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Abstract

In this paper, we present a runtime optimization targeting
the speedup of applications running on a reconfigurable
platform supporting the MOLEN programming paradigm.
More specifically, for functions that have an execution time
dependent on parameters, we propose an online adaptive
decision algorithm to determine if the gain of running that
function in hardware outweighs the overhead of transferring
the parameters, managing the start and stop of the execution
and obtaining the result. Our approach is dynamic in the
sense it does not rely on compile time information.The al-
gorithm is applied on a real video codec for which a function
is implemented in hardware and we show improvements as
big as 24% percent can be obtained for the specific kernel.
We also determine the overhead and execution time ranges
in which this optimisation is usefull and what other factors
can influence it. 1

1. Introduction

Due to the increasing heterogeneity of computer system
and applications, the hardware and software designers de-
velop new approaches that use more efficiently the available,
limited, resources. A wide range of such problems can be
solved in a fast and efficient manner by Reconfigurable
Computing which combines the flexibility of a GPP (general
purpose processor) with the speed of the (reconfigurable)
hardware. One issue with such complex system is to decide
the mapping between the tasks that have to be performed and
the available hardware. Within a single application context,
this can be solved by the compiler. However as soon as
multiple applications compete for the same resources, the
compiler cannot solve this.

In this paper, we propose an online decision algorithm
called AMAP (adaptive mapping algorithm) that, taking into
account particularities of the function and the history of the
execution decides which implementation should use for the
execution of that instance. One main novelty of the algorithm
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is that it takes this decision as late as possible - before each
run - so it can make better decisions than a compile time
algorithm. Also the profile information is stored and will be
used when taking the decision for the next function call.

The paper is organized as follows: in Section 2 we briefly
present the Molen programming paradigm for reconfigurable
architectures and related work. Next, we give a motivational
example and also define the exact problem. A detailed
description of the runtime algorithm is presented in Section
4. The results of the algorithm are shown in Section 5. In
Section 6, we present conclusions and outline new research
directions.

2. Background and related work

The MOLEN programming paradigm [1] is a paradigm
that offers an abstraction of the available resources to the
programmer, together with a model of interaction between
the components. Using a ’one time’ architectural or oper-
ating system extension the Molen programming paradigm
allows for a virtually infinite number of new hardware
operations to be executed on the reconfigurable hardware.

The work done in hardware software partitioning consid-
ered until now static partitioning done at compile time with
the objective to minimize the total cost or minimize the cost
while satisfying one constraint [2]. Various algorithms have
been used to solve this problem like simulated annealing
[3] [4], integer linear programming [5], mixed integer linear
programming [6], knapsack problem [7] and genetic algo-
rithms [8].

Different other problems were considered when doing the
partitioning, like: area allocation [5], granularity selection
[9] and scheduling [4] [8].

One common characteristic of all these approaches is
that they rely on the fact that the profile information and
execution trace are available at compile time and they
optimize just for one specific set of cases ([5] [4] [9]).

From the runtime and operating system point of view,
the work was focused on online scheduling for task that
are already mapped to hardware [10]. Using a cache and
software dispatch was proposed in [11] but the software
dispatch was used when the contention was too high.



Online hardware software partitioning for image process-
ing was proceposed in [12] but there, as in other works,
the algorithm used ’performance profiles’ that had to be
computed at compile time. A similar problem is described in
[13], where the problem is defined in terms of an application
set and various profile information known before the appli-
cation starts. In [14] multiple applications are considered
and an algorithm is given to select the most efficient set
of functions taking into account function speed and area
constraints. Once the selection is made, the decision is
changed only when the application gets into a new execution
stage.

Considering the previous work, we propose a new method
of improving the hardware software partitioning by taking
the final decision at runtime based on system execution his-
tory, and not on predetermined execution times. The decision
is taken for each function execution and not for all exe-
cutions. This is useful for coarse granularity (task/function
level) and for functions which execution time is dependent
on the parameters.

3. Problem definition

When optimizing an application for a reconfigurable
platform one of the most important steps is the hard-
ware/software partitioning. The role of this phase is to decide
which functions/tasks will be implemented in hardware and
which in software. The decision is taken based on multiple
attributes depending on the partitioning algorithm, for exam-
ple: estimated execution time, profile information, hardware
area available and data dependency between tasks. One
disadvantage of this approach is that, if the attribute depends
on the function parameters, just the average for multiple
execution is considered. In real life, for the same task some
of the attributes (like execution time) can have multiple
values based on the parameters of the tasks. Assuming
there will be just one value implies some optimizations
possibilities are lost.

Consider the hardware software partitioner decided that
function f should be implemented in hardware. The total
execution time in hardware is represented by the following
formula:

thw exec = tsetup + texec + treturn (1)

The time tsetup represents the time needed for parameter
transfer, memory transfer and the start of the hardware. This
should include any overhead introduced for example by the
operating system or the hardware control unit. The value
treturn includes the time needed to retrieve the result, copy
the data if necessary and stop the hardware. The texec time
is the time in which the hardware unit processes the data
and provides the results.

If the times in Equation 1 are independent of the param-
eters, the total execution time thw exec can be computed at

int satd(char *pix1, int i_pix1,
char *pix2, int i_pix2,
int i_width, int i_height)

{
int x, y;
int result;

for( y = 0; y < i_height; y += 4 )
{

for( x = 0; x < i_width; x += 4 )
{

... computations ...
}
pix1 += 4 * i_pix1;
pix2 += 4 * i_pix2;

}
return result;

}

Figure 1. Motivational example from x264 application

compile time and the decision of using the hardware or the
software implementation is a compile time decision. On the
other hand if any of the above times depend on the parameter
values the decision that is taken at compile time could be
suboptimal for some cases.

As an example of such a case we give the function in
Figure 1. It is obvious that the execution time depends on
the parameters i width and i height as these two parame-
ters control the number of iterations. The memory access
pattern is determined by i pix1 and i pix2. We measured
the execution time both when running on the GPP and when
running on the FPGA and we obtained the results in Table 1.
We can see that for this function multiple execution times
are possible depending on the parameters and even more
the ’speedup’ (ratio between the software and hardware
execution time plus overhead) is not constant. A static,
compile time, hardware software partitioner could use just
the average of the execution times or the average speedup
and in this way miss optimizations.

Problem statement: When both a software and a hard-
ware implementation for a specific function are available,
decide, taking into account the overheads, which of the

Table 1. Parameters and execution time for satd call
(P1,P2,P3,P4 are the integer parameters of satd)

Parameters Execution times µ s SpeedupP1 P2 P3 P4 Overhead tsw thw

16 16 32 16 5 31 12.9 1.73
4 4 32 16 4.6 2.55 1.9 0.39
8 8 32 16 4.65 7.86 4.2 0.88



two instances is better to execute. The overheads are also
affected by the particularities of the architecture like the time
needed to transfer parameters, the time needed to start/stop
the execution of the hardware function (tsetup) and the time
needed to retrieve the result (treturn). The target is to make
this decision at run time, as at compile time the parameters
value will not be available.

One advantage of this approach is that the algorithm
decision is taken based on the current state of the system.
One example of an unexpected state of the system is the
start of a different application. Another example is a DMA
memory transfer that can cause a spike in the bus use so
transferring memory could become a problem and using the
software version that uses cached data can become more
efficient. This is something it can’t be known and it is very
hard to predict at compile time.

4. Conditional hardware execution for Molen

As instrumentation and profiling in a real environment
are difficult and error prone, we propose a solution that will
react dynamically, when the application runs, to the changing
conditions. We assume the designer of the application has
already a set of candidates for hardware execution. For
this set of candidates, exact profiling information would be
needed in order to be able to take a decision at compile
time. This is not always possible because of two reasons:
the behavior of the candidate functions can be changed
depending on the parameters and the running conditions
might change because of event external to the application,
like multiple application running or power constraints that
affect the system. The main idea is to save the values of the
parameters for each function call together with the execution
time in software and in hardware, so next time a function is
called with the same parameters an estimation can be done
on whatever it is more efficient to run the hardware version
or the software version.

The overall structure of the algorithm is depicted in Figure
2.

The algorithm will be able to react to changing conditions
that can appear in a reconfigurable system. Also, it can
directly take into account the reconfiguration overhead as it
measures the needed time for executing a hardware function.
In this way, even if it is not aware of a configuration
caching mechanism it will detect at runtime that one of
the configurations is cached (so it can be configured much
faster) and use for the other hardware functions the software
version (as reconfiguring would take too much time).

4.1. Runtime Profile Data Module

The main purpose of the runtime profile data module is
to offer information about past invocations with the same
parameters for a specific function - we will call this metrics.
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Figure 2. Algorithm overall structure

Our algorithm needs all the values of the parameters, so we
need a data structure in which we can insert and search
fast, but we are not interested in deleting elements. Also,
as all processing happens at runtime we need a simple data
structure to limit the overhead imposed by it. Taking this into
account, we consider a red-black tree as the supporting data
structure. The complexity of the search and insert operation
are logarithmic so we consider the binary search tree a good
choice.

For a one parameter function the tree is straightforward as
each node will contain the values of that parameter and the
associated metrics. In case the function has more parameters
the binary search tree becomes a compositions of binary
search trees, where just the nodes corresponding to the last
parameter have associated metrics. Let’s assume we have a
two parameter function. Given the parameters in parameters
in Table. 2 the resulting tree is depicted in Figure. 3. When
the function is called we do the following steps to identify
the node containing the information about past invocations:

t = tree root
p = first parameter
do {
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Figure 3. Search tree for 2 parameter function

n = find value of p in t
if(n is not found) {
n = add p to t

}
t = next parameter tree from t
p = next parameter

} while(p <= last parameter)

For each of the nodes corresponding to the second pa-
rameter, there is a metrics structure associated (omitted to
simplify the figure).

The metrics we will use are:
• hardware execution time and the number of executions
• software execution time and the number of executions.
We chose this metrics as the focus of the algorithm is to

improve the total execution time. Different metrics could be
used in case another objective would have been chosen, for
example effective area occupied in case the objective would
be to increase the total utilization rate of the FPGA.

The decision function uses the metrics to decide if for
this sequence of parameters it is better to use the software
or the hardware function.

One important issue with the profile data module is that

Table 2. Parameter values for satd call
Parameters Steps in figure

height width
8 16 1,2

16 16 3,4
16 8 5,6

4 8 7,8
4 4 9,10

m = get_profile(non pointer parameters);
if ( decision(m) is sw ) {
t = time(call_sw_f());
set_sw_time(m,t);

} else {
t = time(call_hw_f());
set_hw_time(m,t);

}

Figure 4. AMAP decision module

it could take too much space of the processor cache and
that would degrade performance. The solution is to allocate
the data in a contiguous block that is a multiple of the size
of the cache line, and limit the increase to a certain value.
When the limit is reached, the cache module will not be
able to add new nodes to the tree. The solution we propose
is to add the metrics to the ones of the last found node (the
closest to the one that should be added). We will analyze
in the results section the effect of this limitations over the
algorithm efficiency.

4.2. Decision module

The runtime part of the algorithm outline is presented in
Figure. 4. For each function call that is taken into account
by the algorithm, the code will be inserted in place of the
call and a specific cache will be created at program start.
The call hw function must contain everything needed by
the hardware call, like memory and parameter transfers. The
functions set sw time and set hw time are the functions that
update the profile data module metrics after the call. The
function get profile is used to retrieve the metrics structure
from the profile data module, while the function decision
represents the logic in the decision module.

The decision function does a comparison of the times
needed in hardware and in software for a specific node in
the profile data module and the the one which has a smaller
execution time.

5. Results

In this section, we present the estimated results of apply-
ing the algorithm on the x264 video codec.

The x264 video codec is the state of the art in video
compressing and it requires a lot of computing power,
which involves it is challenging to use it in embedded
environments. One of the most time consuming kernels of
the application (around 30% of the total execution time) is a
function - satd wxh - which computes the sum of absolute
differences. In Table 1 we give examples of parameters with
which is called the satd wxh function, togheter with the
times needed for the execution, for each parameter set.

Our hardware platform is a Xilinx Virtex-4 ML410 which
is based on the Xilinx XC4VFX60 FPGA. The MOLEN



programming paradigm is implemented using the APU unit
of the PowerPC and an on chip memory, which is accessed
through the DCR bus. The design contains also a Flash
memory reader used as external memory, and an internal
256 MB DDR2 memory. For the x264 application we
implemented and tested satd wxh kernel using the DWARV
tool [15]. The system runs at 200 MHz and the hardware
designs are clocked at 100 MHz. We couldn’t execute the
whole application on the board as the PowerPC is not able
to access the internal FPGA memory through it’s data cache.
Even if we are able to place all the needed data in the internal
FPGA memory, work is needed to allow the data cache to
work with that memory.

All the data was collected from actually running the appli-
cations with real input. As the memory transfer are known to
be suboptimal we measured the operating system overhead,
the hardware and software execution and estimated the result
based on these numbers.

By applying the algorithm, we can select the best case
for any parameter set. We applied the algorithm on various
reference videos such that the trace of the execution changes
based on the data - so our function will receive different
parameters for different videos. The results are listed in table
3. The HW column represent the total execution time of
the kernel in case all the calls would be executed on the
reconfigurable fabric compared to the software execution
time. The result obtained by applying our algorithm are
presented in the column AMAP. The last column represent
the ’overhead’ introduced by the algorithm, respectively the
percent of the total execution time spent in the decision and
cache module.

We can see from the table that always using the hardware
can degrade performance. This can happen if the overhead,
represented by the system call and starting/stopping the
hardware unit - is comparable (or greater) to the total time
spent inside the kernel - for example for hall, claire and
miss-america. By applying our algorithm the improvement
ranges from 43% to 5% with an average of 15%.

As mentioned in Section 4.1 one important aspect is the
memory footprint of the data stored about parameters and
execution times. To test how the algorithm behaves in such
cases we set various limits and run simulations with the
gathered data. The results are presented in Figure 5. The first
thing that can be observed in the graph is that the size of the
memory footprint will affect the behavior of the algorithm.
The second important observation is that for a size of 10
there is a cut off point - after which the improvement is
marginal. The big differences in execution time per frame
between the data sets can be explained by the fact the
algorithm results depend on the amount of ’motion’ that
happens in the video.

To test the behavior of our algorithm in an extreme situa-
tion we considered increasingly high overheads (multiplying
by 2, 3 etc the measured overhead). The results can be seen

Table 3. Total kernel execution time in hardware
compared to total kernel execution tim in software

Video HW AMAP AMAP execution
akiyo 82.01% 76.08% 4.05%

carphone 106.45% 87.22% 6.50%
claire 134.97% 91.87% 7.25%

coastguard 91.25% 86.71% 4.98%
container 90.18% 79.96% 4.86%
foreman 98.69% 85.36% 5.68%

hall 113.64% 88.60% 7.14%
miss-america 121.65% 91.47% 8.10%

mobile 88.95% 82.25% 4.71%
news 88.85% 80.29% 4.77%

salesman 93.54% 80.75% 4.74%
silent 93.50% 84.37% 5.16%
suzie 104.42% 86.67% 6.37%

Average 100.62% 84.74% 5.72%
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Figure 5. Algorithm performance for different cache
sizes (each line represents a different video)

in Figure 6. We compare with the execution ’completely
in software’. The bold line represents the average for the
data. As expected, the algorithm will use more and more
the software version. After some point, the overhead makes
running the hardware completely inefficient (in our graph,
around 5x overhead), and the algorithm will mostly use the
software. The decrease in performance (after 5x, everything
that is the above 100% line is a decrease in performance) is
because the algorithm has to profile at least some executions
in order to determine that the overhead is significant and it
would be inneficient to execute the function in hardware.
Still, it will gracefully adapt to the new conditions and limit
the performance decrease to less than 3% compared to pure
software execution for an overhead increase of 8x.

6. Conclusions

In this paper, we proposed a runtime algorithm which,
using profiling, selects between the software and hardware
execution for a specific function based on the parameter
values with which the function is called. Our experiments
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Figure 6. Algorithm performance for different overheads
(each line represents a different video, bold line repre-
sents average)

show that it can give a significant improvement in a dynamic
system, where it is hard at compile time to predict all the
parameters of the system. The algorithms can be seen as
an extension to traditional compile time hardware software
mapping, which ignores the dynamic behavior of the tasks.
We also studied the impact of the size of the profile
data stored in the tree and examined the effect of various
overheads on the performance.

As future work we can analyze policies for purging
the cache and study methods to better capture the profile
time in a dynamic environment. Also, the algorithm could
be included as a hardware unit to minimize the overhead
imposed by it’s execution.
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