
Reconfigurable Accelerator for WFS-Based 3D-Audio

Dimitris Theodoropoulos Georgi Kuzmanov Georgi Gaydadjiev

D.Theodoropoulos@tudelft.nl G.K.Kuzmanov@tudelft.nl g.n.gaydadjiev@tudelft.nl

Computer Engineering Laboratory

EEMCS, TU Delft

P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

In this paper, we propose a reconfigurable and scalable

hardware accelerator for 3D-audio systems based on the

Wave Field Synthesis technology. Previous related work reveals

that WFS sound systems are based on using standard PCs.

However, two major obstacles are the relative low number

of real-time sound sources that can be processed and the

high power consumption. The proposed accelerator alleviates

these limitations by its performance and energy efficient de-

sign. We propose a scalable organization comprising multiple

rendering units (RUs), each of them independently processing

audio samples. The processing is done in an environment

of continuously varying number of sources and speakers.

We provide a comprehensive study on the design trade-offs

with respect to this multiplicity of sources and speakers. A

hardware prototype of our proposal was implemented on a

Virtex4FX60 FPGA operating at 200 MHz. A single RU can

achieve up to 7x WFS processing speedup compared to a

software implementation running on a Pentium D at 3.4 GHz,

while consuming, according to Xilinx XPower, approximately

3 W of power only.

1. Introduction

Creation of an accurate aural environment has been studied

for many decades. The first stereophonic transmission was done

by Clement Ader at the Paris Opera stage in 1881, while the

first documented research on directional sound reproduction

was done at AT & T Bell Labs in 1934 [1]. During 1938

and 1940, the Walt Disney studio designed the Fantasound

stereophonic sound technology, the first one that introduces

surround speakers, with audio channels derived from Left,

Center and Right. An improved technology was designed in

1976 by Dolby Laboratories that introduced the quadraphonic

surround sound system. It was called Dolby Stereo (or Dolby

Analog) and consisted of four separate channels (left, cen-

ter, right and mono surround) [2]. In 1994 the International

Telecommunication Union (ITU) specified the speaker layout

and channel configuration for stereophonic sound systems [3].

Today, there are many multichannel audio technologies re-

quiring various speakers setups. However, sound reproduction

techniques can be split into 3 fundamentally different cate-

gories: 1) stereophony; 2) generation of the signals that reach

the ears (binaural signals); and 3) synthesis of the wavefronts

emitting from sound sources.

In this paper, we focus on the third category and, more

precisely, to the Wave Field Synthesis (WFS) technology [4].

Furthermore, we propose a reconfigurable hardware accelerator

that efficiently accelerates its most computationally intensive

part. The idea stems from the fact that all previous audio sys-

tems that utilize WFS technology, are based on standard PCs.

Such an approach introduces processing bottlenecks which

limits the number of sound sources that can be rendered in

real-time. Power consumption is also increased because in most

cases more than one PCs are required to drive a large number

of speakers.

In contrast, the proposed reconfigurable accelerator offers:

• An efficient processing scheme with a performance of 531

clock cycles at 200 MHz per 1024 audio samples;

• Low resources utilization which leads to a low power

consumption;

• The option to configure more rendering units (RUs) and

process samples concurrently.

A prototype with a single RU was built based on the

proposed accelerator and mapped on a Virtex4 FX60 FPGA

with the following characteristics:

• Rendering up to 64 real-time sound sources when driving

104 speakers, while commercial products based on a

single PC can support up to 64 sources rendered through

32 speakers [5], [6], [7];

• 3032 Virtex4 slices;

• 7x speedup compared to a Pentium D running at 3.4 GHz;

• 218 MHz maximum operating frequency after design is

placed and routed;

• Estimated total power consumption of 3 W per RU.

The remainder of this paper is organized as follows: Sec-

tion 2 presents a brief analysis of the previously proposed

audio technologies, discusses all required arithmetic operations

in order to render sound sources based on the WFS technology

and describes some audio systems that utilize it. In Section 3,

we describe and analyze the proposed accelerator, while Sec-

tion 4 reports performance results and compares our work to

other audio systems. Finally, in Section 5, we conclude the

discussion.

2. Background And Related Work

In this section we present an overview of the previously

proposed audio technologies. We also provide a theoretical

background on the WFS technology and discuss various audio

systems based on it.

Audio technologies: Stereophony is the oldest and most

widely used audio technology. The majority of home theater

and cinema sound systems are nowadays based on the ITU

5.1 standard. This is mainly caused by the fact that such

systems are easy to be installed due to their rather small

number of speakers. However, the ITU 5.1 standard requires

a specific speaker configuration in the azimuthal plane, which

unfortunately cannot be satisfied in most cases. Furthermore,

various tests have shown that sound perception on the sides and

behind the listener is poor, due to the large distance between the

speakers. Another important drawback of stereophony is that

phantom sources cannot be rendered between the speakers and

the listener [8] [2].

Binaural synthesis (or binaural recording) refers to a specific

method used for audio recording that implies putting two

microphones facing away from each other at a distance equal

to human ears (approximately 18 cm). However, with this

microphone topology recorded signals do not take into account

how head, torso, shoulders and outer ear pinna would affect

frequency adjustments of a sound while it arrives at ears.

The influence of the aforementioned parts of the human body

on the frequency spectrum can be modeled by special filter

functions, so called Head Related Transfer Functions (HRTF)

[9]. Binaural systems can deliver a high quality of sound

perception and localization. However, they require that the

listener wears headphones or, when sound is rendered through

speakers, additional crosstalk cancelation filters [2].

Finally, as we mentioned, an additional way of delivering

a natural sound environment is audio technologies that can

synthesize wavefronts of a virtual source. The most important

benefit of these technologies is that they do not constrain

the listening area to a small surface, as it happens with

stereophonic systems and binaural setups without headphones.

On the contrary, a natural sound environment is provided in the

entire room, where every listener experiences an outstanding

sound perception and localization. However, their main draw-

back is that they require large amount of data to be processed

and many speakers to be driven.

The two technologies that try to synthesize wavefronts are

Ambisonics and Wave Field Synthesis (WFS). Ambisonics

was proposed from Oxford Mathematical Institute in 1970

[10]. Researchers focused on a new audio system that could

recreate the original acoustic environment as convincingly as

possible. In order to achieve this, they developed a recording

technique that utilizes a special surround microphone, called

the Soundfield microphone. Ambisonics sound systems can

utilize an arbitrary number of loudspeakers that do not have to

be placed rigidly.

WFS was proposed by Berkhout [4]. It is essentially based

on Huygens’ principle stating that a wavefront can be consid-

ered as a secondary source distribution. In the audio domain,

Huygens’ principle is applied by stating that a primary source

wave front can be created by secondary audio sources (plane

of speakers) that emit secondary wavefronts, the superposition

of which creates the original one. However, some limitations

arise in real world systems. For example, in practise a plane of

speakers is not feasible, so a linear speaker array is used, which

unavoidably introduces a finite distance between the speakers.

This fact introduces artifacts such as spatial aliasing, truncation

effects, amplitude and spectral errors of the emitted wavefront

[11].

Theoretical background: Figure 1 illustrates an example of

a linear array speaker setup. Each speaker has its own unique

coordinates (xsi, ysi) inside the listening area. In order to drive

each one of them so as the rendered sound source location is

at A(x1, y1), the following operations are required to calculate

the so called Rayleigh 2.5D operator [12]: filtering of the audio

signals with a 3 dB/octave correction filter [13] and calculation

of the delayed sample and its gain, according to each speaker

distance from the virtual source. To render a source behind

the speaker array, the inner product z between its distance

from each speaker
−→
d1 and each speaker normal vector −→n must

be calculated. Then the amplitude decay AD is given by the

following formula [12]:

AD =

√

Dz

(Dz + z) ∗ |
−→
d |

∗ cos(θ) (1)

where Dz is called reference distance, the distance where

the Rayleigh 2.5D operator can give sources with correct

amplitude, |
−→
d | = |

−→
d1|, and cos(θ) is the cosine of angle θ

between the vectors
−→
d1 and −→n , as shown in Figure 1.

In order to render a moving source from a point A to a point

B behind the speaker array, a linearly interpolated trajectory is

calculated [12]: Distance |
−→
d2| − |

−→
d1| is divided by the samples

buffer size bs, in order to calculate how the source advances

with every sample or, in other words, the distance between 2

consecutive audio samples, defined as unit distance (UD):

...

Figure 1. Speaker array setup

UD =
(|
−→
d2| − |

−→
d1|)

bs
(2)

Based on the distance UD, the source distance |
−→
d | from

speaker i with coordinates (xsi, ysi) is updated for every

sample by the formula:

|
−→
d | = |

−→
d | + UD (3)

According to the current distance |
−→
d | from speaker i, an output

sample is selected based on the formula:

delayedsample = −(l + (df ∗ |
−→
d |)) + (s + +) (4)

where df = fs/υs is the distance factor (fs is the sampling

rate, υs is the sound speed), s is the current output audio sample

and l is an artificial latency. Finally, the delayed sample is

multiplied by the amplitude decay AD and the system master

volume. The result is stored to an output samples buffer.

Further details can be found in [14], [15], [13] and [12]. In

Section 3 we explain how these formulas were mapped into

our hardware design.

Related work: A sound system that was built in IRT in

Munich and called the Binaural Sky [16], actually combines

both binaural and Wave Field Synthesis technologies. The

Binaural Sky concept is based on the avoidance of Cross

Talk Cancelation (CTS) filters real time calculation, while

the listener head is rotated. Instead of using two speakers

the authors utilize a circular speaker array that synthesizes

focused sound sources around the listener. The system uses

a head tracking device and, instead of real time CTS filter

calculation, it adjusts the speaker driving functions such as

delay times and attenuations. The speaker array consists of

22 broadband speakers and a single low frequency driver. All

real time processing is done on a Linux PC with a 22 channel

sound card. Input sound signals are fed to a software module

based on the BruteFIR software convolution engine. Its output

is a binaural signal which goes directly to a second software

module in order to be convolved with precalculated filters and

then drive the speaker array.

In [17], the authors apply WFS technology to a multi

tiled hardware architecture called ”Scalable Software Hardware

computing Architecture for Embedded Systems” (SHAPES).

Each of these tiles consists of a Distributed Network Processor

for inter-tile communication, a RISC processor and one mAg-

icV VLIW floating point processor. According to the paper,

a WFS system capable of supporting 32 sound sources while

driving up to 128 speakers, would require 64 such tiles.

Two companies, SonicEmotion [5] and Iosono [6], produce

audio systems based on WFS technology. SonicEmotion ren-

dering unit is based on Intel Core2Duo processor and consumes

an average power of 360 W. It supports rendering up to 64 real-

time sound sources, while driving a 24 speaker array. Iosono

rendering unit is also based on a standard PC approach and

supports up to 64 real-time sources while driving 32 speakers.

In both cases, when more speakers are required, additional

rendering units have to be cascaded.

The authors of [18] describe a real-time immersive audio

system that exploits WFS technology. The system performs

sound recording from a remote location A, transmits it to an-

other one B, and renders it through a speaker array utilizing the

WFS technology. In order to preserve the original sound exact

coordinates, a tracking device is employed. A beamformer also

records the sound source, but without the acoustic properties

of the recording location A. Thus, a dry source signal with

its coordinates is transmitted to B. The WFS rendering unit

receives this information along with the acoustic properties

of the reproduction room B. The result is the same sound

source being rendered exactly at the same position under B

acoustic properties. The complete system consists of 4 PCs,

out of which one used for the WFS rendering.

In [19], the authors propose an immersive audio environment

for desktop applications. Their system also utilizes the WFS

technology. Small speakers are placed around the computer

display, which allows the listener to move freely inside the

listening area. Again, the system is based on a standard 2 GHz

PC.

3. Proposed Design

This section describes our complete Fabric Co-processor

Module (FCM)1 that accelerates the WFS algorithm consid-

ered. We start by analyzing our design specifications and

continue with an extensive hardware analysis.

Results Accuracy: Our goal is a design capable of support-

ing sound sources rendered in a listening area that spans from

1 m in front of the speaker array (focused sources) up to 16

m behind the speaker array (normal sources). The reason why

we limit rendering area to the above mentioned dimensions, is

1. We follow Xilinx terminology.

P
ro

c
e
s
s
o

r
L

o
c
a
l

B
u

s

Figure 2. Complete Design Infrastructure

because inside this area the Rayleigh 2.5D operator can provide

sources rendering with acceptable amplitude errors [20].

Utilizing a floating point format (e.g. IEEE 754) for our

calculations would result in a complex hardware design with

unnecessary high accuracy. For this reason we wrote a software

program that simulates a hypothetical speaker array setup

consisting of 50 speakers with a distance of 15 cm between

each other. We placed sound sources in front and behind it with

5 cm steps and analyzed all internal calculations with respect

to the needed calculations accuracy. Previous experiences with

WFS audio systems, suggest that sources with at least 0.5

m/sec velocity should be identified as moving (slower sources

are rendered as still ones). Results suggested that if our system

supported fixed point operations with 5 integer bits and 17

decimal bits, it could identify moving sources (spanning in the

previously described listening area) with the aforementioned

velocity.

Complete Infrastructure: Figure 2 illustrates the complete

infrastructure of the system we consider for our design. The

PowerPC utilizes a 128-Kbytes instruction memory connected

to the Processor Local Bus (PLB) through its PORTA. A

second memory of 128 Kbytes is used by the PowerPC for

temporal storage of on-chip data through its PORTA. For this

reason the latter is connected to the PLB, while PORTB is

connected directly to the FCM. This shared memory imple-

mentation allows the FCM to access memory more efficiently

compared to accessing it through the PLB. A 64-Mbytes DDR

SDRAM is used to store audio samples, which can be accessed

from PowerPC again through the PLB. The FCM is connected

directly to the PowerPC through its Auxilary Procesor Unit

(APU) interface [21]. In our case, we configured it to decode

one User Defined Instruction (UDI) that would start the FCM.

In order also to monitor the correct functionality of our system,

we connected the FPGA board through an RS232 module to a

standard PC.

Audio Hardware Accelerator: In each loop, the PowerPC

fetches 1024 16-bit audio samples from SDRAM and stores

them to an on-chip BRAM. When samples storing is done, the

FCM execution is initiated via our customized UDI, as shown

in the following pseudocode snippet:

For all audio samples in SDRAM

{

copy 1024 samples from SDRAM to BRAM;

UDI (source Header, samples Address);

copy samples from BRAM to SDRAM;

}

Figure 3 presents the FCM organization; it consists of a

primary controller, a 64-tap FIR filter and a RU. The latter

integrates a speaker coordinates buffer and two modules called

Preprocessor and WFS engine. The speaker coordinates buffer

is used to store all speakers coordinates inside the listening

area. The Preprocessor is responsible for calculating the unit

distance, amplitude decay and distance from each speaker at a

specific time. The WFS engine selects all appropriate filtered

audio samples, with respect to the Preprocessor results.

Figure 4 shows the FCM functionality as a flowchart. The

FCM receives two parameters after UDI decode; a sound

source header, i.e. its coordinates inside the listening area, and

a pointer to audio samples array previously stored into BRAM.

The FCM controller starts reading audio data from BRAM

and forwards them to the FIR filter. All filtered samples are

stored in a 1024x16 samples buffer that resides inside the WFS

engine. Once samples filtering is done, the FCM forwards the

sound coordinates along with current speaker coordinates to the

Preprocessor and starts its execution. When the Preprocessor

finishes, it acknowledges the FCM controller, which then starts

the WFS engine. The i variable refers to the speaker whose data

are being processed. The FCM controller pipelines internally

the Preprocessor and the WFS Engine execution. As soon as the

first speaker coordinates are processed from the Preprocessor,

the latter forwards the results to the WFS Engine, but also

starts directly processing the second speaker coordinates. The

Preprocessor always finishes before the WFS Engine does.

Such an execution overlap between the Preprocessor and the

WFS Engine, essentially ”hides” the execution time of the

former. The WFS Engine processes two samples per cycle that

are stored back to BRAM. The same process is repeated until

all audio samples for all speakers have been calculated. Once

the FCM has finished, all processed samples are written back

to the SDRAM and 1024 new audio samples are fetched from

SDRAM to BRAM for processing. We should note that, since

there are many data transfers between the SDRAM and the

BRAM, a Direct Memory Access (DMA) controller can be

employed to improve the data-transfer rate.

Preprocessor: In the previous section, we mentioned that

the unit distance UD (eq. (2)), amplitude decay AD (eq. (1))

and distance |
−→
d | (eq. (3)) from all speakers are calculated in

Pre-

processor

FCM

Controller

WFS

engine

Speaker

coordinates

APU-FCM

interface

PLB BRAM

PortB FIR

filter

RU

Figure 3. FCM organization

Figure 4. Flowchart that shows FCM functionality

the WFS algorithm. The Preprocessor is designed to calculate

all these operations. A more detailed operation analysis sug-

gests that a total of 9 additions/subtractions, 9 multiplications, 3

square root operations and 2 divisions are required per speaker.

Figure 5 illustrates the Preprocessor organization. Target-

ing a minimalistic design, we decided to utilize only 1

adder/subtractor, 1 multiplier, 1 square root unit and 1 frac-

tional divider. Furthermore, as mentioned before, the Prepro-

cessor always finishes execution before the WFS Engine does.

Thus, spending additional resources to accelerate its execution,

would eventually make the Preprocessor just being idle for a

longer time.

Current speaker coordinates along with source header are

stored into local registers. Since there is direct data dependency

among many of these operations, the Preprocessor controller

issues them serially to the corresponding functional unit. Re-

sults are stored again to local registers and reused for further

calculations. The Preprocessor requires 142 clock cycles at

200 MHz to complete data processing and the final results

are forwarded to the WFS Engine.

WFS Engine: The WFS engine is the core computational

part of the design, sketched in Figure 6. As stated above, once

the Preprocessor is done, it acknowledges the primary FCM

controller. The latter starts the WFS Engine, which reads from

the Preprocessor local registers the unit distance, amplitude

decay and distance with respect to the current speaker. These

data are forwarded to 2 Sample Selection Cores (SSC), SSC1

and SSC2, which select the appropriate filtered sound samples

from samples buffer (eq. (4)). Each SSC consists of 1 multi-

Pre-processor

Controller

Adder /

Subtractor

Multiplier

Divider

Sqrt

Local

registers

Local

registers

FCM

controller

signals

WFS

engine

Speaker

coordinates

and source

header

Figure 5. Preprocessor organization

C
A
S
C
A
D
A
B
L
E

Figure 6. WFS Engine organization

plier, 1 subtractor, 2 accumulators and 1 adder, as illustrated

in Figure 7.

Selected samples from SSC1 and SSC2 according to equa-

tion (4), are multiplied by the system master volume level and

amplitude decay and forwarded to the Data Assembler. The

latter generates a 64-bit word consisting of four 16-bit audio

samples that are written back to on-chip BRAM through its

PortB.

The WFS Engine repeats the above process for 1024 sam-

ples, processing 2 samples per clock cycle, thus a total of 512

cycles. Also there are 11 more cycles spent on communication

among internal modules, which results in a total of 523

required cycles at 200 MHz for all samples.

The number of used SSCs was based on the tradeoff between

performance and available resources. RU performance versus

the SSCs number for processing 1024 samples, is calculated

according to the following formula:

cc = 11 + 8 +
buffersize

SSC
(5)

where 11 cycles are the aforementioned communication over-

head among the WFS Engine internal modules, and 8 cycles

are required for communication among the WFS Engine, the

Preprocessor and the FCM primary controller. Formula (5)

gives a performance of 1043, 531 and 275 clock cycles for 1,

2 and 4 SSCs respectively. Utilizing more SSCs would cause

a BRAM write-back bottleneck, since its width is 64 bits.

Figure 7. SSC organization

FCM

Controller

APU-FCM

interface

PLB BRAM

PortB
FIR

filter

RUn

RU1

A
u
d
io

 i
n
te

rf
ac

e
to

 s
p

ea
k
er

s

(e
.g

.
M

A
D

I)

..
.

Figure 8. FCM with more RUs working concurrently

An approach of 2 and 4 SSCs would increase the RU

performance 1043/531=1.96x and 1043/275=3.79x respectively

comparing to a single SSC approach, however, it would require

2x and 4x resources. Based on this analysis, we decided to

utilize 2 SSCs which offer a good tradeoff between perfor-

mance increase and occupied resources. However, we should

note that more than 4 SSCs could be cascaded (along with

half samples buffers) when data are forwarded to multiple

multichannel audio interfaces, as illustrated from the shaded

part in Figure 6.

Design Scalability: Specific attention was paid on designing

a compact, yet efficient, while also scalable hardware orga-

nization. Figure 8 shows how more RUs can be connected

when a larger FPGA is available. The FIR filter is a common

structure for all RUs. All filtered audio data are broadcasted

to every RU and stored inside a local samples buffer. All RUs

can work in parallel and forward their results to an interface

capable of carrying multiple channels of digital audio, such as

the Multichannel Audio Digital Interface (MADI) [22].

For parallel data processing, the speaker coordinates have to

be distributed among the RUs local buffers. As an example, if

we assume a speaker setup with 32 speakers, we can utilize 4

RUs, where RU0 will process speakers 1 to 8, RU1 speakers

9 to 16, RU2 speakers 17 to 24 and RU3 speakers 25 to 32.

4. Experimental Results

To build a complete system prototype, we used a Xilinx

ML410 board with a V4FX60 FPGA on it, which integrates

two PowerPC processors. Our WFS accelerator was designed

in VHDL and synthesized using the Xilinx Integrated Synthesis

Environment (ISE) 9.1.03 and the Xilinx Synthesis Tool (XST).

Hardware complexity: Table 1 displays the FPGA resource

utilization with one RU integrated in the FCM. We analyzed

how many slices were distributed on each submodule of the

system and concluded that the FIR filter consumes approxi-

mately 57% of their total number when utilizing one RU. The

reason for that is because we implemented the filter utilizing

the Xilinx IP core Distributed Arithmetic (DA) approach [23]

Table 1. Embedded system resource utilization

Maximum frequency (MHz) 218

Total Power Consumption (W) 3

XtremeDSP Slices 14

RU Slices 3032

FIR Filter Slices 7152

Peripheral Slices 2205

Total Slices 12389

Table 2. Slices versus XtremeDSP slices proportion

FPGA Available Slices Slices / XtremeDSP RUs Fit

V4FX40 9267 193 3

V4FX60 15923 124 5

V4FX100 32819 205 10

V4FX140 53811 280 13

and not the conventional multiply-accumulate (MAC) one [24].

The main advantage of DA over MAC is that the number of

required cycles to produce a result does not depend on the

filter length but on the filter input and coefficients width [23].

In contrast, a single cycle output MAC approach of a 64-

tap FIR filter would require 64 XtremeDSP slices [24] for up

to 18x18 bits data sizes. Such an approach would make our

design prohibitive even for large FPGAs that do not have many

XtremeDSP slices. Since the size of data that will be filtered is

only 16-bit, the DA approach is more suitable. However, one

DA drawback is that a single cycle output FIR implementation

will utilize an increased number of FPGA slices, since it is

always mapped to logic and not to XtremeDSP slices.

We explored the relation between the number of conven-

tional slices and XtremeDSP slices that our design must satisfy,

in order to efficiently utilize FPGA resources. In Table 2, we

subtracted from each FPGA those slices spent on the FIR

filter and peripherals, such as PLB, OPB and RS232 module,

i.e. 9357 slices. ”Slices/XtremeDSP” column shows a good

approximation of what the proportion (#Slices

#XtremeDSP
) in our

design between slices and XtremeDSP should be, in order to

utilize each FPGA in the most efficient way. We used this

analysis as our guideline during the RU design, in order to

fit as much RUs as possible in large FPGAs. The rightmost

column of Table 2 shows the number of RUs that eventually

can fit in each FPGA.

System Verification: We rendered various moving sound

sources located inside the hypothetical listening area mentioned

in Section 3. Under the same speaker setup, we also run a

software version of the WFS rendering function and rendered

sources following the same trajectories. Selected delayed audio

samples (eq. 4)) from the software version and the WFS Engine

coincided, while amplitude decay (eq. 1)) was precise up to

the third decimal digit. As an example, Figure 9 illustrates

the comparison of the calculated amplitude decay between the

Preprocessor and the software implementation, when a source

moved from A(1.45m, 3.50m) to B(1.30m, 3.75m). As we can

see, hardware hardware results follow the software ones with

very high precision (3 decimal digits).

0.07

0.17

0.27

0.37

0.47

1 4 7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9

Speakers

A
m
p
li
tu
d
e

software hardware approximation

Figure 9. Amplitude comparison between SW and HW

91.46

70

35

21.1

7.03

0

10

20

30

40

50

60

70

80

90

1 3 5 10 13

Rendering Units

K
e

rn
e

l
s

p
e

e
d

u
p

 v
s

 P
e

n
ti

u
m

D

Figure 10. Speedup over WFS software implementation

Performance: In order to calculate the overall performance

benefits, we first run the WFS rendering function on a Pentium

D 940 at 3.4 GHz with Linux Fedora. We used gprof to

measure runtime and the result was 1010 µsecs. Comparison

between the software and hardware versions is depicted in

Figure 10. A single RU implementation achieves a 7x speedup

compared to the software version running on Pentium D. In the

same figure, we also provide the potential speedup that can be

achieved by placing more RUs, running in parallel.

Finally, we compared our design against the products of

SonicEmotion and Iosono, and against the current WFS audio

system developed by the Laboratory of Acoustical Imaging and

Sound Control of TU Delft [7], [15], [20]. Comparison results

are in Figure 11. As we mentioned in Section 2, the Son-

icEmotion and Iosono WFS rendering units can render up to

64 real-time sources driving 24 and 32 speakers respectively1.

If additional speakers are required, more rendering units need

to be cascaded. In contrast a single RU implementation on a

medium size FPGA such as the V4FX40 can render up to 64

real-time sources when driving 104 speakers. Of course we

should note that our design does not support all functionalities

that professional audio equipment does. In Figure 12, we show

the number of real-time rendered sources when multiple RUs

are utilized in a single FPGA. As we can see, cascaded RUs

1. SonicEmotion rendering-unit data were confirmed by personal commu-
nication with SonicEmotion at info@sonicemotion.com. In order to derive
a performance estimation of Iosono’s rendering unit, we considered the link
http://www.idmt.fraunhofer.de/eng/about us/facts figures.htm from the official
Fraunhofer web site, stating that 6 Iosono PCs are used to drive 192 speakers.

0

200

400

600

800

1000

1200

8 16 24 32 40 48 56 64 72 80 88 96 104

speakers

s
o
u
rc
e
s

1 RU 3032 slices SoundControl SonicEmotion \ Iosono

S
o
n
ic

E
m

o
ti

o
n

si
n
g
le

 P
C

Io
so

n
o

si
n
g
le

 P
C

Figure 11. Number of real-time rendered sound sources

according to speaker setup

0

2000

4000

6000

8000

10000

12000

14000

8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0
4

speakers

s
o
ru
c
e
s

3 RUs 9096 slices 5 RUs 15160 slices

10 RUs 30320 slices 13 RUs 39416 slices

Figure 12. Estimated number of real-time rendered sound

sources when multiple RUs are used

can support rendering many hundreds of sources in real-time,

even when driving 104 speakers.

Energy efficiency: Another benefit of our FPGA design is

that it requires significanlty less power than all other presented

systems based on high-end CPUs. We used Xilinx XPower

to analyze the complete system power consumption, which

reported a total of 3 W. In contrast high-end CPUs, when not in

idle mode, normally require tens of Watts, which in essence is

an order or two of magnitude difference in favor of our design.

5. Conclusions

In this paper, we proposed a design that accelerates the

most computationally intensive part of the WFS algorithm used

in contemporary 3D-Audio systems. Previous approaches are

based on standard PCs, which still cannot satisfy the com-

putational demands for high number of sources and speakers

and cannot meet critical power dissipation constraints. Our

observations indicate that commercial, single PC, approaches

can offer up to 64 real-time sources when driving no more

than 32 speakers, while consuming tens of Watts of power.

Furthermore, when more speakers are required, then additional

rendering units need to be cascaded, which increases even

more the cost and power expenses in traditional PC based

systems. In contrast, our reconfigurable design can alleviate

the processing bottlenecks. It requires reasonably few resources

and its scalability allows more RUs to process audio samples

concurrently. A single RU approach supports up to 64 real-time

sources when driving 104 speakers, which is more efficient

than traditional PC systems. Meanwhile our single RU design

occupies 12389 Xilinx Virtex 4 slices in total, it achieves a 7x

speedup compared to Pentium D at 3.4GHz, while consuming

only a small fraction of the power, consumed by a general

purpose processor.

Acknowledgment

This work was partially sponsored by hArtes, a project (IST-

035143) of the Sixth Framework Programme of the European

Community under the thematic area ”Embedded Systems”;

and the Dutch Technology Foundation STW, applied science

division of NWO and the Technology Program of the Dutch

Ministry of Economic Affairs (project DCS.7533).

The authors would like to explicitly thank Lars Hörchens and

Jasper van Dorp Schuitman from the Laboratory of Acoustical

Imaging and Sound Control of TU Delft for their valuable

contribution to accomplish this work.

References

[1] H. Fletcher, “Auditory perspectiveBasic requirements,” in Elec-
trical Engineering, vol. 53, 1934, pp. 12–17.

[2] C. Kyriakakis, “Fundamental and Technological Limitations of
Immersive Audio Systems,” in Proceedings of the IEEE, vol. 86,
May 1998, pp. 941–951.

[3] T. Holman, 5.1 Surround Sound Up and Running. Focal Press,
December 1999.

[4] A. Berkhout, D. de Vries, and P. Vogel, “Acoustic Control by
Wave Field Synthesis,” in Journal of the Acoustical Society of
America, vol. 93, May 1993, pp. 2764–2778.

[5] SonicEmotion Company, “http://www.sonicemotion.com.”

[6] Iosono Company, “http://www.iosono-sound.com.”

[7] J. van Dorp Schuitman, L. Hörchens, and D. de Vries, “The
MAP-based wave field synthesis system at TU Delft (NL),” in
1st DEGA symposium on wave field synthesis, September 2007.

[8] E. Armelloni, P. Martignon, and A. Farina, “Comparison Be-
tween Different Surround Reproduction Systems: ITU 5.1 vs
PanAmbio 4.1,” in 118th Convention of Audio Engineering
Society, May 2005.

[9] A. Mouchtaris, P. Reveliotis, and C. Kyriakakis, “Inverse of Fil-
ter Design for Immersive Audio Rendering Over Loudspeakers,”
in IEEE Transactions on Multimedia, vol. 2, June 2000, pp. 77–
87.

[10] M. A. Gerzon, “Periphony: With-Height Sound Reproduction,”
in Journal of the Audio Engineering Society, vol. 21, 1973, pp.
2–10.

[11] J. Daniel, R. Nicol, and S. Moreau, “Further Investigations
of High Order Ambisonics and Wave Field Synthesis for
Holophonic Sound Imaging,” in 114th Convention of Audio
Engineering Society, March 2003, pp. 58–70.

[12] J. van Dorp Schuitman, “The Rayleigh 2.5D Operator Ex-
plained,” Laboratory of Acoustical Imaging and Sound Control,
TU Delft, The Netherlands, Tech. Rep., June 2007.

[13] P. Vogel, “Application of Wave Field Synthesis in Room Acous-
tics,” Ph.D. dissertation, TU Delft, The Netherlands, 1993.

[14] M. Boone, E. Verheijen, and P. van Tol, “Spatial Sound Field
Reproduction by Wave Field Synthesis,” in Journal of the Audio
Engineering Society, vol. 43, December 1995, pp. 1003–1012.

[15] W. P. J. D. Bruijn, “Application of Wave Field Synthesis in
Videoconferencing,” Ph.D. dissertation, TU Delft, The Nether-
lands, October 2004.

[16] D. Menzel, H. Wittek, G. Theile, and H. Fast, “The Binaural
Sky: A Virtual Headphone for Binaural Room Synthesis,” in
International Tonmeister Symposium, October 2005.

[17] T. Sporer, M. Beckinger, A. Franck, I. Bacivarov, W. Haid,
K. Huang, L. Thiele, P. S. Paoloucci, P. Bazzana, P. Vicini,
J. Ceng, S. Kraemer, and R. Leupers, “SHAPES - a Scalable
Parallel HW/SW Architecture Applied to Wave Field Synthe-
sis,” in International Conference of Audio Engineering Society,
September 2007, pp. 175–187.

[18] H. Teutsch, S. Spors, W. Herbordt, W. Kellermann, and
R. Rabenstein, “An Integrated Real-Time System For Immersive
Audio Applications,” in IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, October 2003, pp.
67–70.

[19] R. H. Alois Sontacchi, Michael Strauß, “Audio Interface for
Immersive 3D-Audio Desktop Applications,” in International
Symposium on Virtual Environments, Human-Computer Inter-
faces, and Measurement Systems, July 2003, pp. 179–182.

[20] E. Hulsebos, “Auralization using Wave Field Synthesis,” Ph.D.
dissertation, TU Delft, The Netherlands, October 2004.

[21] Xilinx Inc, “PowerPC 405 Processor Block Reference Guide,”
July 2005.

[22] A. E. Society, “AES10-2003: AES Recommended Practice for
Digital Audio Engineering – Serial Multichannel Audio Digital
Interface (MADI),” in Rev 2003, May 2003.

[23] Xilinx Inc., “Distributed Arithmetic FIR Filter v9.0,” April 2005.

[24] ——, “MAC FIR v5.1,” April 2005.

