
Wave Field Synthesis for 3D Audio: Architectural
Prospectives

Dimitris Theodoropoulos
dtheodor@ce.tudelft.nl

Cătălin Bogdan Ciobanu
C.B.Ciobanu@tudelft.nl

Georgi Kuzmanov
G.K.Kuzmanov@tudelft.nl

Computer Engineering Laboratory, Electrical Engineering Dept.
Delft University of Technology
Postbus 5031, 2600 GA, Delft

The Netherlands

ABSTRACT

In this paper, we compare the architectural perspectives of
the Wave Field Synthesis (WFS) 3D-audio algorithm mapped
on three different platforms: a General Purpose Processor
(GPP), a Graphics Processor Unit (GPU) and a Field Pro-
grammable Gate Array (FPGA). Previous related work re-
veals that, up to now, WFS sound systems are based on
standard PCs. However, on one hand, contemporary GPUs
consist of many multiprocessors that can process data con-
currently. On the other hand, recent FPGAs provide huge
level of parallelism, and reasonably high performance po-
tentials, which can be exploited very efficiently by smart
designers. Furthermore, new parallel programming environ-
ments, such as the Compute Unified Device Architecture
(CUDA) from NVidia and the Stream from ATI, give to the
researchers full access to the GPU resources. We use the
CUDA to map the WFS kernel on a GeForce 8600GT GPU.
Additionally, we implement a reconfigurable and scalable
hardware accelerator for the same kernel, and map it onto
Virtex4 FPGAs. We compare both architectural approaches
against a baseline GPP implementation on a Pentium D at
3.4 GHz. Our conclusion is that in highly demanding WFS-
based audio systems, a low-cost GeForce 8600GT desktop
GPU can achieve a speedup of up to 8x comparing to a
modern Pentium D implementation. An FPGA-based WFS
hardware accelerator consisting of a single rendering unit
(RU), can provide a speedup of up 10x comparing to the
Pentium D approach. It can fit into small FPGAs and con-
sumes approximately 3 Watts. Furthermore, cascading mul-
tiple RUs into a larger FPGA, can boost processing through-
put up to more than two orders of magnitude higher than
a GPP-based implementation and an order of magnitude
better than a low-cost GPU one.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

Categories and Subject Descriptors

B.7.1 [Hardware]: [Algorithms implemented in hardware]

Keywords

3D Audio, Wave Field Synthesis, General Purpose GPU
computing, Reconfigurable Computing

1. INTRODUCTION
Today, there are many multichannel audio technologies

providing the so-called immersive or 3D-audio, which re-
quires various speakers setups, consisting of up to hundreds
of speakers. These sound reproduction techniques can be
generally classified into three fundamentally different cate-
gories: 1) stereophony; 2) generation of the signals that ac-
tually reach the ears (binaural signals) [1]; and 3) synthesis
of the wavefronts emitting from sound sources.

In this paper, we focus on the third category and more
specifically on the Wave Field Synthesis (WFS) technology
[2]. Related work reveals that all previous audio systems
that utilize WFS technology, are based on standard PCs.
Such an approach, however, introduces processing bottle-
necks which limit the number of sound sources that can be
rendered in real-time. Power consumption is also consider-
able because in most cases more than one PCs are required
to drive a large number of speakers.

Meanwhile, over the last years, a new paradigm referred
to as General Purpose Graphics Processor Unit (GPGPU)
computing has gained researchers’ attention. Many develop-
ers nowadays try to efficiently map various scientific prob-
lems [3], [4] (e.g. computational fluid dynamics, video games
physics and digital signal processing) onto contemporary
GPUs. This stems from the fact that the GPUs have evolved
from specialized graphics engines to parallel processors with
very high memory bandwidth, that can offer a GFLOPs per
second performance of up to two orders of magnitude, com-
paring to a General Purpose Processor (GPP) [5].

Additionally, Field Programmable Gate Arrays (FPGAs)
are well established on the field of accelerating various soft-
ware applications, especially the ones that can be severely
parallelized. Nowadays, FPGAs are utilized to accelerate a
wide field of applications such as high definition multimedia
[6], 3D-audio [7], bioinformatics [8], military applications [9]
and many other categories.

Based on the fact that both GPUs and FPGAs have the
potential of highly parallel data processing, we investigate
under what conditions one or the other platform is perfor-
mance and cost efficient for mapping the WFS 3D-audio al-
gorithm (which can be considerably parallelized) onto them.
The main contributions of this work are the following:

• We explore the architectural prospectives of the WFS
algorithm by mapping it on three different platforms:
a GPP, a GPU, and an FPGA

• We utilize NVidia’s Compute Unified Device Archi-
tecture (CUDA) [5] parallel software environment to
map the most computationally intensive parts of the
WFS algorithm (WFS kernel) on a GeForce 8600GT.
To the best of our knowledge, this is the first reported
mapping and exploration of the WFS algorithm on a
GPU.

• We quantified the performance gains from utilizing
both GPU and FPGAs on real off-the-shelf chips. A
small FPGA Virtex4 FX60 implementation of single
Rendering Unit (RU) obtains WFS speedup of 10 times
against a Pentium D GPP. A larger FPGA can accom-
modate up to 13 RUs, allowing a speedup of up to 140.
Furthermore, we managed to achieve a speedup of up
to eight times of the WFS kernel when mapped onto
a low-cost GeForce 8600GT GPU.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the WFS theoretical background and vari-
ous audio systems based on this technology. In Section 3,
we present the mapping process of the WFS kernel on the
GPU. Section 4 briefly presents the WFS hardware acceler-
ator already proposed in [7]. In Section 5, we compare all
implementations, and Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we provide a theoretical background of

the WFS algorithm. Furthermore, we discuss various audio
systems that are based on the WFS technology.

One popular, yet computationally intensive, way of deliv-
ering a natural sound environment is provided by audio tech-
nologies that can synthesize wavefronts of a virtual source.
The most important benefit of these technologies is that
they do not constrain the listening area to a small surface,
as it happens with stereophonic systems and binaural setups
without headphones. On the contrary, wavefront synthesis
provides a natural sound environment in the entire room,
where every listener experiences an outstanding sound per-
ception and localization. However, their main drawback is
that they require large amount of data to be processed and
many speakers to be driven.

The two technologies that synthesize wavefronts are Am-
bisonics and Wave Field Synthesis (WFS). Ambisonics was
proposed from Oxford Mathematical Institute in 1970 [10].
Researchers focused on a new audio system that could recre-
ate the original acoustic environment as convincingly as pos-
sible. In order to achieve this, they developed a recording
technique that utilizes a special surround microphone, called
the Soundfield microphone. The recording equipment gen-
erates 4-channel signal, called B-Format, that includes all
the appropriate spacial information of the sound image. B-
Format consists of left-right, front-back and up-down data,

plus a pressure reference signal, providing the capability to
deliver surround audio with height information. A major ad-
vantage of Ambisonics sound systems is that they can utilize
an arbitrary number of loudspeakers that do not have to be
placed rigidly.

WFS was proposed by Berkhout [2]. It is essentially based
on Huygens’ principle stating that a wavefront can be con-
sidered as a secondary source distribution. In the audio
domain, Huygens’ principle is applied by stating that a pri-
mary source wave front can be created by secondary audio
sources (plane of speakers) that emit secondary wavefronts,
the superposition of which creates the original one. However,
some limitations arise in real world systems. For example,
a plane of speakers is not feasible in practise, so a linear
speaker array is used, which unavoidably introduces a finite
distance between the speakers. This fact introduces arti-
facts such as spatial aliasing, truncation effects, amplitude
and spectral errors of the emitted wavefront [11].

Theoretical background on WFS: Figure 1(a) illus-
trates an example of a linear array speaker setup. Each
speaker has its own unique coordinates (xsi, ysi) inside
the listening area. In order to drive each one of them so
as the rendered sound source location is at A(x1, y1), the
following operations are required to calculate the so called
Rayleigh 2.5D operator [12]: filtering of the audio signals
with a 3 dB/octave correction filter [13] and calculation of
the delayed sample and its gain, according to each speaker
distance from the virtual source. To render a source behind
the speaker array, the inner product z between vector

−→
d1 and

each speaker normal vector −→n must be calculated. Then the
amplitude decay AD is given by the following formula [12]:

AD =

√

Dz

(Dz + z) ∗ |
−→
d |
∗ cos(θ) (1)

where Dz is called reference distance, the distance where
the Rayleigh 2.5D operator can give sources with correct

amplitude, |
−→
d | = |

−→
d1 |, and cos(θ) is the cosine of angle θ

between the vectors
−→
d1 and −→n , as shown in Figure 1(a).

In order to render a moving source from a point A to
a point B behind the speaker array, a linearly interpolated

trajectory is calculated [12]: Distance |
−→
d2|−|

−→
d1| is divided by

the samples buffer size bs, in order to calculate the distance
difference υ (in meters) of the source from speaker i between
two consecutive audio samples:

υ =
|
−→
d2| − |

−→
d1|

bs
(2)

Based on the distance υ, the source distance |
−→
d | from speaker

i with coordinates (xsi, ysi) is updated for every sample by
the formula:

|
−→
d | ← |

−→
d |+ υ (3)

According to the current distance |
−→
d | from speaker i, an

output sample is selected based on the formula:

delayedsample = −(l + (df ∗ |
−→
d |)) + (out index + +) (4)

where df = fs/υs is the distance factor (fs is the sampling
rate, υs is the sound speed), out index is the current out-
put audio sample and l is an artificial latency. Finally, the

...

(a) Speaker array setup.

Previous Buffer Current Buffer

1024 Samples 1024 Samples

Source

Samples

Speaker Buffer

1024 Samples

Speaker

Samples

If delayed sample <0 If delayed sample 0

out_index

(b) Proper choice of the delayed sample.

Figure 1: A hypothetical speaker array setup and
an illustration of how the delayed sample is selected
in WFS.

Buffer[delayed sample] is multiplied by the amplitude decay
AD and the system master volume. The result is stored to
the Speaker Buffer.

Figure 1(b) illustrates how the delayed sample is calcu-
lated. The source samples are divided into buffer-size source
segments (in our implementation 1024-sample segments). In
each iteration a source segment is used to select the proper
audio samples for each speaker. However, there are cases
where the evaluated delayed sample does not belong to the
current source segment, but instead, to the previous one.
Thus, in every iteration, two source segments are needed,
the current and the previous one, to cover both cases where
the evaluated delayed sample is positive or negative respec-
tively. Further details can be found in [14], [15], [13] and
[12].

Related work: A sound system that was built in IRT in
Munich and called the Binaural Sky [16], actually combines
both binaural and Wave Field Synthesis technologies. The
Binaural Sky concept is based on the avoidance of Cross
Talk Cancelation (CTS) filters real time calculation, while
the listener’s head is rotated. Instead of using two speakers
the authors utilize a circular speaker array that synthesizes
focused sound sources around the listener. The system uses
a head tracking device and, instead of real time CTS filter
calculation, it adjusts the speaker driving functions such as
delay times and attenuations. The speaker array consists
of 22 broadband speakers and a single low frequency driver.
All real time processing is done on a Linux PC with a 22
channel sound card.

Two companies, SonicEmotion [17] and Iosono [18], pro-

duce audio systems based on WFS technology. SonicEmo-
tion rendering unit is based on Intel Core2Duo processor and
consumes an average power of 360 W. It supports rendering
up to 64 real-time sound sources, while driving a 24 speaker
array. Iosono rendering unit is also based on a standard
PC approach and supports up to 64 real-time sources while
driving 32 speakers. In both cases, when more speakers are
required, additional rendering units have to be cascaded.

The authors of [19] describe a real-time immersive audio
system that exploits WFS technology. The system performs
sound recording from a remote location A, transmits it to
another one B, and renders it through a speaker array uti-
lizing the WFS technology. In order to preserve the original
sound exact coordinates, a tracking device is employed. A
beamformer also records the sound source, but without the
acoustic properties of the recording location A. Thus, a dry
source signal with its coordinates is transmitted to B. The
WFS rendering unit receives this information along with the
acoustic properties of the reproduction room B. The result
is the same sound source being rendered exactly at the same
position under B acoustic properties. The complete system
consists of four PCs, out of which one used for the WFS
rendering.

In [20], the authors developed a system that combines
WFS technology with a projection-based multi-viewer stereo
display. The system hardware setup consists of four stan-
dard PCs and 32 speakers. One PC is used to control two
cameras that are tracking movements of a user. A second
PC drives four LCD projectors that generate images on a
perforated screen. A third PC is used as an audio player
and is connected to Iosono rendering unit described above.
The latter processes all input audio signals and drives 32
speakers divided into four 8-speaker panels.

Finally, one of the first attempts to utilize the GPU for
3D-audio algorithms processing was presented in [21]. The
authors developed an optimized SSE assembly code running
on a Pentium 4 at 3 GHz for binaural rendering. They also
implemented an equivalent code to be run on an NVidia
GeForce FX 5950 Ultra GPU, by using the Cg and OpenGL
graphic languages. Their SSE implementation managed to
render 700 real-time sound sources, while the GPU per-
formed worse and rendered up to 580 sources. However,
the authors identified that the GPU performance could be
boosted by 50% if floating point texture re-sampling was
supported in hardware. Furthermore, they suggested that
the AGP connection could become a bottleneck when trans-
ferring large amounts of audio data from the GPU main
memory to the audio hardware for playback. To the best of
our knowledge, no HW implementation of WFS, neither on
GPU, nor on FPGA has been proposed in the literature.

3. GPU BASED IMPLEMENTATION OF

THE WFS KERNEL
In this section, we briefly describe the GPU organization

and discuss the mapping details of the WFS kernel onto it.
GPU organization: Contemporary NVidia GPUs [5]

consist of M multiprocessors, as illustrated in Figure 2, that
can process data concurrently. Each multiprocessor includes
P processors and the following four different types of on-chip
memory:

1. A shared memory among all processors in a multipro-
cessor. The shared memory is used for data caching.

G
P

U
 M

ai
n
 M

em
o
ry

Multi

Processor

0

Multi

Processor

1

Multi

Processor

M-1

GPU
Processor 0

Processor 1

RF

Processor

P-1

C
o

n
st

an
t

C
ac

h
e

S
h
ar

ed
 M

em
o
ry

T
ex

tu
re

 C
ac

h
e

Instruction

Dispatch

RF

RF

T
o
 G

P
U

 M
ai

n
 M

em
o

ry

Figure 2: The GPU organization.

2. A read-only constant memory used for caching reads
of constants from the GPU main memory.

3. Another read-only memory, called texture memory, that
is used for caching textures read also from the GPU
main memory.

4. P Register Files (RFs) distributed among all proces-
sors inside the multiprocessor.

In order for the developers to efficiently map general pur-
pose kernels on the GPU without using specific graphics
terms, such as textures, vertices and fragments, NVidia launched
the CUDA parallel software environment [5]. CUDA intro-
duces a set of extensions to the C programming language
that exposes to the developers the parallel processing ca-
pabilities of the GPU. Each kernel mapped on the GPU
is executed concurrently by many threads mapped on the
multiprocessors. CUDA defines a thread hierarchy based on
a grid of thread blocks. Each block consists of up to 512
threads in a 1-, 2- or 3-dimensional order, while the maxi-
mum dimension size of a grid of thread blocks can be up to
216.

Mapping of the WFS kernel onto the GPU: The
WFS algorithm can be considerably parallelized. Once the
source distance from a speaker and the source amplitude
decay have been calculated, each sample for this particular
speaker can be processed concurrently (eq. 4). Further-
more, all calculations regarding each speaker are also inde-
pendent. Based on this fact, we decided to create a grid of
thread blocks as depicted in Figure 3. The x-axis represents
all thread blocks that process audio samples for a specific
speaker. Thus, the total number of rows equals to the num-
ber of speakers. The y-axis represents all thread blocks that
process a certain 1024-samples segment, which is the buffer
size bs mentioned in Section 2. Thus, the number of columns
is equal to #audiosamples

buffersize
. However, since each thread block

can consist of up to 512, we split the source samples into
two sets, {0,..., 511} and {512,...,1023}. Consequently, each
thread is calculating serially two samples. Finally, the z-axis
represents the total number of input sound sources that need
to be rendered through the speakers.

While mapping the WFS kernel onto the GPU special at-
tention was paid on the data transfers between the GPU
main memory and the on-chip shared memory. As recom-
mended in [5], while a GPU kernel is running, the GPU main
memory accesses by the threads should be minimized, be-
cause each one requires hundreds of cycles. For this reason,
source and speaker coordinates are stored in the constant
memory, because it is cachable and thus will be faster to read
them, instead of accessing the GPU main memory each time

= Thread

#
 o

f
S

p
ea

k
er

s

of Audio Samples / Buffer Size

Block with

512 Threads

of

 S
ou

rc
es

x

y

z

Figure 3: Grid of thread blocks for the WFS kernel.

they are required. When the WFS kernel starts execution,
its first task is to load all required data from the GPU main
memory to the shared memory. When data loading is done,
all threads within a block are synchronized to make sure
that further shared memory readings will be valid. Once all
threads are synchronized, each one of them processes two
speaker samples as mentioned earlier. All results are tem-
porarily stored in the shared memory and, as soon as all
threads are done, the kernel copies them back to the GPU
main memory. Following this approach regarding the data
transfers, we managed to minimize the memory access cost
impact on the overall kernel execution time.

Overall, the processing steps of the WFS kernel for a
source i rendered through speaker j can be summarized as
follows:

1. Copy from the GPU main memory the next 2048 source
samples to the shared memory. For every 1024 speaker
samples to be calculated, the algorithm requires to ac-
cess the previous source buffer when the delayed sam-
ple is negative, or the current source buffer when the
delayed sample is positive (eq. 4).

2. Calculate the amplitude decay and distance of source i
from speaker j. A single thread per block calculates the
source i distance from speaker j and the correspond-
ing amplitude decay. The reason that we use a single
thread is because the distance and the amplitude are
common for a specific 1024-sample segment.

3. Process speaker samples 0 to 511. All threads process
one sample, and store the results back into the shared
memory.

4. Process speaker samples 512 to 1023. Again each thread
processes one sample and stores the results back into
the shared memory.

5. Copy processed speaker samples to the GPU main mem-
ory. As soon as all speaker samples are processed, the
threads are again synchronized and each one stores two
speaker samples back to the main GPU memory.

Figure 4 depicts a flowchart of the complete software that
runs both on the GPP and on the GPU. Once all required
memory allocations are completed, the GPP filters all audio
samples. The filtered audio samples are copied from the
GPP main memory to the GPU main memory. The software
then invokes the WFS kernel, which starts running on the
GPU as explained before. When the WFS kernel finishes
processing all filtered audio samples from all sources, the
software copies all speakers samples back into the GPP main
memory.

Start
Filter audio

samples

Copy filtered samples

from the GPP main

memory to the GPU

main memory

Process filtered

audio samples

to the GPU

Copy speaker

samples from

the GPU main

memory to the

GPP memory

End

Figure 4: Flowchart that illustrates the main WFS
processing steps.

4. FPGA BASED IMPLEMENTATION OF

THE WFS KERNEL
In this section, we briefly discuss the FPGA implementa-

tion of the WFS kernel, originally proposed in [7].
Complete infrastructure: Figure 5(a) illustrates the

hardware design infrastructure. The PowerPC utilizes a
128-Kbytes instruction memory connected to the Proces-
sor Local Bus (PLB) through its PORTA. Furthermore, a
64-Mbytes DDR SDRAM is used to store audio samples.
An additional 128-Kbytes data memory is also connected
through its PORTA to the PLB that is used from the Pow-
erPC. The PORTB is connected directly to the Fabric Co-
processor Module (FCM) 1 which accommodates the WFS
hardware accelerator. This shared memory implementation
allows the FCM to access the memory more efficiently com-
pared to accessing it through the PLB. The FCM is also
connected directly to the PowerPC through the Auxiliary
Processor unit (APU) [22] interface. The latter is configured
to decode one User Defined Instruction (UDI) that invokes
the FCM execution. Finally, an RS232 module is employed
to debug the system through the On-chip Peripheral Bus
(OPB).

WFS kernel accelerator: For the internal calculations,
the FCM does not follow a floating point approach. This
would result in a complex hardware design capable of deliv-
ering results with unnecessary high accuracy. Instead, after
experiments [7], it was decided that a fixed point format
with five integer and 17 fractional bits to represent initial
data, suffices to produce results with three decimal digits
accuracy.

In Figure 5(b), the FCM internal organization is depicted.
The hardware accelerator mainly consists of two different
sub-units, a Rendering Unit (RU) and an FIR filter. Fur-
thermore, a RU includes two modules, the Preprocessor and
the WFS Engine, and a memory where all speaker coordi-
nates are stored in the aforementioned fixed point format.

The Preprocessor is designed to calculate the samples dis-
tance υ (eq. 2), amplitude decay AD (eq. 1) and the

source distance
−→
d (eq. 3) for each speaker. A more de-

tailed operation analysis suggests that a total of nine ad-
ditions/subtractions, nine multiplications, three square root
operations and two divisions are required per speaker. The
Preprocessor requires 142 clock cycles to complete data pro-
cessing and the final results are forwarded to the WFS En-
gine.

As soon as the Preprocessor has finished calculations, it
acknowledges the FCM primary controller. The latter starts
the WFS Engine which reads the amplitude decay, sample

1We follow Xilinx terminology.

P
ro

c
e
s
s
o

r
L

o
c
a
l

B
u

s

(a) Complete Design Infrastructure.

Pre-

processor

FCM

Controller

WFS

engine

Speaker

coordinates

APU-FCM

interface

PLB BRAM

PortB FIR

filter

RU

(b) FCM organization.

Figure 5: The complete WFS design infrastructure
and the FCM organization.

and source distance with respect to a particular speaker, and
calculates the delayed samples (eq. 4). The WFS Engine in-
tegrates a reconfigurable number of Sample Selection Cores
(SSCs), each one processing one speaker sample per cycle.
Each SSC contains one multiplier, one subtractor, two ac-
cumulators and one adder. Thus, for example, a WFS with
two SSCs can process two samples per cycle, which leads to
512 cycles for 1024 samples. In addition, 11 cycles are spent
on communication among the WFS Engine internal mod-
ules, leading to a total of 523 cycles to process 1024 audio
samples per speaker.

Figure 6 depicts the FCM functionality. As soon as a
UDI is decoded from the PowerPC, the APU invokes the
FCM execution. The latter reads the current source coor-
dinates inside the listening area and the appropriate source
samples from the PLB memory. The source samples are
filtered and then stored to an internal buffer. The FCM
controller loads the speakers coordinates from the memory
and forwards them to the Preprocessor along with the source
coordinates. The Preprocessor and the WFS Engine work
in parallel; while the fist is calculating the amplitude decay
and the sample and source distance for a particular speaker,
the latter is calculating the samples of the previous speaker.
With this pipelined module execution approach, the Prepro-
cessor latency is completely hidden, thus improving consid-
erably the FCM performance.

Table 1 displays the FPGA resource utilization with one
RU with two SSCs integrated in the FCM. All slices oc-
cupied by infrastructural modules such as the PLB, OPB,
PLB2OPB bridge and the RS232, are mentioned in the In-
frastructural slices row. Table 2 shows how many such RUs
can fit in a single FPGA, based on its available resources.
Since one RU occupies only 3032 slices, the largest FPGA
of the Virtex4 FX family can accommodate up to 13 RUs,

Figure 6: Flowchart that shows FCM functionality.

Table 1: FPGA resource utilization

Maximum frequency (MHz) 218
Total Power Consumption (W) 3

XtremeDSP Slices 14
RU Slices 3032

FIR Filter Slices 7152
Peripheral Slices 2205

Total Slices 12389

thus providing resources for considerable parallel processing
of samples.

5. EXPERIMENTAL RESULTS
In this section, we provide the comparison among the

three different WFS kernel implementations. First, we dis-
cuss the experimental setup of each platform and then we
present the achieved speedup under various speakers con-
figurations. Finally, we investigate how the data memory
transfers overhead affects the overall WFS kernel execution.

Experimental setups: The original WFS kernel is im-
plemented in the C software language and executed on a
Pentium D D940 at 3.4 GHz with 2 GBytes of DDR2 SDRAM.
The GPU modified WFS kernel implementation was mapped
onto an NVidia GeForce 8600GT graphics card with 256
MBytes of DDR3 SDRAM. The 8600GT GPU consists of
four multiprocessors, each one integrating 8 processors oper-
ating at 1.19 GHz [5]. Regarding the software environment,
we installed the CUDA 2.1 and the latest NVidia drivers.
Finally, the reconfigurable hardware implementation of the
WFS kernel, was designed in VHDL. The complete design
synthesis was done with Xilinx’s EDK 9.1 and a fully func-
tional prototype with one RU, including two SSCs, was im-
plemented and tested on a Virtex4 FX60 -11.

Implementations comparison: Our primary goal is to
compare the potential speedup that can be achieved by the
different platform implementations, without taking into ac-

Table 2: Slices versus XtremeDSP slices proportion

FPGA Available Slices Slices / XtremeDSP RUs Fit
V4FX40 9267 193 3
V4FX60 15923 124 5
V4FX100 32819 205 10
V4FX140 53811 280 13

count the overhead of the initial data transfers between the
GPP main memory and the GPU main memory. In other
words, we assume that all data are already residing in the
GPU main memory. Regarding the FPGA implementation,
we assume that all samples are stored in on-chip BRAMs,
thus excluding the overhead of transferring data between
the FPGA and the DDR SRDAM. These assumptions are
made based on the fact that, as we indicated in Section 1,
in this work our goal is to identify the optimal architec-
tural solutions for the WFS kernel with respect to particular
computational demands and in different application contexts.
Furthermore, we also provide an investigation regarding the
memory transfers impact on the kernel execution both for
the GPU and the FPGA.

Figures 7(a), 7(b), 7(c) and 7(d) display the achieved
speedup of the GPU and the FPGA implementation WFS
kernel, called GPU WFS and FPGA WFS 1RU respectively,
against the original implementation on the Pentium D. On
the x-axis the number of processed source samples are pro-
jected, while the y-axis shows the achieved speedup. We
investigated four different speaker setups ranging from eight
up to 32 speakers. As one can observe, the GPU WFS
is up to 8x times faster than the Pentium D implementa-
tion, while the FPGA WFS 1RU outperforms Pentium D
10x times. We believe that the latest generation of inexpen-
sive GPUs that integrate up to 30 multiprocessors [5], can
potentially achieve at least an order of magnitude speedup,
because the parallel structure of the WFS algorithm, would
efficiently utilize all of the additional processors. Further-
more, we found that the FPGA prototype with one RU in-
tegrating two SSCs, outperforms the WFS kernel running
on the GeForce 8600GT GPU. Additionally, Figures 8(a),
8(b), 8(c) and 8(d) depict the potential speedup that can
be achieved when mapping more such RUs on larger FP-
GAs. As one can observe on these figures, exploiting the
potential parallelism of a larger FPGA by mapping more
RUs, can provide a potential speedup of up to two orders of
magnitude against the Pentium D implementation.

We compared also the GPU and the FPGA WFS kernel
implementation against the commercial products from Son-
icEmotion [17] and Iosono [18]. According to their specifi-
cations1, SonicEmotion’s WFS rendering unit can support
up to 64 sources when driving 24 speakers, while Iosono’s
rendering unit can also support 64 sources when driving 32
speakers. If the speaker setup consists of more than 24 and
32 speakers, then additional SonicEmotion and Iosono ren-
dering units must be employed respectively. Figure 9 illus-
trates the comparison among all four platforms. As one can
notice, both the GeForce GPU and the FPGA implementa-
tions, can support much higher number of real-time sources
than the commercial PC-based products, even while using
only a single GPU and a single FPGA. This fact leads to the
conclusion that contemporary GPUs and FPGAs can greatly
improve the performance of the WFS algorithm. Further-
more, the experimental results suggest that the performance
of one GPU is comparable to a reconfigurable solution with
one or two RUs, that can fit in a relatively small FPGA.

1SonicEmotion rendering-unit data were confirmed
by personal communication with SonicEmotion at
info@sonicemotion.com. In order to derive a perfor-
mance estimation of Iosono’s rendering unit, we considered
[23] from the official Fraunhofer web site, stating that six
Iosono PCs are used to drive 192 speakers.

8 speakers

0

2

4

6

8

10

12

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU

(a)

16 speakers

0

2

4

6

8

10

12

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU

(b)

24 speakers

0

2

4

6

8

10

12

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU

(c)

32 speakers

0

2

4

6

8

10

12

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU

(d)

Figure 7: Speedup achieved against the GPP with 8, 16, 24 and 32 speakers.

When a large FPGA is considered, multiple RUs can be
implemented which provides an order of magnitude higher
performance of the FPGA against a low-cost GPU and al-
most two orders of magnitude against a modern GPP.

Finally, Table 3 generalizes the advantages and the disad-
vantages of each approach regarding performance, develop-
ment time and power consumption. Regarding power effi-
ciency, contemporary GPPs and GPUs require tens of Watts
and, in some cases, up to more than 100 Watts. However,
when the speaker setup consists of more than 32 speakers,
still it is more power efficient to map the WFS kernel on the
GPU comparing to a GPP approach. The reason for that
is because one would require to employ additional render-
ing units to drive all the speakers, thus increasing the total
consumed power, while a single GPU could keep up with
the required processing demands. Furthermore, comparing
the GPU and the current FPGA prototype, the latter con-
sumes approximately 3 Watts [7], two orders of magnitude
less, comparing to both the GPP and GPU. However, prac-
tical experience suggests that designing hardware modules
with hardware description languages is a more cumbersome
process than using high-level software ones. Thus, although
the FPGA approach offers the best solution regarding per-
formance and power consumption, it still requires a higher
effort to build a complete hardware accelerator.

0

200

400

600

800

1000

1200

8 16 24 32Speakers

S
o
u
rc
e
s

GeForce 8600 GT FPGA_1_RU

SonicEmotion Iosono

Figure 9: Number of real-time rendered sources that
can be supported by each platform.

8 speakers

0

20

40

60

80

100

120

140

160

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU FPGA_WFS_3RUs

FPGA_WFS_5RUs FPGA_WFS_10RUs FPGA_WFS_13RUs

(a)

16 speakers

0

20

40

60

80

100

120

140

160

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU FPGA_WFS_3RUs

FPGA_WFS_5RUs FPGA_WFS_10RUs FPGA_WFS_13RUs

(b)

24 speakers

0

20

40

60

80

100

120

140

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU FPGA_WFS_3RUs

FPGA_WFS_5RUs FPGA_WFS_10RUs FPGA_WFS_13RUs

(c)

32 speakers

0

20

40

60

80

100

120

140

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

Samples processed

S
p

e
e

d
u

p

GPU_WFS FPGA_WFS_1RU FPGA_WFS_3RUs

FPGA_WFS_5RUs FPGA_WFS_10RUs FPGA_WFS_13RUs

(d)

Figure 8: Speedup achieved against the GPP with 8, 16, 24 and 32 speakers using multiple RUs.

Table 3: Design features of WFS per implementa-
tion platform

Platform Performance Development time Power consumption
GPU Very good Medium High
FPGA Excellent Long Very low
GPP Low Short High

Exploration of the memory transfers overhead on
the PC: During our experiments with the GPU imple-
mentations, reported earlier in this study, we deliberately
avoided to include the data memory transfers into the re-
ported figures. The reason was that our goal was not to
evaluate the memory subsystem performance of a PC, but
to make an architectural study of the WFS kernel, assuming
a dedicated subsystem with GPU being the main processor.
Nevertheless, we explore the utilization of the GPU as part
of the entire PC system, because such a platform provides
the easiest and the most immediate way to use a GPU for
a WFS-based audio system. Moreover, we can clearly indi-
cate the memory transfers overhead, due to the PC memory
/ bus infrastructure and to use this knowledge for the design
of a better dedicated memory subsystem.

For our study, we have divided the total WFS execution

time on the GPU into three different parts: 1) Host to De-
vice - the required time to transfer all data from the host
(GPP) main memory to the device (GPU) main memory.
2) WFS kernel - the actual WFS kernel execution time. 3)
Device to Host - the transfer of the results from the device
(GPU) main memory to the host (GPP) one. Figures 10(a)
and 10(b) illustrate how these three different times are dis-
tributed among the total GPU execution time. As one can
notice, in the case where we have 32 speakers, the Device to
Host time occupies up to 60% of the total time. In contrast,
in the case where we have only eight speakers to drive, this
time occupies up to 40% of the total execution time. The
reason for that is because in the first case, the WFS pro-
duces an increased amount of data to be transferred to the
GPP memory, since there are more speakers to be driven.
The Host to Device time for the initial data that have to be
transferred from the GPP memory to the GPU one (such as
source coordinates and filtered samples), is always the same,
thus its portion is decreased as the number of speakers in-
creases. Furthermore, the WFS time increases from roughly
30% when there are eight speakers, to 40% when there are
32 speakers. The conclusion from this analysis is that, as ex-
pected, data transfers overhead severely impacts the WFS
execution time in the GPU with a typical memory hierar-
chy of the PC systems. This impact is quantified in Fig-

8 speakers

0%

20%

40%

60%

80%

100%
1

0
2

4

3
0

7
2

5
1

2
0

7
1

6
8

9
2

1
6

1
1

2
6

4

1
3

3
1

2

1
5

3
6

0

1
7

4
0

8

1
9

4
5

6

2
1

5
0

4

2
3

5
5

2

2
5

6
0

0

2
7

6
4

8

2
9

6
9

6

3
1

7
4

4

3
3

7
9

2

3
5

8
4

0

3
7

8
8

8

3
9

9
3

6

samples

WFS_kernel Host to Device Device to Host

(a)

32 speakers

0%

20%

40%

60%

80%

100%

1
0

2
4

3
0

7
2

5
1

2
0

7
1

6
8

9
2

1
6

1
1

2
6

4

1
3

3
1

2

1
5

3
6

0

1
7

4
0

8

1
9

4
5

6

2
1

5
0

4

2
3

5
5

2

2
5

6
0

0

2
7

6
4

8

2
9

6
9

6

3
1

7
4

4

3
3

7
9

2

3
5

8
4

0

3
7

8
8

8

3
9

9
3

6

samples

WFS_kernel Host to Device Device to Host

(b)

Figure 10: Breakdown of the GPU time execution with 8 and 32 speakers.

8 speakers

0

1

2

3

4

5

6

7

8

9

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

samples

s
p

e
e

d
 u

p

GPU_WFS GPU_WFS_o

(a)

32 speakers

0

1

2

3

4

5

6

7

8

9

1
0
2
4

3
0
7
2

5
1
2
0

7
1
6
8

9
2
1
6

1
1
2
6
4

1
3
3
1
2

1
5
3
6
0

1
7
4
0
8

1
9
4
5
6

2
1
5
0
4

2
3
5
5
2

2
5
6
0
0

2
7
6
4
8

2
9
6
9
6

3
1
7
4
4

3
3
7
9
2

3
5
8
4
0

3
7
8
8
8

3
9
9
3
6

samples

s
p

e
e

d
 u

p

GPU_WFS GPU_WFS_o

(b)

Figure 11: WFS kernel execution speedup with and without the memory overhead for 8 and 32 speakers.

ures 11(a) and 11(b), where GPU WFS and GPU WFS o
is the achieved speedup without and with the memory over-
head respectively. The figures provide clear evidence, that
even in the non optimal PC bus / memory organization a
speedup of the WFS kernel can be still achieved using a
GPU attached to the system.

As far as the FPGA implementation is concerned, the
prospective system would have a dedicated memory subsys-
tem by default. As we mentioned in Section 4, a RU with
two SSCs process 1024 16-bits samples every 523 cycles at
200 MHz, thus approximately 772 MBytes/sec. In the Xilinx
ML410 board, where the prototype was validated, there is a
32-bit word 64 MBytes DDR SDRAM chip running at 266
MHz. The memory bandwidth, therefore can be roughly up
to 2 ∗ 266 ∗ 106 ∗ 4 bytes = 2.12 GBytes/sec. Consequently,
a direct SDRAM connection with the FCM could alleviate,
for example, the data transfer bottleneck and provide the re-
quired bandwidth. Recent technologies provide even higher
operational frequencies for the contemporary DRAM mod-

ules. Therefore, our conclusion is that memory transfers
should not introduce a performance bottleneck in WFS pro-
cessing, neither on an FPGA, nor on a GPU, if the memory
hierarchy is designed and optimized accordingly.

6. CONCLUSIONS
In this paper, we investigated the architectural perspec-

tives of three different hardware platforms to map the WFS
kernel: a GPP, a GPU, and an FPGA. We found that
a GeForce 8600GT consisting of only four multiprocessors
(latest inexpensive desktop GPUs consist of up to 30), can
achieve up to 8x speedup comparing to the Pentium D 3.4
GHz implementation. The FPGA implementation achieves
the best performance, even when utilizing only one RU with
two SSCs. We also compared both approaches against the
commercial products from Iosono and SonicEmotion, and
found that both of them were outperformed from the GPU
and FPGA implementations. The FPGA implementation is
the one that can offer the best performance and lowest power

consumption, outperforming the others by approximately
two orders of magnitude. However, its main drawback is
that it requires an increased effort to design the complete
hardware accelerator. Our main conclusion is that a small
FPGA (Virtex4 FX40) can provide a speedup in the same
order as a single low-cost GeForce 8600GT GPU against a
GPP imlementation. Due to the larger potential parallelism,
that can be obtained on an FPGA compared to a low-cost
GPU, a larger FPGA (e.g. Virtex4 FX140) can obtain up to
an order of magnitude speedup compared to the GPU and
up to two orders of magnitude, compared to a GPP. How-
ever, latest desktop GPUs consisting of up to 30 multiproces-
sors should be able to offer a boosted performance, due the
parallel structure of the WFS algorithm that could exploit
the additional processors efficiently. Furthermore, CUDA
provides an efficient software environment that allows the
annotation of the original C code with the required exten-
sions, to exploit the potential parallelism offered from the
latest GPUs. Ultimately, we found that, in order to achieve
the aforementioned speedups, dedicated memory subsystem
designs are required to saturate with the increased number
of data transfers.

7. ACKNOWLEDGEMENTS
This work was partially sponsored by hArtes, a project

(IST-035143) of the Sixth Framework Programme of the
European Community under the thematic area ”Embedded
Systems”; and the Dutch Technology Foundation STW, ap-
plied science division of NWO and the Technology Pro-
gram of the Dutch Ministry of Economic Affairs (project
DCS.7533).

The authors would like to explicitly thank Lars Hörchens
and Jasper van Dorp Schuitman from the Laboratory of
Acoustical Imaging and Sound Control of the TU Delft for
their valuable contribution to accomplish this work.

8. REFERENCES
[1] A. Mouchtaris, P. Reveliotis, and C. Kyriakakis,

“Inverse of Filter Design for Immersive Audio
Rendering Over Loudspeakers,” in IEEE Transactions
on Multimedia, vol. 2, June 2000, pp. 77–87.

[2] A. Berkhout, D. de Vries, and P. Vogel, “Acoustic
Control by Wave Field Synthesis,” in Journal of the
Acoustical Society of America, vol. 93, May 1993, pp.
2764–2778.

[3] J. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips, “GPU Computing,” in
Proceedings of the IEEE, vol. 96, May 2008, pp.
879–899.

[4] CUDA technology, NVidia Corporation,
“http://www.nvidia.com/object/
cuda home.html#state=home.”

[5] N. Corporation, “CUDA programming guide version
2.1,” Tech. Rep., October 2008.

[6] Xilinx Inc., “H.264 Deblocker Core v1.0,” May 2007.

[7] D. Theodoropoulos, G. Kuzmanov, and
G. Gaydadjiev, “Reconfigurable Accelerator for
WFS-Based 3D-Audio,” in IEEE Reconfigurable
Architecture Workshop, May 2009.

[8] Xcell Journal, “Using FPGA-Based Hybrid Computers
for Bioinformatics Applications,” October 2006, pp.
80–83.

[9] ——, “Future-Proofing Military Applications Using
FPGAs,” July 2007, pp. 21–23.

[10] M. A. Gerzon, “Periphony: With-Height Sound
Reproduction,” in Journal of the Audio Engineering
Society, vol. 21, 1973, pp. 2–10.

[11] J. Daniel, R. Nicol, and S. Moreau, “Further
Investigations of High Order Ambisonics and Wave
Field Synthesis for Holophonic Sound Imaging,” in
114th Convention of Audio Engineering Society,
March 2003, pp. 58–70.

[12] J. van Dorp Schuitman, “The Rayleigh 2.5D Operator
Explained,” Laboratory of Acoustical Imaging and
Sound Control, TU Delft, The Netherlands, Tech.
Rep., June 2007.

[13] P. Vogel, “Application of Wave Field Synthesis in
Room Acoustics,” Ph.D. dissertation, TU Delft, The
Netherlands, 1993.

[14] M. Boone, E. Verheijen, and P. van Tol, “Spatial
Sound Field Reproduction by Wave Field Synthesis,”
in Journal of the Audio Engineering Society, vol. 43,
December 1995, pp. 1003–1012.

[15] W. P. J. D. Bruijn, “Application of Wave Field
Synthesis in Videoconferencing,” Ph.D. dissertation,
TU Delft, The Netherlands, October 2004.

[16] D. Menzel, H. Wittek, G. Theile, and H. Fast, “The
Binaural Sky: A Virtual Headphone for Binaural
Room Synthesis,” in International Tonmeister
Symposium, October 2005.

[17] SonicEmotion Company,
“http://www.sonicemotion.com.”

[18] Iosono Company, “http://www.iosono-sound.com.”

[19] H. Teutsch, S. Spors, W. Herbordt, W. Kellermann,
and R. Rabenstein, “An Integrated Real-Time System
For Immersive Audio Applications,” in IEEE
Workshop on Applications of Signal Processing to
Audio and Acoustics, October 2003, pp. 67–70.

[20] J. P. Springer, C. Sladeczek, M. Scheffler,
J. Hochstrate, F. Melchior, and B. Fröhlich,
“Combining Wave Field Synthesis And Multi-viewer
Stereo Displays,” in IEEE Virtual Reality Conference,
2006, pp. 237–240.

[21] E. Gallo and N. Tsingos, “Efficient 3D Audio
Processing on the GPU,” in Proceedings of the ACM
Workshop on General Purpose Computing on
Graphics Processors, August 2004, p. C42.

[22] Xilinx Inc, “PowerPC 405 Processor Block Reference
Guide,” July 2005.

[23] Fraunhofer Institute for Digital Media Technology ,
“http://www.idmt.fraunhofer.de/eng/about us/
facts figures.htm.”

