
Comparing Tightly and Loosely Coupled Mesochronous Synchronizers
in a NoC Switch Architecture

Daniele Ludovici§, Alessandro Strano†, Davide Bertozzi†, Luca Benini††, Georgi N. Gaydadjiev§
† ENDIF, University of Ferrara, 44100 Ferrara, Italy.

†† DEIS, University of Bologna, 40136 Bologna, Italy.
§ Computer Engineering Lab., Delft University of Technology, The Netherlands.

email: d.ludovici@tudelft.nl, alessandro.strano@student.unife.it
dbertozzi@ing.unife.it, luca.benini@unibo.it, g.n.gaydadjiev@tudelft.nl

Abstract

With the advent of Networks-on-Chip (NoCs), the interest
for mesochronous synchronizers is again on the rise due
to the intricacies of skew-controlled chip-wide clock tree
distribution. Recently proposed schemes agree on a source
synchronous design style with some form of ping-pong
buffering to counter timing and metastability concerns.
However, the integration issues of such synchronizers in
a NoC setting are still largely uncovered. Most schemes
are in fact placed between communicating switches, thus
neglecting the abrupt increase of buffering resources needed
at switch input stages. This paper goes a step forward and
aims at deep integration of the synchronizer in the switch
architecture, thus merging key tasks such as synchronization,
buffering and flow control into a unique architecture block.
This paper compares the integrated and the loosely coupled
solutions from a performance and area viewpoint, while
devoting special attention to their robustness with respect
to physical design parameters.

I. Introduction

The problem of distributing the global clock in a chip
with minimal clock skew is getting difficult to solve due
to the reverse scaling of wire delay in nanoscale integrated
circuits. At the same time, the design paradigm shift towards
on-chip multi-processor architectures is raising the need for
easily extensible clock trees and for self-assembly clock tree
synthesis strategies like the one used in the Polaris chip [1].

A fully asynchronous approach to global intra-chip com-
munication would eliminate the clock distribution concern
and would make designs more modular since timing as-
sumptions are explicit in the hand-shaking protocols. Unfor-
tunately, current design tools and IP libraries heavily rely on
the synchronous paradigm instead, thus making intermediate
solutions more attractive and affordable in the short run.

An incremental approach with respect to the current
design practice consists of mesochronous synchronization.
A single clock signal is distributed to the various macrocells
in the design with an arbitrary amount of space-dependent
time-invariant phase offset (i.e., the skew). Mesochronous
synchronization can be viewed not just as an enabler for
architecture scalability, but also as a means of eliminating
(or relieving) the skew constraints in the clock tree syn-
thesis process, thus resulting in frequency speed-ups, power
consumption reductions and fast back-end turnarounds [20].

Unfortunately, mesochronous synchronizers come with
their own set of problems. A traditional approach to their
design consists of delaying either data or the clock signal so
to sample data only when it is stable. This solution requires
components often not available in a standard-cell design
flow (e.g., configurable digital delay lines) or explicitly
targeting full-custom design (e.g., Muller C-elements).

Another issue concerns the synchronization latency,
which impacts not just communication performance but
has architecture-level implications as well, thus resulting in
a more costly system overall. As an example, a latency-
insensitive receiver architecture has to be designed.

Flexible synchronizers have been proposed that can sup-
port even arbitrary clock frequencies in the communicating
domains (e.g., dual-clock FIFOs [3]), however they incur
a large area and power overhead. Even custom-tailoring
the synchronizer for mesochronous systems does not easily
avoid such an overhead, like the scheme in [2], which
implies 8 FFs and a mux for each synchronized bitline.

In the direction of providing a low-area and low-latency
realization of a mesochronous synchronizer, some recent
works suggest a source-synchronous design style combined
with some form of ping-pong buffering to counter timing
and metastability concerns [6], [7]. While [6] avoids a phase
detector but requires the link delay to be less than one clock
period, the scheme in [7] can handle slow and long links
but requires a phase detector.

Both schemes feature substantial pros (ease of imple-
mentation in traditional design flows, minimal complexity),
which motivates the further work that has been done in
order to more thoroughly investigate the implications of
their utilization in the context of on-chip networks (NoCs)
[5], [8]. Knowledge of the target application domain may
in fact pave the way for large optimizations of the basic
synchronizer architecture and circuits and for tuning the
low-level details of the design. Unfortunately, such cus-
tomization works for synchronizers are not as frequent in
the open literature as the proposal of new synchronization
concept schemes.

As an example, the work in [8] assesses timing margins
in a real NoC test case, thus coming up with optimized
circuit solutions. Both [5] and [8] address the support
for bidirectional communication and for backwards flow
control needed for mesochronous signaling in a NoC. In this
paper, a further optimized variant of the source synchronous
scheme presented in [8] is used as the baseline synchroniza-
tion scheme for the sake of comparison. In particular, the
phase detector is avoided through a careful design of the
synchronizer buffer stage and of its behavior at reset.

However, while sharing the same synchronizer design

978-1-4244-4143-3/09/$25.00 ©2009 IEEE

philosophy of both [5] and [8], this paper moves a significant
step forward in the direction of a synchronizer customization
for NoCs. In fact, all previous solutions envision a loosely
coupled synchronizer with the switch architecture. This ap-
proach has the clear drawback of implying a larger amount
of buffering resources in the upstream and/or downstream
switch of the mesochronous link, which depends on the
introduced synchronization latency and on the specific flow
control strategy employed by the network. The idea behind
this work consists of merging the synchronizer architecture
with that of the switch input buffer, thus coming up with
a compact architecture block taking care of flow control,
synchronization and buffering and tightly integrated in the
switch architecture itself. Beyond making mesochronous
NoC design more modular, this approach results in large
area savings for the overall switch due to the multi-
purpose buffer design strategy and in a reduction of the
communication latency as well. Layout synthesis of the
synchronization-enriched switch architecture by means of a
commercial flow proves its feasibility in a 65nm technology
under different physical design parameters.

II. Related Work

Research on mesochronous synchronization started a
long time ago. A well-established solution illustrated in [9]
consists of delay-line synchronizers, using a variable delay
on the data lines. This delay is computed in such a way to
avoid switching in the metastability window of the receiving
registers. Variable delay lines make this solution expensive
and not always available in standard cell libraries. This is
the same problem of the works in [12], [13], which use
voltage comparators.

Several periodic synchronizers are illustrated in [16],
which avoid metastability by delaying either the data or the
clock signal to sample data when the clock is stable. Config-
urable digital delay lines are again needed and experimented
frequency is very low.

The works in [12], [11], [10] achieve mesochronous data
synchronization by using Muller C-elements and digital
delay lines that are typically designed with a full-custom
approach. [10] presents a self-tested self-synchronization
method for mesochronous communication. The scheme uses
two clocks with a phase shift of 180◦ and a failure detector
is used to select which one to use. In [11] a phase detector in
place of a metastability detector is used in the same scheme.

Architectures based on FIFO synchronizers are proposed
in [9], [14]. FIFO size in [14] depends on the skew, hence is
link-dependent or given in the worst-case. Implementation
is also very expensive, as showed in [15].

More recently, an optimized bisynchronous FIFO has
been proposed in [3] featuring low-latency and small foot-
print. It can be adapted to the mesochronous needs while
proving able to tolerate skew only up to 50% of the clock
period.

Summing up, mesochronous synchronizers presented so
far incur few out of several disadvantages: high implementa-
tion overhead, use of non-trivial or full-custom components
or low skew tolerance. Moreover, very few works are able
to assess timing margins with layout awareness.

More recently, the unrelenting pace of technology scal-
ing and the design paradigm shift to NoC-based on-chip
multiprocessor systems are bringing physical layer issues to
the forefront, especially clock distribution. Solutions able to
mitigate them are more urgent, and this has justified a re-
newed interest in mesochronous synchronization. However,
the perspective is not on the concept synchronization scheme
any more, but rather on its suitability for the integration
into the on-chip network architecture [18]. This involves
assessing timing margins in the target domain and dealing

CLK_sender CLK_receiver

1 bit counter 1 bit counter

Phase Detector

Latch_0

Latch_1

Mux
Flip

Flop

Data

and

Flow control

Data

and

Flow control

Front-end Back-end

Fig. 1. Baseline synchronizer of [8].

with domain-specific concerns such as the need to properly
handle flow control.

An early mesochronous scheme for the SoCBus NoC was
proposed in [17], aiming at compact realization while still
lacking of a validation on an NoC test case.

A significant step forward comes from the OCN system
[19], which uses a source synchronous scheme. A matched-
delay architecture is used to compensate the strobe skew and
enable high-speed mesochronous communication. A FIFO
synchronizer is used at the receiver side.

Two recent papers [7], [5] both suggest to implement the
boundary interface with a source-synchronous design style
and propose some form of ping-pong buffering to counter
timing and metastability concerns. The SKIL link [5] can
support arbitrarily skewed clock signals by relying on a two-
stage buffer structure and can go through a standard design
flow. The same work has been taken a step forward in [4] by
considering flow control and support to virtual channels in
the synchronizer architecture. Similarly, the approach in [7]
aims at assuring that the receiver clock reads data when they
are stable. However, the focus of this work is still on long
generic links, nothing closely related to NoCs. The study
of this synchronizer inside of a NoC layout for short-range
mesochronous links is reported in [8], where NoC-specific
timing margins are assessed and flow control implications
thoroughly investigated. A similar scheme is implemented
in the mesochronous interfaces of the Polaris chip [1].

This paper takes the same approach to synchronization
of [5], [8] (source synchronous data transmission, safe
storage of data at the receiver side, sampling in the receiver
domain only when data is stable) but improves baseline
architectures and circuits by providing a more compact
and equally robust solution. However, this is used just as
the baseline architecture for the sake of comparison with
the novel synchronization structure that we propose in this
paper. Our guiding principle consists of tightly integrating
the synchronizer module into the switch architecture, so to
design a multi-purpose switch input stage taking care of
synchronization, buffering and flow control. We view this
as a way of keeping architecture overhead when moving
from fully synchronous to mesochronous clocking close to
the minimum.

III. Baseline Synchronization Architecture

This work moves from the synchronizer architecture
presented in [8] and illustrated in Fig.1. The circuit receives
as its inputs a bundle of NoC wires representing a regular
NoC link, carrying data and/or flow control commands, and
a copy of the clock signal of the sender. Since the latter wire
experiences the same propagation delay as the data and flow
control wires, it can be used as a strobe signal for them.
The circuit is composed by a front-end and a back-end.
The front-end is driven by the incoming clock signal, and

STB_sender CLK_rec

Counter Counter

Reset

Synch

Latch_1

Latch_2

Mux

Flip

Flop
Data

and

Flow

control

Front-end Back-end

Latch_0

Ext_reset

Loc_reset

Data

and

Flow

control

Fig. 2. Baseline loosely coupled synchronizer of
this paper.

strobes the incoming data and flow control wires onto a set
of parallel latches in a rotating fashion, based on a counter.
The back-end of the circuit leverages the local clock, and
samples data from one of the latches in the front-end thanks
to multiplexing logic which is also based on a counter. The
rationale is to temporarily store incoming information in one
of the front-end latches, using the incoming clock wire to
avoid any timing problem related to the clock phase offset.
Once the information stored in the latch is stable, it can be
read by the target clock domain and sampled by a regular
flip-flop.

Counters in the front-end and back-end are initialized
upon reset, after observing the actual clock skew among the
sender and receiver with a phase detector, so as to establish
a proper offset. The phase detector only operates upon the
system reset, but given the mesochronous nature of the link,
its findings hold equally well during normal operation.

Since few flow control wires are traveling backwards,
another similar but much smaller synchronizer needs to be
instantiated at the sender to handle them.

A. Optimizations of the baseline synchronizer

We agree with [8] that it is always possible to choose
a counter setup so that the sampling clock edge in the
back-end captures the output of the latches in a stable
condition, even accounting for timing margin to neutralize
jitter. Therefore, no more than 2 latches in parallel are
needed in the front-end for short-range (i.e., single cycle)
mesochronous communication with this scheme.

Other considerations however suggest that a different
choice may be desirable at this point. In particular, we feel
that by increasing the number of input latches by one more
stage it becomes possible to avoid the phase detector (see
the new architecture in Fig.2). This would be desirable due
to the timing uncertainty or the high area footprint or the
non-compliance to a standard cell flow that affects many
phase detector implementations. A third latch bank allows
to keep latched data stable for a longer time window and
to even find a unique and safe bootstrap configuration (i.e.,
counters initialization) that turns out to be robust in any
phase skew scenario. Post-synthesis simulations confirmed
that the circuit works properly when sweeping the clock
skew from -360◦ to +360◦. Post-layout robustness will be
assessed in the experimental section. At regime, the output
multiplexer always selects the output of the latch bank
preceding the bank which is being enabled by the front-
end counter. Rotating operation of both front- and back-end
counters preserves this order.

In contrast to [8], the reset architecture is designed, as
Fig.2 shows. In most SoCs, the reset signal coming into the
chip is an asynchronous input. Therefore, reset de-assertion

should be synchronized in the receive clock domain. In fact,
if a reset removal to a flip flop occurs close to the active edge
of its clock, flip flops can enter a metastable state. We use a
brute-force synchronizer (available in some new technology
libraries as a standard cell) for reset synchronization with the
receiver clock. Now the problem arises about how to reset
the front-end. Typically, a reset can be sent by the upstream
switch. In our architecture, we prevent metastability in the
front-end by delaying the strobe generation in the upstream
switch by one clock cycle after reset deassertion. This
way, on the first strobe edge, the receiver synchronizer is
already reset. This strobe generation delay is compliant with
network packet injection delay after reset. The transmitter
clock signal is used as the strobe signal in our architecture.
Differently than [8], a larger timing margin is enforced for
safe input data sampling. In fact, the transmitter clock signal
has to be processed at the receiver in order to drive the latch
enable signals. In actual layouts, this processing time adds
up to the routing skew between data and strobe and to the
delay for driving the latch enable high-fanout nets. As a
result, the latch enable signal might be activated too late,
and the input data signal might have already changed. In
order to make the synchronizer more robust to these events,
we ensure that input data sampling occurs in the middle
of the clock period. In fact, a switching latch enable signal
opens the sampling window of the next latch during the
rising edge, and closes the same during the falling one. As a
result, the latch enable activation has a margin of half clock
cycle to occur. Our post-layout simulations prove that this
margin is largely met in practice. Finally, in agreement with
[8], we computed the minimum size of the input buffer in the
downstream switch to be 4 slots (flits). They are required by
the stall/go flow control protocol in order to cover the round
trip latency and not to drop flits in flight when a stall signal
has to be propagated backwards. The original input buffer
size is 2 slots, reflecting the requirements of stall/go without
synchronization. Please refer to [8] for further details on
this.

STB_sender CLK_receiver

Counter Counter

Latch_1

Latch_2

Mux

Data

and

Flow

control

Data

and

Flow

control

Front-end Back-end

Latch_0

To

switch

logic

Counter Counter

CTR_Latch_1

CTR_Latch_2

CTR_Latch_0

Mux

Backward

Flow

Control

Enable

Stall/go

from

switch

arbiter

Switch input buffer

Fig. 3. Proposed tightly coupled synchronizer.

IV. Tightly Integrated Synchronizer Architec-
ture

The previous synchronizer, similarly to SKIL or to the
Polaris one, is a module of the NoC architecture, thus
loosely coupled with the downstream switch. The loose
coupling stems from the fact that the flip flop in the
synchronizer back-end belongs directly to the switch input

buffer. The mux output is therefore sampled like any other
input in the fully synchronous scenario. However, our early
exploration indicates that the area overhead induced in
this input buffer as an effect of the added synchronization
latency is much larger than the synchronizer area itself.

This indicates that a tighter integration of the synchro-
nizer into the switch input buffer is desirable. In particular,
the latch enable signals of the synchronizer front-end could
be conditioned with backward-propagating flow control
signals, so to exploit input latches as useful buffer stages
and not just as an overhead for synchronization. Should
this be the case, input data would be at first stored in
the latches and then synchronized. This would allow to
completely remove the switch input buffer and to replace
it with the synchronizer itself. The synchronizer output
would then be directly fed to the switch arbitration logic
and to the crossbar. The ultimate consequence is that the
mesochronous synchronizer becomes the actual switch input
stage, with its latching stages acting as both buffering and
synchronization stages (see Fig.3). A side benefit is that the
latency of the synchronization stage in front of the switch is
removed, since now the synchronizer and the switch input
buffer coincide. The main change required to make the new
architecture come true is to bring flow control signals to
the front-end and back-end counters of the synchronizer.
This solution would still require 4 slot buffers, i.e., 4
latching banks. However, a further optimization is feasible.
The backward-propagating flow control signal (the stall/go
signal) could be directly synchronized with the strobe signal
in the synchronizer front-end before being propagated to the
upstream switch. This would save also the synchronizer at
the transmitter side. In fact, the backward-propagating signal
would be already in synch with the strobe, which in turn
is in synch with the transmitter clock. The ultimate result
is the architecture illustrated in Fig.3. We are aware that
this latter choice shrinks timing margins for the backward
flow control signal, in that it leaves the downstream switch
with some generation delay across its synchronizer and also
experiences the link propagation delay. This margin will be
assessed post-layout in the experimental section, proving the
applicability of the scheme and providing simple variants
when long links need to be crossed. For this architecture
solution, only 3 latching banks are needed in the synchro-
nizer. In practice, only 1 slot buffer more than the fully
synchronous input buffer. The tightly coupled synchronizer
makes the mesochronous NoC design fully modular like the
synchronous one, since no external blocks to the switches
have to be instantiated for switch-to-switch communication.
Please notice that the reset architecture remains unchanged
with respect to Fig.2.

A. Operating principle

In case a go signal comes from the switch arbiter, at
each clock cycle data are latched in the input buffers of
the synchronizer, synchronized with the local clock and
propagated to the switch arbiter and crossbar. When a stall
occurs, the output mux keeps driving the same output until
communication can be resumed. While the stall signal gets
synchronized with the strobe and reaches the front-end, the
front-end latches keep sampling input flits in a rotating
way. When the stall signal finally leaves the synchronizer,
it will stop the transmission of the upstream switch and
the front-end counter operation at the same time. At this
point, the situation is frozen. When then a go arrives, the
output mux becomes operational again. Later, input latches
and upstream switch resume their operation again at the
same time. Please observe that this mechanism does not
waste bandwidth on flow resumption, since the synchronizer
backend can immediately start sweeping the output of front-

A

clock_sender

strobe

latch_enable_0

latch_enable_1

latch_enable_2

data_in

latched_data_0

latched_data_1

latched_data_2

clock_receiver

data_out

t_skew

B C D E F G H

A

B

C

D

E

F

G

H

B C D E F G HA

t_delay

Fig. 4. Waveforms example of the tightly cou-
pled synchronizer.

end latches upon receipt of a go. Interestingly, flow control
logic in the synchronizer is simplified with respect to that
of the original switch input buffer. Before, a finite state
machine used to generate a stall by monitoring the number
of elements in the buffer. When it was equal to one and
a stall came from the switch internal logic, than a stall
was also generated for the upstream switch. In the new
architecture, the synchronizer just synchronizes the stall
signal from the switch logic with the transmitter clock
and propagates it upstream. This way, large logic is saved.
The latency of both the tightly and the loosely coupled
synchronizers varies depending on the skew, and ranges
from one to two clock cycles.

Fig.4 reports the waveforms showing operation of the
tightly coupled synchronizer. A delay from the strobe signal
is assumed for the latch enable signals to account for their
high-fanout.

V. Experimental Results

The mesochronous synchronizers illustrated so far have
been implemented by means of the xpipesLite NoC library
[21]. All the analyzes discussed in this work have been
carried out by means of a backend synthesis flow leveraging
industrial tools. The technology library is a low-power low-
Vth 65nm STMicroelectronics library available through the
CMP project [22].

A. Comparative latency Analysis

Since the tightly coupled synchronizer not only changes
the synchronizer implementation but also affects the entire
network architecture, we performed basic tests to capture
the macroscopic performance differences implied by the dif-
ferent synchronization architectures. We focus on synchro-
nization latency, since the stall/go mechanism implemented

NI NI
RX

TX

RX

TX

Switch 0Processor MemorySwitch 1

Fig. 6. Test-case platform under analysis.

tightly coupled loosely coupled skil
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

(a) Execution cycles
vanilla tightly coupled loosely coupled skil

0

1000

2000

3000

4000

5000

6000

7000

[A
re

a
 u

m
^

2
]

2 Slots Input_Buffer 4 Slots Input_Buffer
6 Slots Input_Buffer Synchronizer

(b) Input buffer + synch. area breakdown
vanilla tightly coupled loosely coupled

0.6

0.8

1

1.2

1.4

1.6

(c) Power consumption

Fig. 5. Performance, area breakdown and power results.

in our synchronizer ensures that a stall-to-go transition of
the flow control signal can be immediately propagated to
the next stage. Hence, there are no wasted cycles at flow
resumption, differently than [8]. Since what matters here
is not a network-wide performance analysis, but just to
investigate the latency of each scheme, this feature can
be more conveniently stimulated and analyzed in a simple
ad-hoc experimental test case for fine-grain performance
analysis. We opted for a simple processor–NoC–memory
topology (see Fig.6). The investigated NoC is comprised of
a couple of 2x2 switches respectively connected to the pro-
cessor and the memory. Furthermore, each network switch is
connected to its own RX-, TX-mesochronous part meant for
synchronizing received data and flow control signals. For the
sake of comparison, the SKIL synchronizer is considered as
well. This is another loosely coupled module with the switch
architecture. The implementation was entirely derived from
[5].

The traffic pattern consists of full-bandwidth read and
write transactions, i.e., the target memory never stops the
access flow. Of course, the only performance differentiation
is seen for read transactions, since they are blocking for the
processor core, hence they rely on the network ability to
keep latency to a minimum. Performance results could be
easily interpreted by means of a simple analytical model
(Formula 1). It relates performance results to the intrinsic
design characteristics of each synchronizer.

In fact in the best case, SKIL exposes two cycles
synchronization overhead plus a further execution cycle
for traversing the network switch; whereas our loosely
coupled solution only requires one cycle latency in the
mesochronous plus one cycle in the network switch. Even
better, the tightly coupled mesochronous synchronizer re-
quires the same computational resources of the vanilla
switch (i.e., 1 execution cycle). The reason is that the tightly
coupled solution seamlessly replaces the input buffer of the
network switch thus providing a fast, reliable and robust
mechanism for data synchronization.

Summarizing, whenever the system with the tightly cou-
pled mesochronous synchronizer performs a computational
task in n cycles, the alternative schemes, i.e., SKIL and the
loosely coupled synchronizer respectively require a number
of cycles equal to Formula 1, where latency is the number
of clock cycles of the deployed mesochronous architecture
whereas #transaction is the number of read operations per-
formed by the processor unit. As depicted in Fig. 5(a) there
is a direct impact of the adopted synchronization solution on
the overall system performance. While the tightly coupled
solution keeps the same performance as the vanilla network
switch, a performance drop up to 6% incurs when using the
SKIL scheme in spite of the very simple test case.

cycles = n + latency× 2×#transactions (1)

B. Post-layout analysis

We went through a commercial backend synthesis flow
and refined RTL description of the mesochronous switches
(tightly and loosely coupled) up to the physical layout. The
following analysis considers a stall/go flow control scheme.

Critical Path Area (µm2) Area
RX TX overhead

SKIL 0.89 ns 0.28 ns 6400 5.33x
loosely coupled 0.68 ns 0.29 ns 4380 3.65x
tightly coupled 0.49 ns 1200 1x

TABLE I. Post-layout report.

Table I reports post-layout critical path as well as area
footprint (also Fig. 5(b)) of the investigated mesochronous
solutions taken in isolation. The area breakdown in Fig. 5(b)
is that of the switch input buffer plus that of the transmitter
and receiver synchronizers. Size of the switch input buffer
is 4 due to the fact that 2 clock cycles of latency are added
in the round-trip from the tx and rx synchronizers (1 cycle
each). Therefore, a properly oversized input buffer is needed
to handle a stall without incurring any data loss. For the
same reason, as deploying a SKIL synchronizer in the link
requires 3 clock cycles to traverse the channel, the amount
of required buffering resources in the switch input buffer is
6 as shown in Fig. 5(b). For the tightly coupled solution,
total area just refers to the multi-purpose switch input buffer
(which is also the synchronizer).

Concerning performance, post-layout critical path of the
tightly coupled solution is not directly comparable with the
SKIL and the loosely coupled one as it is fully integrated
in the network switch architecture. Nonetheless, as the
mesochronous design per se does not represent the perfor-
mance bottleneck of the whole NoC architecture (which can
run at 1 GHz in all cases), the low area footprint overhead
of the tightly coupled mesochrounous solution turns out
to be an appealing peculiarity when compared with more
area-greedy alternatives as SKIL and the loosely coupled
synchronizers.

C. Skew tolerance
This section studies the skew tolerance of the tightly vs.

loosely coupled mesochronous synchronizers. In order to
estimate the window size where the incoming data can be
sampled and held as valid, we performed a complete set of
post-layout simulations with 0% → 100% different skews
for the investigated synchronizers. Fig.7 reports the hold
time for the sampling element fed by the synchronizer’s
multiplexer, since the setup time was found to meet even

Fig. 7. Skew tolerance of tightly vs. loosely
coupled mesochronous synchronizers ex-
pressed as the hold time of the sampling
element fed by the synchronizer’s multiplexer.

larger timing constraints. As the figure shows, both synchro-
nizer solutions turn out to be highly skew-tolerant, in that
the hold time remains well above 300 ps. This way, timing
margins are guaranteed, since the value of a library cell hold
time for the target 65 nm technology is always much lower
than 300 ps. In spite of this, it must be emphasized that
the loosely coupled solution exhibits a larger window size
mainly due to the less complex logic of the counter driving
the mux in the backend of the synchronizer.

D. Extension for long links and power analysis
The tightly coupled mesochronous solution is able to

absorb clock skew from -360◦ up to +360◦ for incoming
data signals. They are correctly synchronized despite of long
wires whereas backward-propagating flow control signals
are more sensible to link length. The reason is that the
timing margin since the strobe edge occurs at the transmitter
switch until the backward propagating flow control signal
comes back is one clock cycle. This condition is difficult to
meet for overly long links between two network switches.
We assessed 4mm switch–to–switch link length as a feasible
distance for the tightly coupled mesochronous scheme after
layout on silicon reaching timing closure. We did not
experiment for longer links, left for future work. Instead, we
propose a simple implementation variant to be used when
the above condition fails. In practice, a mixed solution might
be used where the tightly coupled synchronizer is utilized
for short range communication, while an external synchro-
nizer for the backward-propagating flow control signals is
added for long range communication with a negligible area
overhead.

Final step of our exploration was to contrast power con-
sumption of the proposed mesochronous schemes. In order
to perform a fair evaluation, we compared the tightly cou-
pled mesochronous solution (along with the switch where
it is integrated) against to a loosely coupled mesochronous
along with the switch it is connected to. For the sake of
completeness, the obtained results have been compared with
a vanilla network switch. Interestingly, power consumption
of such plain solution almost corresponds to the one of
the switch with the tightly coupled mesochronous integrated
as depicted in Fig 5(c). The reason is that, both switches
are very similar as the input buffer of the plain switch has
been seamlessly replaced by the integrated mesochronous.
Concerning the tightly vs. loosely coupled solution com-
parison, it must be noticed that the tightly coupled version
has been optimized from the power consumption viewpoint.
Indeed, in a single module it implements synchronization as
well as data storage and flow control management requiring
a smaller number of buffering resources when compared

to the loosely coupled solution. In fact in the latter, the
mesochronous synchronizer requires an additional power
greedy input buffer in the switch in order to properly work.

VI. Conclusions
In this paper we address the customization of

mesochronous communication concept schemes for the
target network-on-chip domain. We move from the con-
sideration that a loosely coupled synchronizer with the
switch architecture implies a significant buffering overhead
in the switch input buffer, larger than the mesochronous
synchronizer itself. As a consequence, we advocate for
tight integration of the synchronizer in the switch. In the
proposed architecture, the synchronizer latches act as both
synchronization, buffering and flow control resources at
the same time, completely replacing the pre-existing input
buffer. The resulting architecture proves robust to physical
design parameters (skew, link length) and features almost
no area overhead with respect to the baseline switch used
in fully synchronous networks.

Acknowledgements
This work has been partially supported by the GALAXY

European Project (FP7-ICT-214364), by the Hipeac Net-
work of Excellence (Interconnect Cluster) and by the Euro-
pean Commission in the context of the Scalable computer
ARChitectures (SARC) integrated project (FP6 #27648).

References

[1] S.Vangal et al.; “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm
CMOS”, IEEE Journal of Solid-State Circuits, Vol.43, Issue 1, pp.29–41, 2008.

[2] P.Caputa and C.Svensson, “An On-Chip Delay- and Skew-Insensitive Multi-
cycle Communication Scheme”, Proc. IEEE Int. Conf. Solid-State Circuits,
pp.1765–1774, 2006.

[3] I.M.Panades, A.Greiner, “Bi-Synchronous FIFO for Synchronous Circuit
Communication Well Suited for Network-on-Chip in GALS Architectures”,
Int. Symp. on Networks-on-Chip, pp.83–94, 2007.

[4] S.Saponara, F.Vitullo, R.Locatelli, P.Teninge, M.Coppola, L.Fanucci, “LIME: A
Low-latency and Low-complexity On-chip Mesochronous Link with Integrated
Flow Control”, 11th EUROMICRO DSD’08, pp.32–35, 2008.

[5] F.Vitullo, N.E.L’Insalata, E.Petri, L.Fanucci, M.Casula, R.Locatelli,
M.Coppola, “Low-Complexity Link Microarchitecture for Mesochronous
Communication in Networks-on-Chip”, IEEE Trans. on Computers, Vol.57,
no.9, pp.1196–1201, 2008.

[6] D.Mangano, R.Locatelli, A.Scandurra, C.Pistritto, M.Coppola, L.Fanucci,
F.Vitullo, D.Zandri, “Skew Insensitive Physical Links for Networks-on-Chip”,
Int. Conf. on Nano-Networks, pp.1–5, 2006.

[7] M.Ghoneima, Y.Ismail, M.Khellah, V.De, “Variation-Tolerant and Low-Power
Source-Synchronous Multi-Cycle On-Chip Interconnection Scheme”, VLSI
Design, 2007.

[8] I.Loi, F.Angiolini, L.Benini, “Developing Mesochronous Synchronizers to
Enable 3D NoCs”, VLSI Design, 2007.

[9] W.J.Dally, J.W.Poulton, “Digital Systems Engineering”, Cambridge University
Press, 1998

[10] F.Mu, C.Svensson; “Self-Tested Self-Synchronization Circuit for
Mesochronous Clocking”, IEEE Trans. on Circuits and Systems II:
Analog and Digital Signal Processing, Vol.48, no.2, pp.129–141, 2001.

[11] B.Mesgarzadeh, C.Svensson, A.Alvandpour, “A New Mesochronous Clocking
Scheme for Synchronization in SoC”, ISCAS, pp.605–609, 2002.

[12] S.Kim, R.Sridhar, “Self-Timed Mesochronous Interconnections for High-Speed
VLSI Systems”, GLSVLSI, pp.122–128, 1996.

[13] M.R.Greenstreet, “Implementing a STARI chip”, ICCD, pp.3, 1995.
[14] A.Edmanand, C.Svensson, “Timing Closure through Globally Syn-

chronous,Timing Portioned Design Methodology”, DAC, pp.71–74, 2004.
[15] P.Caput, C.Svensson, “An On-Chip Delay- and Skew-Insensitive Multicycle

Communication Scheme”, IEEE Conf. Solid-State Circuits, pp.1765–1774,
2006.

[16] Y.Semiat and R.Ginosar, “Timing Measurements of Synchronization Circuits”,
Int. Symp. on Advanced Research in Asynch. Circuits and Systems, pp.68–77,
2003.

[17] D.Wiklund, “Mesochronous Clocking and Communication in On-Chip Net-
works”, Proc. Swedish System-on-Chip Conf., 2003.

[18] D.Mangano, A.Scandurra, C.Pistritto, “Relieving Physical Issues in New NoC-
based SoCs”, Int.Conf. on Nano-Networks, 2007.

[19] D.Kim, K.Kim, J.Y.Kim, S.Lee, H.J.Yoo, “Solutions for Real Chip Implemen-
tation Issues of NoC and Their Application to Memory-Centric NoC”, Int.
Symp. on Networks-on-Chips, 2007.

[20] I.M.Panades, F.Clermidy, P.Vivet, A.Greiner, “Physical Implementation of the
DSPIN Network-on-Chip in the FAUST Architecture”, Int. Symp. on Networks-
on-Chip, 2008.

[21] S.Stergiou, F.Angiolini, S.Carta, L.Raffo, D.Bertozzi, G.De Micheli, “XPipes
Lite: a Synthesis Oriented Design Library for Networks on Chips”. Proc. of
DATE, pp.1188–1193, 2005.

[22] Circuits Multi-Projects, Multi-Project Circuits; http://cmp.imag.fr

	Start
	NOCS09
	Table of Contents
	Author Index

