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Abstract—This paper investigates the conversion of Residue
Number System (RNS) operands to decimal, which is an im-
portant issue concerning the utilization of RNS numbers in
digital signal processing applications. In this line of reasoning, we
introduce an RNS to Mixed Radix Conversion (MRC) technique,
which addresses the computation of Mixed Radix (MR) digits
in such a way that enables the MRC parallelization. Given an
RNS with the set of relatively prime integer moduli {mi}i=1,n,
the key idea behind the proposed technique is to maximize
the utilization of the modulo-mi adders and multipliers present
in the RNS processor functional units. For an n-digit RNS
number X = (x1, x2, x3, ..., xn) the method requires n iterations.
However, at iteration i, the modulo-mi units are utilized for
the calculation of the MR digit ai, while the other modulo
units are calculating intermediate results required in further
iterations. Our approach results in an RNS to MRC with an
asymptotic complexity, in terms of arithmetic operations, in the
order of O(n), while state of the art MRCs exhibit an asymptotic
complexity in the order of O

(
n2

)
. More in particular, when

compared with the best state of the art MRC, our technique
reduces the number of arithmetic operations by 5.26% and
38.64% for moduli set of length four and ten, respectively.

Index Terms—Residue Number System, Mixed Radix Conver-
sion, Data Conversion, Mixed Radix Digits, arithmetic operations.

I. INTRODUCTION

Residue Number System (RNS) [1], [2] is an integer
number system with the capabilities to support parallel, carry-
free addition, borrow-free subtraction and single step multi-
plication without partial product. These features enable RNS
utilization in Digital Signal Processing (DSP) applications
such as digital filtering, convolution, fast Fourier transform
and image processing [13], [15]. For successful application of
RNS, data conversion must be very fast so that the conversion
overhead doesn’t nullify the RNS advantages [16].

The work on residue to binary conversion is based on
Chinese Remainder Theorem (CRT) [7]-[9],[11],[15],[16] or
on Mixed Radix Conversion (MRC) [3]-[6],[10],[12],[14].
CRT is desirable because the computation can be parallelized
while MRC is by its very nature a sequential process. However
many up to date RNS to binary/decimal converters are based
on MRC due to the complex and slow modulo-M operation (M
being the system dynamic range thus a rather large constant)
required by CRT. The main problem with the MRC is that the
computations of the MR digits is done in a serial manner and
requires a large number of arithmetic operations.

In this paper, we introduce an RNS to MRC technique,
which addresses the computation of Mixed Radix (MR) digits
in such a way that enables the MRC parallelization. Our
approach results in an RNS to MRC with an asymptotic
complexity, in terms of arithmetic operations, in the order
of O(n), while state of the art MRCs exhibit an asymptotic
complexity in the order of O

(
n2

)
. More in particular, when

compared with the state of the art MRC in [14], our technique
reduces the number of arithmetic operations by 5.26% and
38.64% for moduli set of length four and ten, respectively.

The rest of this paper is organized as follows: First we
briefly present the necessary background in Section II. In Sec-
tion III we introduce our Mixed Radix Conversion technique.
The performance of our proposal is evaluated in Section IV
while some conclusions are drawn in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime integers
{mi}i=1,n such that gcd (mi, mj) = 1 for i 6= j, where
gcd means the greatest common divisor of mi and mj . For
such a system M = Πn

i=1mi, is the dynamic range and
any integer X ∈ [0, M − 1] can be uniquely represented as
X = (x1, x2, x3, ..., xn), where xi = |X|mi

, 0 ≤ xi < mi.
We note here that in this paper we use |X|mi

to denote the
X mod mi operation and the operator Θ to represent the
operation of addition, subtraction, and multiplication. Given
any two integer numbers K and L in RNS represented by K =
(k1, k2, k3, ..., kn) and L = (l1, l2, l3, ..., ln), respectively,
W = KΘL, can be calculated as W = (w1, w2, w3, ..., wn),
where wi = |kiΘli|mi

, for i = 1, n. This actually means
that the complexity of the calculation of the Θ operation is
determined by the number of bits required to represent the
residues and not by the one required to represent the input
operands.

The conversion from RNS to decimal using MRC can be
formulated as follows [2]:

Given an n-digit number X = (x1, x2, x3, ..., xn) in an
RNS with the set of relatively prime integer moduli {mi}i=1,n

find a set of digits {a1, a2, a3, ..., an}, which are the mixed
radix digits (MRDs), such that Equation (1) holds true.

X = a1 + a2m1 + a3m1m2 + ... (1)
+ anm1m2m3...mn−1

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 521



The mixed radix digits can be computed as follows [14]:

a1 = x1

a2 =
∣∣∣(x2 − a1)

∣∣m−1
1

∣∣
m2

∣∣∣
m2

a3 =
∣∣∣((x3 − a1)

∣∣m−1
1

∣∣
m3
− a2

) ∣∣m−1
2

∣∣
m3

∣∣∣
m3

... (2)
an = |((...(xn − a1)|m−1

1 |mn
− a2)|m−1

2 |mn
− ...

−an−1)|m−1
n−1|mn

|mn

Given the MRD ai, 0 ≤ ai < mi, any positive number
in the interval [0, ΠN

i=1mi − 1] can be uniquely represented.
One can easily deduce from Equation (2) and also in line
with the discussion in [14] that a total of n(n−1)

2 arithmetic
subtractions and multiplications are required. This means that
the conversion process that computes the MRDs for an RNS
with an n-moduli set has an asymptotic complexity in the
order of O(n2). In the general case, due to the fact that
all the mi products in Equation (1) can be precalculated,
n − 1 multiplications and n − 1 additions are required for
the conversion of an MR number to binary/decimal. That part
of the calculation cannot be diminished as it stands on the
very nature of MR representation.

The improved MRC described in [14] requires a total of
n(n−1)

2 subtractions just as in [2] but can reduce the arithmetic
multiplications to n− 2 instead of n(n−1)

2 required in [2] for
computing the MRDs. Computation of the MRDs in a faster
way based on look up tables has been described in [3]-[6].
The complexity of the MRC described in [2], [3]-[6], and [14]
either in terms of the number of arithmetic operations or in
terms of the required number of look-up tables is in the order
of O(n2). The algorithm in [6] is reported to be better than that
in [3] and [4]. The algorithm presented in [6] is rather complex
as it requires solving n(n−1)

2 linear Diophantine Equations
(DE). The algorithm presented in this paper follows in a certain
way the same assumptions and principles as [6] but without
the need to solve any DE.

Our proposal is stemming from the fact that in Equation (2)
not all the ways in the modulo-mi functional units are utilized
at each iteration. Given the fact that in one RNS operation
all the modulo-mi units can execute useful computation the
conversion algorithm which directly follows Equation (2) is
under-utilizing the available hardware in the RNS processor.
Based on this observation and in a more simpler manner when
compared to [6], we present in the next section a new method
to compute the MR digits ai that exhibits more parallelism and
entirely utilizes the modulo-mi ways in the RNS processor
functional units.

III. O(n) MIXED RADIX CONVERSION TECHNIQUE

The MRC as described in Equation (2) is by its very
nature serial. That is ai depends on aj , i = 2, 3..., n, and
j = 1, 2, 3..., i − 1. To improve the conversion performance
we seek ways to relax these dependencies and make the
computation of ai as parallel as possible. One possible way to
do this is based on the fact that a functional unit in an RNS
system with moduli {mi}i=1,n has n parallel computation

ways. However, at each iteration i in Equation (2) not all
the modulo ways in the functional units can be utilized in
parallel due to the very nature of the evaluated expression.
Given that those ways are computing independently one can
reduce the number of operations required in the conversion
process by proposing an algorithm that targets the complete
utilization of the modulo-mi ways in the RNS functional units.
Based on this observation we propose a new MRC method
that asymptotically speaking requires a linear amount of RNS
arithmetic operations.

Suppose we have a set of residues {x1, x2, x3, ..., xn}
corresponding to the set of moduli {m1, m2, m3, ...,mn},
then the mixed radix digits ai and the decimal equivalent
can be computed using Equations (2) and (1). As previously
mentioned, the challenge is to obtain the MRDs ai in a more
parallel manner. All the derivations in this section are done
under the assumption that 1 < m1 < m2 < m3 < ... < mn

holds true.
In Equation (1), every term except the last, i.e, a1, is a

multiple of m1. If we take the modulo of both sides of
Equation (1) with respect to m1, we obtain:

|X|m1
= a1 (3)

meaning that a1 = x1.
In a similar manner, if we subtract a1 from both sides of

Equation (1), divide both sides by m1, and then compute the
modulo of both sides with respect to m2 we obtain:

a2 =
∣∣∣∣X − a1

m1

∣∣∣∣
m2

, (4)

which is equivalent to:

a2 =
∣∣∣∣∣∣∣(m1)−1

∣∣∣
m2

|(x2 − x1)|m2

∣∣∣∣
m2

. (5)

If we follow the same procedures, we can obtain the values
of (a3, a4, ..., an).

In this paper, we divide the stages involved in the com-
putation of the MRD ai into levels in such a way that we
maximize the utilization of the functional units. The main idea
is to perform at the current level i, apart of the computations
required for the calculation of ai also computations that
simplify the calculations in the level i + 1. For that purpose
we introduce auxiliary variables yj

i , where the exponent j,
j = 0, 1, 2, ..., n−1, of y denotes different levels where MRDs
are computed and i increases by 1 as we progress from one
level to another. For example, for level 0, y0

1 = a1, for level
1, y1

2 = a2, etc. Based on that the MRC we propose can be
described as follows:

Level 0: The first level is regarded as level 0 and in this
level no calculations are required as indicated by Equation
(6). This implies that n − 1 levels are required for a system
involving n-digit MR conversion.

y0
1 = a1 and a1 = x1 (6)

Level 1: In this level we derive a2. Clearly, a2 = (X−x1)
m1

<
m2m3...mn. Based on that we can compute:

y1
j+1 =

∣∣∣∣xj+1 − x1

m1

∣∣∣∣
mj+1

, (7)
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which implies that:

y1
j+1 =

∣∣∣∣∣m−1
1

∣∣
mj+1

|(xj+1 − x1)|mj+1

∣∣∣
mj+1

(8)

where j = 1, 2, 3, ..., n − 1. If we put j = 1 in the above
equation, we obtain a2. The rest of the values corresponding
to j = 2, 3, ..., n− 1 will be utilized in the next level.

j = 1, a2 = y1
2 =

∣∣∣∣x2 − x1

m1

∣∣∣∣
m2

, (9)

which implies that:

y1
2 =

∣∣∣∣∣m−1
1

∣∣
m2
|(x2 − x1)|m2

∣∣∣
m2

(10)

j = 2, y1
3 =

∣∣∣∣∣m−1
1

∣∣
m3
|(x3 − x1)|m3

∣∣∣
m3

(11)

j = 3, y1
4 =

∣∣∣∣∣m−1
1

∣∣
m4
|(x4 − x1)|m4

∣∣∣
m4

(12)
...

One can easily observe that y1
2 , y1

3 , y1
4 ,...,y1

n can be computed
in parallel by different modulo-mi ways in the RNS processor
functional unit.

Level 2: The main goal of Level 2 is to compute a3. In a
similar manner to Level 1, we have:

y2
j+2 =

∣∣∣∣∣m−1
2

∣∣
mj+2

∣∣(y1
j+2 − y1

2

)∣∣
mj+2

∣∣∣
mj+2

. (13)

When j = 1, we have:

a3 = y2
3 =

∣∣∣∣∣m−1
2

∣∣
m3

∣∣(y1
3 − y1

2

)∣∣
m3

∣∣∣
m3

. (14)

When j = 2, we have:

y2
4 =

∣∣∣∣∣m−1
2

∣∣
m4

∣∣(y1
4 − y1

2

)∣∣
m4

∣∣∣
m4

. (15)

When j = 3, we have:

y2
5 =

∣∣∣∣∣m−1
2

∣∣
m5

∣∣(y1
5 − y1

2

)∣∣
m5

∣∣∣
m5

. (16)

Again one can observe that y2
3 , y2

4 , y2
5 ,...,y2

n can be computed
in parallel also by different modulo-mi ways in the RNS
processor functional unit.

Level 3: Here, y3
j+3 is given as:

y3
j+3 =

∣∣∣∣∣m−1
3

∣∣
mj+3

∣∣(y2
j+3 − y2

3

)∣∣
mj+3

∣∣∣
mj+3

. (17)

When j = 1,

a4 = y3
4 =

∣∣∣∣∣m−1
3

∣∣
m4

∣∣(y2
4 − y2

3

)∣∣
m4

∣∣∣
m4

. (18)

When j = 2,

y3
5 =

∣∣∣∣∣m−1
3

∣∣
m5

∣∣(y2
5 − y2

3

)∣∣
m5

∣∣∣
m5

. (19)

When j = 3,

y3
6 =

∣∣∣∣∣m−1
3

∣∣
m6

∣∣(y2
6 − y2

3

)∣∣
m6

∣∣∣
m6

. (20)

y3
4 , y3

5 , y3
6 ,...,y3

n will be used in the next level and can be
computed in parallel.

The rest of the MRDs are computed in a similar manner
and the iteration continues until an is computed as yn−1

j+(n−1)
and

an =
∣∣∣∣∣∣m−1

n−1

∣∣
mj+(n−1)

∣∣∣(yn−2
j+(n−1) − yn−2

n−1

)∣∣∣
mj+(n−1)

∣∣∣∣
mj+(n−1)

,

where j = 1, 2, 3, ..., n − k, (k is the level number i.e., k =
1, 2, ..., n− 1).

IV. PERFORMANCE EVALUATION

When analyzing the proposed method, one can observe
the following: (i) no computation is required at Level 0;
(ii) one computation is required in the last level, i.e, the
computation of an; (iii) each of the remaining (n− 2) levels
requires ((n− k), k = 1, 2, ..., n− 1) computations, where by
computation we mean one modulo addition and one modulo
multiplication. One can observe however that the (n − k)
per level computations can be done in parallel as they utilize
different modulo-mi ways in the RNS processor functional
units. Given that they are equivalent to one computation in
the RNS hardware. This implies that the total number of
computations that are required in all the levels sums up to
n − 1. Hence, the asymptotic complexity of the proposed
technique is in the order of O(n). This constitutes a substantial
improvement over the state of the art as the MRCs described in
[3]-[6], either in terms of the number of arithmetic operations
or in terms of the required number of look-up tables, have
asymptotic complexities in the order of O(n2).

In order to get a better estimate of the impact of our method
in practice, we compute the number of required operations
for the classic MRC, the method in [14] (MRC14), and our
method (IMRC), for moduli sets of length of 3 to 10. The total
number of operations is computed based on the assumption
that an addition takes one cycle and a multiplication two
cycles, thus we consider that one multiplication is equivalent
delay wise with two additions. MRC and MRC14 require
n(n−1)

2 and (n−2) multiplications, respectively, and the same
n(n−1)

2 additions for the computation of the MRDs. Addition-
ally, all the methods require (n − 1) additions and (n − 1)
multiplications to compute the decimal number according to
Equation (1). As the moduli set cardinality increases, the
number of arithmetic operations in the traditional MRC grows
quadratically while for IMRC and the MRC14, it increases
with a constant factor of 6 and ((8 + k), k = 0, 1, 2, ..) arith-
metic operations, respectively. Thus MRC14 also increases
quadratically.

The results of this comparison are depicted in Table I
and Figure I. Table I presents the percentage reduction of
the total number of arithmetic operations required by IMRC
when compared to MRC and MRC14. We note here that in
Table I, the following notations are utilized: Mod- stands for
the number of moduli in the considered RNS; RI- stands
for reduction of the total number of arithmetic operations
in percentage achieved by IMRC over classical MRC; while
RII- stands for reduction of the total number of arithmetic
operations in percentage achieved by IMRC over MRC14. One
can observe that IMRC achieves 33.33% and 5.26% reductions
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Mod RI [in %] RII [in %]
3 20 0
4 33.33 5.26
5 42.86 14.29
6 50 21.05
7 55.56 26.53
8 60 31.15
9 63.64 35.14
10 66.67 38.64

Table I
ARITHMETIC OPERATIONS REDUCTION IN %

Figure 1. Number of arithmetic operations Vs Moduli Set Length

with moduli sets of length four when compared with the classic
MRC and MRC14, respectively. For moduli sets of length
ten, IMRC achieves 66.67% and 38.64% reductions when
compared with the classic MRC and MRC14, respectively.
As expected, the larger the number of moduli in the RNS, the
larger the reduction the proposed conversion method exhibits.
The traditional MRC and the one in [14] respectively require
n(n−1)

2 and n − 2 multiplications with the same n(n−1)
2

additions for the computation of MRDs in addition to n − 1
additions and n−1 multiplications required by Equation (1) to
compute the decimal number. However, it should be noted that
it is not in every case that the improved MRC in [14] reduces
the arithmetic multiplications to n− 2. We thus compare our
proposal with this maximum arithmetic multiplication that can
be provided by [14].

Figure I depicts the IMRC, MRC14, and the classic MRC
performance in terms of the number of arithmetic operations
as the length of the moduli set increases. Clearly, it can be
seen from Figure I that our proposal has the least growth in
the RNS arithmetic operations as moduli set length increases
when compared with MRC and MRC14.

V. CONCLUSIONS

In this paper, we investigated the conversion of RNS
operands to binary/decimal, which is an important issue that
enables/precludes the utilization of RNS numbers in addition
and multiplication dominated DSP applications. We introduced
an RNS to MRC technique, which addresses the computation
of MR digits in such a way that enables the MRC paral-
lelization. Given an RNS with the set of relatively prime
integer moduli {mi}i=1,n, the key idea behind the proposed
technique is to maximize the utilization of the modulo-mi

adders and multipliers present in the RNS processor functional
units. For an n-digit RNS number X = (x1, x2, x3, ..., xn)

the method requires n iterations. However, at iteration i,
the modulo-mi units are utilized for the calculation of the
MR digit ai, while the other modulo units are calculating
intermediate results required in further iterations. Given that
one such iteration can be seen as one single operation on
the RNS processor functional units, our approach results in
an RNS to MR conversion with an asymptotic complexity, in
terms of arithmetic operations, in the order of O(n), while the
traditional MRC and many other state of the art MRCs based
techniques exhibit an asymptotic complexity in the order of
O

(
n2

)
. More in particular, the utilization of our technique

achieved 33.33% and 5.26% reductions with moduli sets of
length four when compared with MRC and the improved MRC
in [14],respectively. For moduli sets of length ten, our proposal
achieved 66.67% and 38.64% reductions when compared with
MRC and the improved MRC in [14], respectively. Given that
the method we proposed substantially reduces the RNS to
binary/decimal conversion overhead it potentially makes RNS
more effective in addition and multiplication dominated DSP
applications.
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