communication, (New York, NY, USA),
pp. 25–36, ACM, 1997.

[8] D. R. Morrison, “Patricia—practical algorithm to retrieve information
coded in alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, 1968.

[9] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in IEEE INFOCOM, pp. 1240–1247, 1998.

[10] RIPE Network Coordination Centre, “http://www.ripe.net/.”
[11] “http://bgp.potaroo.net/.”

