
Improving Soft Error Correction Capability of 4-D

Parity Codes

Muhammad Imran

Computer Engineering Laboratory

Delft University of Technology

The Netherlands

Email: Muhammad@delfic3.nl

Zaid Al-Ars

Computer Engineering Laboratory

Delft University of Technology

The Netherlands

Email: z.al-ars@tudelft.nl

Georgi N. Gaydadjiev

Computer Engineering Laboratory

Delft University of Technology

The Netherlands

Email: georgi@ce.et.tudelft.nl

Abstract— In order to reduce overall system costs, the
aerospace industry has been increasingly using commercial off
the shelf components in their products. The sensitivity of these
products to radiation induced soft errors becomes a major
concern. In this paper, we propose a method to increase the
reliability of a given off the shelf component by manipulating the
software-based error correction algorithm of its already existing
4-D parity codes. The paper shows that using this approach, it is
possible to correct triple bit adjacent errors, without adversely
affecting the performance or memory usage. Furthermore, we
discuss the results of implementing and validating the proposed
approach in practice on PIC microcontrollers.

I. INTRODUCTION

In its short history, space exploration has made extensive

use of modern electronics and computerized devices on its

missions. The space environment, however, is particularly

harsh, as it is characterized by radiation, extreme temperatures

and zero pressure. The increased radiation requires using a

special kind of Radiation Hardened ICs (RHICs) for space

applications.

Due to the high cost of RHICs and the limited number

of manufacturers, the trend of the space industry has been

shifting towards using more Commercial Off The Shelf (COTS)

components and enabling them for space applications. COTS

components are designed and manufactured according to nor-

mal, commercial business practices and are characterized by

low cost. COTS components require short development time

and, therefore, reduce the overall system cost.

Reliability is a major concern when using COTS compo-

nents in space or military applications. The reliability issue in

COTS components can be solved in a number of ways, one of

which is the use of Error Detection And Correction (EDAC)

schemes. These EDAC schemes can either be implemented in

hardware or in software.

In this paper, we focus on software implemented EDAC

schemes. Section II presents some background information

about the space environment and techniques to ensure reliabil-

ity. In Section III, EDAC codes used in space applications are

discussed. Section IV proposes a novel technique which can

improve the error correction capability of an already existing

EDAC scheme. Experimental results are presented in Section

V. Finally, a brief summary and conclusions are given in

Section VI.

II. BACKGROUND

The successful accomplishment of any space mission de-

pends very much on the correct operation of the electronic

equipment installed onboard. Proper operation in space poses

various challenges, such as limited power, extreme temperature

and most importantly cosmic radiation, which reduces the

reliability of electronic components. The main focus of this

paper is to mitigate the effects of radiation and ensure the

fault-free operation of electronic equipment onboard.

A. Radiation

Radiation is the process of energy emission in the form

of waves or particles. There are various types of radiation

depending on the type of the emission source, properties and

purposes of the emission, etc. We discuss here the impact of

radiation on the normal operation of electronic circuits. Out

of many effects produced by ionizing radiation, single event

effects and the total ionization dose are two phenomena which

occur frequently in space electronics.
1) Single event effects: Single Event Effects (SEEs) are

caused by single energetic particles. When these high energy

particles strike an electronic circuit, they produce ionization

within the semiconductor material of an IC. This ionization

causes either transient or permanent errors. Generally, SEEs

can be divided into three classes according to their impact on

ICs:

• Single Event Upset (SEU);

• Single Event Latchup (SEL);

• Single Event Burnout (SEB).

2) Total ionization dose: Another effect due to the radiation

is the Total Ionization Dose (TID). When radiation passes

through the semiconductor material, electron-hole pairs are

created within the oxide (insulating) layers present in the

device. Due to their higher mobility, electrons disappear almost

immediately while holes remain trapped. These holes change

the gate-to-channel potential in CMOS devices which results

in threshold-voltage shifts. Furhtermore, creation of traps

due to radiation, increases surface recombination velocity at

the interfaces, causing an increase in leakage current. This

phenomenon degrades the overall performance of an IC in

terms of power consumption and sometimes results in total

circuit failure [1].

Out of many effects produced by ionizing radiation, SEUs

and the TID are two phenomena which occur frequently in

space electronics. There are various techniques to mitigate

these effects and redundancy is one of them which improves

overall system reliability. Different forms of redundancy are

briefly discussed here.

B. Redundancy in computing systems

Redundancy can be defined as the addition of resources,

information or time to the system beyond what is needed

for normal operating conditions [2]. In the past, duplication

of components was considered the only form of redundancy.

Today, redundancy can manifest itself in several forms like

hardware redundancy, software redundancy, time redundancy

and information redundancy.

Any one of these four forms of redundancy can be imple-

mented in order to maintain or improve the system reliability.

Hardware redundancy is implemented by replicating the hard-

ware modules. This does not only increase the cost of the

electronic subsystem, but also the mass and power budget.

Software redundancy involves writing extra lines of code in

software to verify the correctness of a given signal. Whereas,

in time redundancy, fault tolerance is achieved at the expense

of extra time. Information redundancy requires extra informa-

tion. Information redundancy is mainly implemented by EDAC

codes. The use of EDAC codes for space applications has been

in practice for last four decades. In this paper, we restrict

ourselves to EDAC codes as a good alternative to improve the

system reliability. EDAC codes used in space applications are

briefly discussed in Section III.

III. ERROR DETECTION & CORRECTION CODES

There are various types of error correcting codes available,

but we will discuss here only those which have been previously

implemented in space applications. Some general concepts and

several basic terms are discussed here for error detection and

correction codes.

If we have n bits, there are 2n unique codewords that can

be constructed. Similarly k data bits can take 2k different

forms. If k < n, then the remaining n− k bits can be used as

redundant bits or parity bits in the codeword. These parity bits

contribute towards the error detection and correction property

of any code. The terms parity bits, check bits or redundant

bits are used interchangeably for the same concept in error

coding literature. We will use the term parity bits for these

and represent them by notation c, throughout our paper. The

number of data bits in the codeword determines the code rate,

which can be defined as, the measure of relative amount of

information which is transmitted in each codeword [3].

Code Rate = R =
Data bits

Total number of bits
=

k

n
(1)

where k are data bits and n is total number of bits in the

codeword.

Another important measure to compare the two codes is the

bit overhead. The Bit Overhead (BO) can be defined as, the

ratio of parity bits to data bits. Bit overhead determines the

percentage of redundancy in the codeword.

Bit Overhead = BO =
Parity bits

Data bits
=

c

k
(2)

If we have two n-bit binary codewords where a = a1a2...an

and b = b1b2...bn, The Hamming Distance dh, between a

and b is defined as the minimum number of bits in which a

and b differ from each other [3].

A. Hardware vs software EDAC implementation

EDAC codes play an important role in mitigating the impact

caused by SEUs and hence improve system reliability. These

EDAC codes are usually implemented in hardware, but require

an extended memory bus architecture to accommodate parity

bits and additional encoding/decoding circuitry. In low-cost

projects, system can be designed using COTS components

which do not support built-in EDAC schemes. EDAC codes

can also be implemented in software. Data is encoded using

these EDAC codes and resulting parity bits are stored. These

parity bits are periodically checked to detect and correct the

soft errors caused by radiation. Throughout this paper, we will

assume any EDAC code on data memory of size (m x k) 32

x 16 bits.

B. Types of EDAC codes

Various types of EDAC codes are used in computers,

communication systems and in space applications. Here we

will describe a few of software implemented EDAC codes to

protect the onboard memory from radiation. The codes used

in space applications are as follows:

• Hamming codes;

• Parity codes;

• Rectangular parity codes;

• Three-dimensional parity codes;

• Four-dimensional parity codes;

• Golay codes;

• BCH codes.

Hamming (12,8,3) is Single Error Correction (SEC) code

which can correct single errors in each codeword of the

block. Parity codes can have Single Error Detection (SED)

property in each codeword of the memory array. Rectangular

parity codes operate on a whole block and have capability

to make single error correction anywhere in the whole block

instead of single codeword. Four-Dimensional (4-D) parity

codes are also applied on a whole block of data instead of

individual codewords. They have Double Error Correction

(DEC) capability. Golay and BCH codes are examples of

cyclic codes. Both of these codes have Triple Error Correction

(TEC) capability and they operate on a single codeword.

C. Space & time complexity of EDAC codes

All the above discussed software implemented EDAC codes

are summarized in Table I. We present here the bit overhead,

code rate, space and time complexity and error detection &

TABLE I

COMPARISON OF EDAC CODES.

Error Bit Code Complexity Error
Correcting Overhead Rate Time Space Correction

Code Capability

Hamming(12,8,3) 50.00% 66.67% O(mn) O(mn) SEC

Parity 6.25% 94.12% O(mn) O(mn) SED

Rectangular parity 12.50% 91.43% O(mn) O(mn) SEC

4-D parity 18.75% 84.21% O(mn) O(mn) DEC

Golay(23,12,7) 91.67% 52.17% O(mk) O(2k) TEC

BCH(31,16,7) 93.75% 51.61% O(k2) O(mn) TEC

correction capability of each code. All mentioned codes except

Golay and BCH codes have linear time and space complexity.

Golay codes implement look up tables requiring exponential

space complexity. Look up tables dramatically reduce the time

complexity of Golay codes and they require linear time. BCH

codes which implement Galois fields require quadratic time

complexity and linear space complexity. In the next section,

we discuss a novel approach which can improve the error

correction capability of already existing 4-D parity codes.

IV. IMPROVING THE RELIABILITY OF 4-D PARITY CODES

This section presents a novel approach which improves the

error correction capability of already existing 4-D parity codes.

It also helps to mitigate the multiple-bit errors caused by

radiation. We conclude this section by comparing proposed

4-D parity codes with other triple error correcting codes.

A. Novel approach for error detection and correction

Multiple Bit Upsets (MBUs) potentially pose more threat

to system reliability than SEUs because certain EDAC codes,

such as the Hamming code, are not able to correct more

than one error in the same word [4], [6]. MBUs can be

corrected through multiple-bit error correction codes, a few

of them were discussed in Section III. These EDAC codes,

for multiple bit error correction require large memory area

and more time for their implementation as compared to single

error correction codes. We need to investigate some ways

by which the error correction capability of a code can be

improved with minimal overhead in space & computational

activity.

Here we present a novel approach, which can improve the

error correction capability of already existing 4-D parity codes.

Using this novel approach, we can correct three adjacent errors

instead of two without seriously affecting the performance.

Most importantly, this improvement does not incur any extra

parity bits in the code, meaning the same code rate and bit

overhead is required to correct three adjacent incorrect bits.

B. Innocent bit definition

Here, we introduce the concept of ”innocent bit” in

four-dimensional parity codes. In case of an innocent bit,

horizontal and vertical parity check lines point to data bit in

error which is actually not erroneous. This results when three

adjacent bits are in error as illustrated in Figure 1(a). Single

bit error is shown in Figure 1(b) to make a fair comparison

between the two. If we compare the row, column and diagonal

1 1 0 1 1 0 0

1 0 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 1 1 0

0 1 1 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a)

1 1 0 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 0 1 1 1 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(b)

Fig. 1. (a) Triple bit error (innocent bit) (b) Single bit error

parity indication of the innocent bit (h = v = d = 1) and

the single bit error case (h = v = d = 1), we can note that

the single error indication in row, column and diagonal in

both cases. Here h, v and d represents horizontal, vertical

and diagonal number of bits in error, respectively. Careful

observation shows here that diagonal bit error indication

in case of innocent bit (d1 6= h1 + v1) is not similar to

the single bit error case, where d1, h1 and v1 show the

occurrence of first erroneous bit in diagonal, horizontal and

vertical lines, respectively. In general for single bit errors,

we have (d1 = h1 + v1) and intersection of row, column

and diagonal point to the same bit position in error. But in

Figure 1(a), intersection of row, column and diagonal does

not point to same bit position. So we can observe that when

(h = v = d = 1 and d1 6= h1 + v1), it is not a single bit error.

1 1 0 1 1 0 0

1 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 1 1 1 0

1 0 1 0 0 1 1

1 0 0 1 0 1 1

1

0

1

1

1

(a)

1 1 0 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 0 1 1 1 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(b)

Fig. 2. (a) Triple bit error, innocent bit (b) Single bit error

We confirm our observation by another example which is

illustrated in Figure 2. First part of the figure shows an

innocent bit but this time the three errors are occurring at

different positions. These all three errors mock up to innocent

bit pointing to the same bit position indicated in Figure 1(a).

In this case too, we have h = v = d = 1 but d1 6= h1 + v1.

Up till now, we can detect innocent bit errors whether it is

due to three errors at the top-right position of the innocent

bit or at the bottom left position of it. But the innocent bit

can also manifest itself in the form where d2 = h1 + v1.

This is shown in Figure 3. In this case, row, column and

1 1 0 1 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 0 1 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0

1

1

1

1

(a)

1 1 0 1 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 1 1 0

0 1 0 1 1 1 0

1 0 0 0 1 1 1

1 0 0 1 0 1 1

0

1

1

1

1

(b)

Fig. 3. Examples of innocent bit (Triple-bit error).

diagonal parity check lines intersect at the same bit position

but in reality that bit is not in error. We can note here that

instead of d1 = h1 + v1 we have d2 = h1 + v1. Moreover,

instead of single diagonal parity bit in error, we have three

diagonal parity bits in error (h = 1, v = 1, but d = 3).
This is clearly different from the single error bit because in

single error bit case we have h = v = d = 1 and d1 = h1+v1.

In light of the discussion above, we propose here a novel

strategy which can differentiate between single and triple bit

errors. If row, column and diagonal parity check bits point

to the same location, checking neighboring diagonal bits will

differentiate between single and triple bit errors. This is best

explained in the code given here.

Calculate horizontal, vertical and diagonal

parity bits, compare these to stored parity

bits using XOR operation. Calculate the

no. of bits differing in each parity line;

if(h=v=d=1){

if (d1=h1+v1){

Single bit error;

}

if (d1 != h1+v1){

Triple bit error;

}

}

if(h=v=1 AND d=3 AND d2=h1+v1){

Triple bit error;

}

In the pseudocode above, we first determine the number of

errors in each of horizontal, vertical and diagonal parity bits.

If single error occurs in each of these parity check lines and

bit position of diagonal parity bit is the sum of horizontal and

vertical parity bit positions (d1 = h1 + v1), there is single

error, otherwise triple bit error has occurred. In other case,

if horizontal and vertical parity bits show single error and

diagonal parity bits show 3 errors, we check if the bit position

of second diagonal parity bit is the sum of horizontal and

vertical parity bit positions (d2 = h1 + v1). If the condition is

true, triple bit error has occurred.

Here an important point to note is that we can detect the

occurrence of innocent bit regardless of the way three error

bits orientate themselves. We can correct the triple bit errors as

shown in Figure 1 and 2. This can be done by examining the

diagonal bits. If we have (h = v = d = 1 and d1 6= h1 + v1)
and d1 − 2 = 1, we can confirm that the three bits in error

are at the top-right position of the innocent bit as shown in

Figure 1(a). Similarly, if we have (h = v = d = 1 and d1 6=
h1 + v1) and d1 + 2 = 1, we are sure that this time the three

bits in error are at the bottom-left position of the innocent

bit as shown in Figure 2(a). At the moment, we can only

detect if triple bit errors occur as shown in Figure 3. It is not

possible to correct these triple bit errors without extra parity

bits. The pseudocode given above is only for their detection,

which will of course improve the reliability by signaling the

erroneous situation and not detecting and correcting it as a

single bit error.

C. Triple bit error correction

It is mentioned in the Section III that 4-D parity codes can

correct a maximum of two errors. Putting some additional

computations and comparisons in the code, we can correct,

not all but most of triple bit errors. Triple bit errors can

be classified in two categories, adjacent errors and scattered

errors. We are more interested in adjacent errors because they

are expected to occur more frequently due to multiple bit

upsets. Each of them is discussed as follows.

1) Adjacent errors: Detection and correction of the in-

nocent bit is one type of adjacent errors that can occur in

onboard memories. Triple bit adjacent errors can also manifest

themselves in the single row, column or in diagonal. We

propose here another strategy by which we can correct any

three adjacent errors occurring in the same row, column or

diagonal. All these three possibilities are shown in Figure 4.

1 1 1 1 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

1 1 1 0 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 1 1 1 1

1 0 1 1 0 1 0

1 0 0 1 0 1 1

0

0

1

1

1

1 0 1 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 1 0 1 0 1 0

1 0 0 0 0 1 0

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a) (b) (c)

Fig. 4. Triple bit adjacent errors in same (a) row, (b) column and (c) diagonal

The strategy is that if we observe a single error in row parity

line (h = 1) and triple error in column (v = 3) and diagonal

parity line (d = 3), we are sure that three bits in the same row

are in error. Although row parity line is showing a single bit

error but due to modulo 2 sum (3 mod 2 = 1), we can observe

only a single error in the row parity. Column parity bits and

diagonal parity bits confirm this triple bit error by showing

three errors in each of them. While implementing the code

for correcting errors, we shall use the row address three times

with each of the column and diagonal bits (d1 = h1 + v1,

d2 = h1 + v2 and d3 = h1 + v3).

Using this strategy, we can detect and correct any odd

number of errors. But this will lead to a large number of

comparisons so here for the sake of simplicity, we restrict

ourselves to only three errors. Similarly, if three error bits

occur in a column, then row and diagonal parity bits will

show three errors but column parity bits will show only a

single bit error (v = 1, d = h = 3). Using the same approach

described above, we can also correct triple bit errors in a

diagonal (h = v = 3, d = 1).
2) Scattered errors: All double bit scattered errors can be

corrected using 4-D parity codes [5]. But all triple bit scattered

errors cannot be corrected using this approach. We can only

correct a few scattered errors using 4-D parity codes. This

is shown in Figure 5. In simple words, if each of the three

errors occur in a unique row, column and diagonal, only those

scattered errors can be corrected using 4-D parity codes.

1 0 1 1 1 0 0

0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 0 0 0 1 0

1 1 0 1 0 1 0

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

0

1

1

1

1 0 1 0 0 0 0

0 1 1 1 1 1

1 1 0 1 0 1 0

1 0 0 1 1 1 0

1 0 0 1 0 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a) (b)

Fig. 5. (a) & (b) Triple bit scattered errors

D. Analysis of the proposed scheme

We have proposed a novel scheme which can improve the

error detection and correction capability of already existing

4-D parity codes. The summary of our proposed strategy is

given in Table II. In Table II, Row 1 shows the number and

bit positions affected when single error occurs. The necessary

condition for this case is that the position of diagonal parity

bit should be the sum of horizontal and vertical parity bit

positions. If this condition is not satisfied, then it represents

an innocent bit error which is shown in the next row of the

table. In double bit scattered errors, each of three parity check

lines will show double errors. For double bit adjacent errors,

any two out of three parity lines will show double errors. For

example, if there are two adjacent errors in the same row, then

corresponding horizontal parity bit will not show an error but

vertical and diagonal parity bits will show double errors.

We have already discussed in detail triple bit adjacent and

scattered errors. Here, an important thing to note is that we

have not considered the system parity bit in our modified 4-D

scheme. Taking into account system parity bit in our code will

increase the number of comparisons and its complexity. We

assume that the probability of error in parity bits (horizontal,

vertical and diagonal parity bits) is less in comparison to data

bits and ignoring system parity bit will have negligible effect

on performance.

TABLE II

SUMMARY OF 4-D PARITY CODES

Sr. Type of Error Row Column Diagonal
No parity parity parity

check check check

1 Single bit error h1 v1 d1

d1 ≡ h1 + v1

2 Innocent bit error
(a) d1 6= h1 + v1 h1 v1 d1

(b) d2 ≡ h1 + v1 h1 v1 d1d2d3

3 Double bit errors h1h2 v1v2 d1d2

scattered

4 Double bit adjacent errors
(a) same row 0 v1v2 d1d2

(b) same column h1h2 0 d1d2

(c) same diagonal h1h2 v1v2 0

5 Triple bit adjacent errors
(a) same row h1 v1v2v3 d1d2d3

(b) same column h1h2h3 v1 d1d2d3

(c) same diagonal h1h2h3 v1v2v3 d1

6 Triple bit scattered errors
Only if (d1 ≡ h1 + v1) h1h2h3 v1v2v3 d1d2d3

AND (d2 ≡ h2 + v2)
AND (d3 ≡ h3 + v3)

Now the question is: what is the price we have to pay

in order to correct three bits in error. The answer is that

we just need some extra comparisons which require constant

time. The time overhead is not significant so the total time

required to implement the proposed technique on a given set

of data remains linear O(mn). So our claim is valid that using

the same number of redundant bits, we have devised a novel

strategy which can correct most of triple bit errors. The code

rate and bit overhead are still same. The price has to be paid

in terms of a few extra computations which does not adversely

affect the overall complexity.

We have already stated that 4-D parity codes implementing

our approach can not correct all triple bit errors. We have

focused here on mitigation of adjacent errors that are caused

by multiple bit upsets. Adjacent errors are more important due

to their increasing trends [4].

V. EXPERIMENTAL RESULTS

Here we compare the 4-D parity codes implementing our

novel approach with other triple bit error correcting codes.

This comparison is based on bit overhead, code rate, error

correction capability and time & space complexity. This com-

parison is presented in Table III. We state our comparison

TABLE III

COMPARISON OF TRIPLE BIT ERROR CORRECTING CODES.

S Error Bit Code Complexity
No. Correcting Overhead Rate

Code Space Time

1 Golay(23,12,7) 91.67% 52.17% O(2k) O(mk)
2 BCH(31,16,7) 93.75% 51.61% O(mn) O(k2)
3 4-D 18.75% 84.21% O(mn) O(mn)

Parity Code

with BCH (31,16,7) codes because they require less memory

for their implementation as compared to Golay (23,12,7)

codes. In Table III, we can clearly observe that for the same

error correction capability, proposed 4-D parity codes are

better by approximately 75% than BCH(31,16,7) codes in

terms of bit overhead for the same memory size. For code

rate, proposed 4-D parity codes out-performed BCH(31,16,7)

codes by approximately 30%. Proposed 4-D parity scheme

requires linear time complexity whereas BCH codes require

quadratic time complexity. Golay codes also require linear

time complexity but exponential space complexity which is

not feasible in low-cost space projects.

Hereafter we summarize the advantages and disadvantages

of proposed 4-D parity codes. Improved 4-D parity codes have

the following advantages:

• High code rate;

• Low bit overhead;

• Linear time & space complexity;

• Easy encoding and decoding;

• Easily applicable to any size of memory.

This scheme has the following disadvantages:

• Applicable to block of memory;

• Error correction capability/block;

• Need to process whole block of data to detect or correct

errors.

We have indicated here that error correction capability of

4-D parity codes can be improved with a few additional

comparisons. This additional overhead does not deteriorate the

code performance in terms of spatial and temporal complexity.

VI. SUMMARY AND CONCLUSIONS

In this paper, we considered the use of commercial

components in low-cost space projects. Specialized radiation

hardened ICs are commonly used in space applications, which

substantially increas the cost of space projects. Commercial

components can be used as an alternative, but a high level

of reliability must be ensured. We briefly discussed various

types of redundancy approaches to maintain or improve the

reliability of the system. This reliability can be improved by

software in cases where hardware redundancy is not feasible.

We concluded that software implemented EDAC codes are a

good alternative in low-cost space projects. In section III, we

discussed commonly used EDAC codes in space applications.

In section IV, we presented a novel approach to improve

the error correction capability of already existing 4-D parity

codes. We investigated that using this approach, we can

correct triple bit adjacent errors.

The overhead incurred to implement this approach does

not adversely affect the performance in terms of time and

memory usage. We showed that for the same error correction

capability, 4-D parity codes are better by approximately 75%

than BCH(31,16,7) codes in terms of bit overhead for the

same memory size. For code rate, the proposed 4-D parity

codes out-performed BCH(31,16,7) codes by approximately

30%. We applied the proposed 4-D parity codes to PIC

microcontrollers to investigate its feasibility in low-cost space

projects. we have investigated that our novel approach can be

implemented in subsystem microcontrollers which have very

limited memory. The application of modified 4-D parity codes

for microcontrollers with bigger memory is obvious.

On the basis of our experimental results, we conclude that

4-D parity codes implementing our approach can correct not

all but most of triple bit adjacent errors. The error correction

capability can be further improved using a modular approach.

There is one important remark about the proposed 4-D parity

codes. In real world applications, the implementation of the

proposed 4-D parity codes is divided in two phases. The first

phase deals with calculation of parity bits whenever new data

is written in the data memory. So every time new data is

written, all parity calculations are performed and the parity

bits are updated in the memory. The second phase deals with

the periodic checking in order to detect and correct the errors

caused by radiation. A software routine periodically computes

the parity bits on stored data and compares it to the stored

parity bits. If the parity bits calculated by this routine are the

same as the stored ones, then there is no error in the data. In

other cases, the number of errors in parity bits and their bit

positions are used to detect and correct the errors.

REFERENCES

[1] Sherra E. Kerns et.al, The Design of Radiation-Hardened

ICs for Space: A Compendium of Approaches, 3rd ed.

Proceedings of the IEEE, November, 1998, pp. 1470-1509.

[2] Barry W. Johnson, Design & analysis of fault tolerant

digital systems, Electrical And Computer Engineering,

Addison-Wesley Longman Publishing Co., Boston, MA,

USA, 1998, ISBN 0-201-07570-9.

[3] Miron Abramovici, Melvin A. Breuer and Arthur D. Fried-

man, Digital systems testing and testable design, IEEE

Press, New Jersey, USA, 1990, ISBN 0-7803-1062-4.

[4] S. Buchner et.al, Investigation of single-ion multiple-bit

upsets in memories on board a space experiment, 47th vol.

IEEE transactions on Nuclear Science, June, 2000.

[5] Naveen Babu Anne, Utthaman Thirunavukkarasu and Dr.

Shahram Latifi, Three and four-dimensional parity-check

codes for correction and detection of multiple errors, In-

ternational Conference on information technology: Coding

and computing (ITCC’04), 2004.

[6] Philip P. Shirvani, Nirmal R. Saxena and Edward J. Mc-

Cluskey, Software-Implemented EDAC protection against

SEUs, 44th vol. IEEE transactions on reliability, Septem-

ber, 2000.

