Task Scheduling Strategies for Dynamic Reconfigurable Processors in

Distributed Systems

M. Faisal Nadeem, S. Arash Ostadzadeh, Stephan Wong, and Koen Bertels
Computer Engineering Laboratory, Delft University of Technology, The Netherlands
{M.F.Nadeem, S.A.Ostadzadeh, J.S.S.M.Wong, K.L.M.Bertels}@TUDelft.nl

ABSTRACT

Reconfigurable processors in distributed grid systems can
potentially offer enhanced performance along with flexi-
bility. Therefore, grid systems, such as TeraGrid, are uti-
lizing reconfigurable computing resources next to general-
purpose processors (GPPs) in their computing nodes. In
general, the application task scheduling largely affects the
near-optimal performance of resources in distributed grid
systems. The inclusion of reconfigurable nodes in such
systems requires to take into account reconfigurable hard-
ware characteristics, such as, area utilization, reconfigu-
ration time, and time to communicate configuration bit-
streams, execution codes, and data. Generally, many of
these characteristics are not taken into account by tradi-
tional task scheduling systems in distributed grids. In this
paper, we present a simulation framework for application
task distribution among different nodes of a reconfigurable
computing grid. Furthermore, we propose three different
task scheduling strategies, namely Optional Closest Match
(OCM), Exact Match Priority (EMP), and Sufficient-Area
Priority (SAP). The simulation results are presented based
on the average scheduling steps required by the scheduler to
accommodate each task, the total scheduler workload, and
the average waiting time per task. We compare the impacts
of the three scheduling strategies on these metrics. In ad-
dition, we present a thorough discussion of the results. In
particular, the results show that the two key metrics average
scheduling steps per task and average waiting time per task
are reduced for the EMP and the SAP when compared to
the OCM.

KEYWORDS: Distributed systems; Reconfigurable com-
puting; Simulation framework; Task scheduling; Resource
management.

1. INTRODUCTION

Distributed Computational grids provide inexpensive and
dependable access to high-end computational resources that

978-1-61284-383-4/11/$26.00 ©2011 IEEE

90

are geographically dispersed over the world [1]. Some
notable worldwide projects in grid computing are Globus
[2], Legion [3], and Unicore [4]. In the recent years,
reconfigurable computing is utilized more commonly in
high-performance computing, such as, multimedia process-
ing, bioinformatics, and cryptography [5]. The reason
is that reconfigurable devices provide both increased per-
formance without expensing on flexibility, i.e., allowing
quick changes between the supported applications. Conse-
quently, distributed computing networks (such as TeraGrid
[6]) have incorporated reconfigurable computing resources
next to general-purpose processors (GPPs) in their comput-
ing nodes. Proposals to better exploit the characteristics of
reconfigurable computing merged with the requirements of
computational grids have been suggested, e.g., Collabora-
tive Reconfigurable Grid Computing (CRGC) in [7].

Scheduling algorithms have been thoroughly studied in con-
ventional parallel and distributed systems. Various state-
of-the-art scheduling algorithms for traditional grids have
been proposed in [8] and [9]. The near-optimal utilization
of grid resources predominately depends on application task
scheduling onto the computing nodes. Therefore, schedul-
ing algorithms are of paramount significance for compu-
tational grids and new ones must be developed when the
node characteristics are changed. The inclusion of recon-
figurable processors in the computational nodes requires the
rethinking of existing scheduling techniques in order to take
into account reconfigurable processor characteristics, such
as, area utilization, reconfiguration time, (possible) perfor-
mance increase, and the time required to transfer configura-
tion bitstreams, execution codes, and data.

In this work, we present the design of a simulation frame-
work for the application task scheduling for reconfigurable
processors in a distributed grid system. The proposed de-
sign can model complex reconfigurable computing nodes,
processor configurations, and tasks along with GPPs. The
processor configurations can be modeled using a number of
different reconfiguration parameters, such as, area required,
reconfiguration time delay, network delay, etc. Various pa-
rameters (e.g., node area range, task arrival rate, reconfigu-

ration time range, etc.) can be set according to the require-
ments of a particular simulation. The simulation framework
generates a report on different result statistics at each simu-
lation run.

Using our simulation framework, we propose and imple-
ment three different task scheduling strategies, namely Op-
tional Closest Match (OCM), Exact Match Priority (EMP),
and Sufficient-Area Priority (SAP). The scheduling strate-
gies are described in detail and the results show the impacts
of each scheduling strategy on three different system met-
rics total scheduling steps required by the scheduler to ac-
commodate each task, average waiting time per task and
the total workload of the scheduler. In particular, the results
show that the two key metrics average scheduling steps per
task and average waiting time per task are reduced for the
EMP and the SAP when compared to the OCM.

The remainder of the paper is organized as follows. Sec-
tion 2 provides related work. The background and scope
are discussed in Section 3. We discuss the design of the our
simulation framework in Section 4. Three different schedul-
ing strategies are proposed and discussed in Section 5. The
simulation environment and results are explained in Section
6. Finally, we provide our conclusions and future work in
Section 7.

2. RELATED WORK

Many state-of-the-art simulators for task scheduling in dis-
tributed systems are proposed. Few examples are Sim-
Grid [10], MicroGrid [11], and GridSim [12]. These sim-
ulators can model computational resources composed of
GPPs and there is no specific simulator to take into ac-
count the behavior of reconfigurable nodes in distributed
computing environment. In [7], CRGridsim has been pro-
posed by extending Gridsim [12] to add reconfigurable ele-
ments in grids. However, it only considers speedup factor of
a reconfigurable processor over a GPP, as the reconfigura-
tion parameter. Other important parameters, such as recon-
figurability, reconfiguration delay, reconfiguration method
(partial or full), area utilization, and hardware technology
have not been taken into account. Most of the work [8] [9]
on scheduling algorithms has been proposed for traditional
grid networks with processors of heterogeneous computing
capacity, but they are not reconfigurable processors.

3. BACKGROUND AND SCOPE

Task scheduling in grids is defined as scheduling n tasks
with a given execution time onto m resources. In this sec-
tion, we formulate the scheduling problem and discuss the
models for task, processor configuration, and nodes. A typ-

91

ical reconfigurable node is represented by the following tu-
ple:

Node; (NID, Area, Ceyisting, State) (1)
Where NID represents the node number, Area the total
reconfigurable area of node 7 and Cly;sting the current pro-
cessor configuration on the node. Initially, no configura-
tion is assumed on a computing node and, therefore, set
to Cpiank. Furthermore, state represents the status of the
node ¢; whether it is busy or idle. Subsequently, the general
configuration of a processor to be configured on a node, is
represented as:

C; (CID, Area, Pyype, parameters) 2)
Where C'ID represents the configuration number and Area
is the total reconfigurable area required by configuration ¢
. Pyype represents the processor type required by tasks in
the system. parameters is a list of attributes of a particular
processor which provide the details of the P, processor
required by tasks. Typical examples of Py, are soft-core
processors, digital signal processors (DSPs), custom com-
puting units (CCUs), etc. For instance, a soft-core p-VEX
VLIW processor (specified by F;,,.) implemented on an
FPGA, can be adopted to several parameters such as, the
number of issue slots, cluster cores, the number and types of
functional units, or the number of memory units [13]. Sim-
ilarly, the following tuple represents an application task:

TaSki (TID7 trequired; Cpref) (3)
Where T'ID represents the task number and t,cqyired 1S
the execution time required by task 1 if it is processed on
its preferred processor configuration (Cpref). Cpres is the
preferred processor configuration demanded by task ¢. This
configuration can be a specific processor that can be imple-
mented on a reconfigurable node. Based on above defini-
tions, we formulate the problem as follows.

Given a set of reconfigurable nodes represented by (1) and
a set of tasks defined by (3), find a scheduling algorithm
to map all tasks onto nodes, following a particular strategy
to minimize key system metrics, such as waiting time, total
reconfigurable area waste, and scheduling workload etc. In
this work, we discuss three different scheduling strategies
to investigate their effects on these metrics.

In a distributed system with reconfigurable computing
nodes, each node consists of a reconfigurable processor of
fixed area and it is configured with a particular processor
configuration C;. Furthermore, the network contains a Re-
source Management System (RMS) which takes in user ap-
plication tasks and implements a scheduling algorithm to

Node status

updates Scheduling

Decisions

Bitstream
Repository

System
I I —
-

Tasks Queue

Application Configuration

Bitstreams

Task
Scheduling
System

New node
registration
requests

Execution
Codes & data|

Inputs Resource Management System Outputs

(a)

Figure 1: The Resource Management System for a Distrib-
uted System with Reconfigurable Nodes.

map tasks onto nodes. The RMS, depicted in Figure la,
consists of a Grid Information Service (GIS), which is a dy-
namically changing module. It contains information about
the current states of all the nodes in the network. This in-
formation consists of current state (busy or idle) of a par-
ticular node, its current C; configuration and its available
reconfigurable area. The status information of each node is
updated each time the current state of that node is changed.
The core of the RMS is a task scheduler which implements
a scheduling algorithm to assign tasks onto nodes. More-
over, the RMS contains a bitstream repository which con-
sists of a set of bitstreams of different configurations of
C;. These bitstreams are already synthesized, implemented
and tested on all the nodes and are considered as valid bit-
streams for the system. Each application task in the grid
requires a preferred processor configuration (Cpr.f) With
specific parameters. The parametrization characteristics
of C; processor can be exploited by the grid system by ei-
ther sending the required parameters of the Cy,. 5 of a task
or by sending the corresponding bitstream of the Cpc to
the respective reconfigurable computing nodes.

4. SIMULATION FRAMEWORK DESIGN

In this section, we present the design of the proposed sim-
ulation framework. We briefly discuss the proposed data
structures and different modules in the framework.

4.1. Data Structures

Here we discuss the required data structures developed for
resource management in our proposed simulation frame-
work. These proposed data structures are used to maintain
the states of the nodes in the resource management system,
depicted in Figure la. All possible configurations in the
grid are stored in a data structure which is called the con-
figurations list depicted in Figure 2a. Each entry in this list
corresponds to the data structure to provide the details of
C; configuration and its parameters as shown in tuple (2).
Furthermore, it contains two pointers Idle start and Busy

92

C; C; C Cs Cn

Pyyper
AREA
Parameter 0
Parameter 1

rrrrrrrrr

Parameter 11
dle start
Busy start

Parameter 11
dle start
Busy start

(a) The Configurations List.

Ceristing | Cexisting | Cexisting | Cexisting | Cexisting Cexisting
Node
Data Structure Ci C: C:
Object AREA AREA AREA
Inext Inext .. Inext
Brext Brext Brext
CurTask CurTask CurTask
(b) The Nodes List.

Figure 2: The Proposed Data Structures.

start. The Idle start points to the first node of the linked list
of the idle nodes with the corresponding configuration of a
particular node. Similarly, the Busy start points to the first
node of the linked list of busy nodes with the corresponding
configuration of a particular node. Similarly, Figure 2b de-
picts the Node data structure which represents a typical grid
node. It contains the current or the existing C; configuration
of the node, reconfigurable area, pointers to the next node
in the idle list with the same configuration (Inext), pointer
to the next node in the busy list with the same configuration
(Bnext), and a pointer to the current task being executed on
the node (CurTask). The node structure is represented by
tuple (1). In the following sections, we describe how these
data structures are utilized by the simulation framework and
the scheduling module.

4.2. The Simulation Framework

Figure 3 depicts our proposed simulation framework de-
signed for the implementation of the required data struc-
tures and task scheduling process. It generates synthetic
tasks, grid nodes, and different node configurations. The
Synthetic Task Generator generates tasks based on a given
task distribution function. The Node Generator mod-
ule generates grid nodes with different reconfigurable area
sizes. A user can set the upper and lower area ranges of the
nodes for simulation purpose. For a realistic study, these
area ranges can be set according to the actual area sizes of
the reconfigurable devices available. Similarly, the Config-
uration Generator module generates a variety of processor
configurations (C};) for a particular grid node.

The tasks, nodes, and configurations generator modules use
random number generation methods which are based on the
Ziggurat Method [14] using the algorithm presented in [15]
for generating Gamma variables. Various random number

Suspended Tasks Queue

Node List

Synthetic Task
Generator
Node
Generator
Configurations
Generator

Simulation
| | | €[Scheduling | |=—=>| Report

[| Module Generator
Configurations List

Figure 3: The Simulation Framework.

distributions, such as Poisson, Binomial, Gamma, Uniform
random etc., are provided by a random number generator
class. The tasks arrival times correspond to the statistical
distributions available in the class. The core of the simu-
lation framework implements a scheduling module which
implements different scheduling strategies, as discussed in
the Section 5. Furthermore, the framework implements the
data structures described in Section 4.1. The user-defined
configurations are stored in the Configuration list and the
linked lists are implemented accordingly. The Suspension
Queue holds T'IDs of the tasks which can not be accom-
modated by any node upon their arrivals. This particular
situation occurs, when all the nodes with Cp,..s are busy
and no blank or idle nodes (with sufficient area) are avail-
able for executing the current task. The suspension queue is
checked automatically after the completion of each running
task to find a potential replacement. The Core Scheduling
Module implements different scheduling strategies and the
methods required to interact with the node and configura-
tion data structures.

Finally, the Simulation Report Generator module stores the
statistics gathered during the simulation process. It re-
ports on different performance metrics, such as number of
scheduling steps required by the scheduler to accommodate
each task, fotal scheduler workload, average task waiting
time, average task running time, reconfiguration count per
node, reconfiguration time per task, etc. The average num-
ber of scheduling steps required per task is an indication of
the total number of search links explored by the scheduler
before a task can be assigned to a proper node in the system.
This metric closely reflects the quantitative value of the time
taken by the scheduler to accommodate a task. The total
scheduler workload provides an estimate of the workload
required by the scheduler to assign a task to a proper node
and to perform various housekeeping jobs, such as initial-
ization of node and configuration lists, updating the linked
lists during task assignments, suspension queue checking,
etc. These performance metrics are important because they
are proportional to the system time of a host executing the
scheduler, hence, critical in comparing different scheduling
strategies. The average waiting time per task provides the

93

Algorithm 1 The Optional Closest-Match Scheduling
Initialize the configs list

Initialize the nodes list

Begin TaskSchedule (Task CT)

Phase-I

- If possible, allocate the CT to the best-match node config-
ured with its Cp,,.c .

- Otherwise if possible, allocate CT to a blank node after
configuring it with Cp,.. s of CT.

- Otherwise, allocate CT to any idle node (currently config-
ured with a C.z;st4ng) after reconfiguring it with C,.c; of
CT.

Phase-II

- If CT required a Cp,.s not available in the configs list,
if possible, allocate CT to any available node with closest-
match (of Cp,..) configuration.

- Otherwise, put CT in suspension queue if at least one busy
node with sufficient area is available.

- Otherwise, discard CT.

average time elapsed from the time a task is submitted to the
system until the time it is assigned to a node to be executed.

5. SCHEDULING STRATEGIES

In this section, we describe the three different scheduling
strategies used in the core scheduling module in the simu-
lation framework. The scheduling module takes tasks, con-
figurations, and nodes as inputs and assigns the tasks onto
different nodes, based on a particular scheduling strategy.

5.1. Optional Closest-Match (OCM) Strategy

An incoming task (current task-CT) is assumed to have its
preferred configuration (Cprer) as shown in the tuple (2).
The algorithm assigns the CT onto a grid node of its Cp,c,
if possible. Initially, the Cp,.s of the CT is matched in the
configurations list depicted in Figure 2a. If the Cp,..y is
found in the list, then the algorithm looks for a suitable idle
node of the same configuration by traversing the list of idle
nodes of that particular configuration.

If idle nodes are available, the CT is allocated to the best-
match node. The node with the best-match is one which
makes minimum reconfiguration area waste among all the
nodes in the linked list. On the other hand, if Cp.cy is
found in the configurations list, but there is no idle node
available, then the scheduler searches for the list of blank
nodes (which are not yet configured). If neither idle nor
blank nodes are available with the C,,,.. r, then the scheduler
searches for any potential idle node of any other configura-
tion, by traversing the configurations list. Subsequently, a
node with the minimum sufficient area is selected and the

task is allocated to it after making it a blank node and re-
configuring it with C,,.. s of the CT.

In case the C,,.y of the CT is not found in the configura-
tions list (phase-II in Algorithm 1), the scheduler searches
for a node with the closest-match configuration to the Cp,..
of CT. The closest-match processor configuration is the one
which can still execute the CT but takes more time for
processing than the exact-match configuration. Once the
closest-match configuration is found, the scheduler looks
for suitable idle nodes with that configuration. If not found,
it looks for blank nodes with sufficient area to configure
the closest-match configuration and accommodate the CT.
If blank nodes are also not found, then the scheduler puts
the task in the suspension queue to wait for any busy node
with sufficient area to become idle. Finally, a task is dis-
carded if no node with sufficient reconfigurable area can be
found to accommodate the current task.

5.2. Exact-Match Priority (EMP) Strategy

The EMP strategy is described in Algorithm 2. At the end
of Phase-1, if the scheduler can not find a suitable node to
accommodate the CT, we prefer to wait for a potential node
with Cp.cf to be idle than to go for a closest-match configu-
ration. Therefore, the scheduler puts the task in the suspen-
sion queue. When the queue is checked, the CT is assigned
to the first recently released node which is configured with
Cprey of the CT.

Algorithm 2 The Exact-Match Priority Scheduling
Initialize the configs list

Initialize the nodes list

Begin TaskSchedule (Task CT)

Perform Phase-I in the Algorithm-1

- If there is at least one busy node with C,,..y configuration
and sufficient area, put the CT in the suspension queue.
Perform Phase-II in the Algorithm-1

5.3. Sufficient-Area Priority (SAP) Strategy

Algorithm 3 describes the SAP scheduling strategy. The
main difference between EMP and SAP is that in SAP,
we relaxed the restriction of accommodating the suspended
tasks on the queue with the nodes of the same configura-
tion. In other words, the scheduler may select any node re-
gardless of its configuration to accommodate a task on the
suspension queue provided that there is enough area. At the
end of Phase-1, if the scheduler can not find a suitable node,
it puts the CT in the suspension queue. When the queue is
checked, the allocation of CT is made to the first recently
released node with sufficient area to accommodate the task.

94

If the node is already configured with Cy,.. ¢, the task is al-
located to it. Otherwise, the node is first configured with
Cpres and then CT is allocated to it.

Algorithm 3 The Sufficient-Area Priority Scheduling
Initialize the configs list

Initialize the nodes list

Begin TaskSchedule (Task CT)

Perform Phase-I in the Algorithm-1

- If there is at least one busy node with sufficient area, put
the CT in suspension queue.

Perform Phase-II in the Algorithm-1

During the scheduling process in all strategies, the corre-
sponding busy or idle lists are updated accordingly when
the CT is allocated to a certain node. If the scheduler selects
a blank node to accommodate the C7, the node is removed
from the blank list and is attached to the list of busy nodes.

6. SIMULATION ENVIRONMENT AND EX-
PERIMENTAL RESULTS

The main simulation parameters used in our experiments
are presented in Table 1. The experiments were con-
ducted on different sets of tasks consisting of 103 to 10°
tasks. Completion time required by tasks ranges between
[100...10000] timeticks. Similarly, the C,..¢ for any given
task requires area within range [100...2500] area units (e.g.,
area slices or FPGA LUTSs). For 10 % of the total tasks,
we assign a preferred configuration (Cp,.s) that can not be
found in configurations list. Therefore, these tasks are as-
signed to the reconfigurable nodes with closest-match con-
figuration by the scheduler at run time.

Table 1: The Main Simulation Parameters.

[Parameter [Value |
Total number of tasks generated [103 . 106]
Total number of nodes 64, 128
Total number of configurations 10, 20, 30, 40, 50
Next task arrival interval [1...50]
Configurations required area range [100...2500]
Node available area range [1000...5000]
Task required timeslice range [100...10000]
Reconfiguration time range [1...5]

6.1. Results Discussion

All the experiments were performed on Intel Core 2 Duo
CPU E8400@3.00GHz, 64-bit machine running Linux
v.2.634. Simulation experiments were conducted for all 3
scheduling strategies, in order to compute the fotal sched-
uler workload, average number of scheduling steps re-
quired per task, and average waiting time per task. In the

)
3

" [~ conflo-nodes64
—-conf20-nodes64
——conf30-nodes64

conf40-nodes64
© | == confs0-nodess4

%
3

~
=)

o
S

Total scheduler workload

«
=)

Avg. scheduling steps per task

—— conf10-nodesé6:
—a— conf20
—e— conf3

conf40-nodes64
.‘-?. conf50-nodes64

4
4

——conf10-nodes64
—+—conf20-nodes64

—e—conf30-nodes64
conf40-nodes64
—+conf50-nodes64

Avg. waiting time per task
3

IS
=3
=)

10* Number of tasks 10°

(a) Avg. scheduling steps per task.

Number of tasks

(b) Total scheduler workload (y-axis on log scale).

10" 10° °
Number of tasks

() Avg. task waiting time (y-axis on log scale).

(A) Total Number of Nodes=64.

=
3
=)

I~}
S
=)

T

=
3
S

@
3

=)

——conf10-nodes128
—4-conf20-nodes128
—e-conf30-nodes128

conf4a0-nodes128
; [=+-conf50-nodes128

Total scheduler workload

S

o
3

Avg. scheduling steps per task

T[——conf10-nodes128
—+-conf20-nodes128
—e-conf30-nodes128

conf40—-nodes128
—+conf50-nodes128

——conf10-nodes128
—+-conf20-nodes128
—e-conf30-nodes128

conf40-nodes128
; —+conf50-nodes128

5]

2
S

n s .
10" Number of tasks 10 10 10°

=)

(d) Avg. scheduling steps per task.

0 5
10" Numberof tasks 10

(e) Total scheduler workload (y-axis on log scale).

10" Number of tasks 10°

(f) Avg. task waiting time (y-axis on log scale).

(B) Total Number of Nodes=128.

Figure 4: The OCM Scheduling Strategy with a Fixed Set of Configurations. (A) Total nodes=64 and (B) Total nodes=128.

following sections, we discuss results for each scheduling
strategy in detail. Since we used the uniform random num-
bers to generate large number of tasks, the average values
remain the same for several run of simulations for each ex-
perimental setup.

The OCM strategy. Figure 4 depicts simulation results for
the OCM scheduling strategy. Figures 4 (A) and 4 (B) give
average scheduling steps per task, total scheduler work-
load, and average task waiting time results for 64 and 128
nodes, respectively.

Figures 4a and 4d compare the average scheduling steps
per task for 64 and 128 nodes, respectively. The schedul-
ing steps in both cases are less for smaller number of tasks
(10* or less) and then, they reach to a steady-state. This
occurs because, initially, the corresponding linked-lists for
configurations are not formed. Consequently, the number
of scheduling steps are less. Later, when the linked-lists
are populated with corresponding configurations and due to
more workload stress on the system, the lists most likely
are searched completely to accommodate an incoming task.
Although an option of sending a particular task to a closest-
match configuration node is available, but still the number
of nodes are too scarce to make use of closest-match option,
resulting in putting more tasks in the suspension queue. In
the case of 128 nodes, the average scheduling steps per task
are relatively high (around 120) due to more blank nodes
being searched initially for an exact-match configuration.
As depicted in Figures 4b and 4e, the fotal scheduler work-

95

load in both cases, increases exponentially (y-axis are in
logarithmic scale) as the number of tasks grow showing the
workload burden on the scheduler. Due to rapid arrival rate
and insufficient nodes, the tasks are put more frequently into
suspension queue, which increases scheduler burden. It is
slightly more for lesser number of nodes (64 nodes) due to
more congestion in the suspension queue. Similarly, due to
more frequent use of the suspension queue, the average task
waiting time is also very high (see figures 4c and 4f).

The EMP strategy. Figure 5 depicts simulation results for
the EMP scheduling strategy. Figures 5 (A) and (B) give av-
erage task scheduling steps, total scheduler workload, and
average task waiting time results for 64 and 128 nodes, re-
spectively.

In this strategy, after phase-I (see algorithm 2), the tasks
searching for an exact-match node (90 percent of total tasks
in this case) are put into suspension queue instead of look-
ing for a closest-match option. Later, when the queue is
checked at each recently released node, a suspended task is
allocated to the node only if it has the same C,,..; configu-
ration. As expected, this strategy puts more burden on the
suspension queue process which is clearly depicted in the
higher waiting time metric (see figures 5c and 5f). The fotal
scheduler workload is similar to the OCM, but the average
scheduling steps per task decreases (see figures Sa and 5d)
because the scheduler never enters into the phase-II for 90
percent of tasks looking for exact-match nodes as it never
goes through the closest-match option for those tasks.

" [~ conf10-nodesa
—*-conf20-nodes64
—=—conf30-nodes64

conf40-nodes64

2 /\/\/\Wﬁofr\odesm
s]

oF

«

Avg. scheduling steps per task

=)

=)

——conf10-nodes64
—+—conf20-nodes64
——conf30-nodes64

conf40-nodes64
; —+—conf50—-nodes64

——conf10-nodes64
i+ |*-conf20-nodes64
10F —e—conf30-nodes64
: : conf40-nodes64
S . [#-conf50-nodes64

Avg. waiting time per task

s

4 5
10" Numberof tasks 10 10 10

(a) Avg. scheduling steps per task.

3 s
10" Number of tasks 10 10 10

(b) Total scheduler workload (y-axis on log scale).

s 10 = s
10" Numberoftasks 10 10

(¢) Avg. task waiting time (y-axis on log scale).

(A) Total Number of Nodes=64.

——conf10-nodes128
—+-conf20-nodes128
*|~-conf30-nodes128 10"k
conf40—-nodes128
20r —+-conf50-nodes128

Avg. scheduling steps per task

—=—conf10-nodes128
—+-conf20-nodes128
i::i1|—e=conf30-nodes128
conf40-nodes128
e conf50-nodes128

“[=—conf10-nodes128
+|=-conf20-nodes128
#1|-==conf30-nodes128
conf40-nodes128
. [—conf50-nodes128

0 0 5
10 10" Number of tasks 10 10 10

(d) Avg. scheduling steps per task.

T
10" Number of tasks

(e) Total scheduler workload (y-axis on log scale).

6

L ;
10 10 10° 10" Numberoftasks 10° 10

(f) Avg. task waiting time (y-axis on log scale).

(B) Total Number of Nodes=128.

Figure 5: The EMP Scheduling Strategy with a Fixed Set of Configurations. (A) Total nodes=64 and (B) Total nodes=128.

The SAP strategy. Figure 6 depicts simulation results for
the SAP scheduling strategy. Figures 6 (A) and (B) give av-
erage task scheduling steps, total scheduler workload, and
average task waiting time results for 64 and 128 nodes, re-
spectively.

This strategy is similar to the EMP, but the condition on
checking the suspension queue is relaxed by allocating a
suspended task to a recently released node if it has suffi-
cient area to accommodate that task. It clearly decreases
the fotal scheduler workload and average task waiting time
for a given number of tasks. The average scheduling steps
per task metric is similar to the EMP strategy. Average
task waiting time is considerably less as compared to exact-
match strategy because the scheduler assigns the tasks to
any node with sufficient area.

From all sets of experiments, it can be concluded that the
system behavior highly depends on the number of nodes,
tasks arrival rate, and the scheduling strategy adopted by
the scheduler. Important system metrics such as average
scheduling steps, total scheduler workload, and average
waiting time per task behave in an expected manner for each
scheduling strategy and given sets of nodes, configurations
and tasks. Furthermore, it can be concluded that the aver-
age task waiting time can be reduced considerably by using
the SAP strategy for a given set of parameters.

7. CONCLUSIONS AND FUTURE WORK

We presented a simulation framework to analyze task
scheduling strategies in a distributed grid system utilizing ¢

reconfigurable nodes. The proposed simulation framework
can be used to investigate the desired system scenario(s)
for a particular scheduling strategy and a given number of
tasks, grid nodes, configurations, task arrival distributions,
area ranges, and task required times etc. Subsequently, it
can be utilized for implementing several other scheduling
strategies to optimize individual or some system metrics.
Furthermore, we proposed and implemented three differ-
ent task scheduling strategies. The simulation results for
the proposed strategies were discussed, based on average
scheduling steps required per task, total scheduler work-
load, and average waiting time per task. The results show
the impact of these strategies on key system metrics. In
our future work, we will extend the proposed framework to
investigate different configuration strategies such as partial
reconfiguration techniques and their effect on different sys-
tem metrics.

REFERENCES

[1] I. Foster and C. Kesselman, “Computational Grids,” in
Selected Papers and Invited Talks from the 4th Inter-
national Conference on Vector and Parallel Process-
ing (VECPAR), pp. 3-37, 2001.

[2] 1. Foster and C. Kesselman, “Globus: A Metacom-
puting Infrastructure Toolkit,” International Journal

o
S

T [—conflo-nodes64
-+ conf20-nodes64
—e—conf30—nodes64

conf40-nodes64

w
3

IS
S

Avg. scheduling steps per task
Noow
S 38

o

Zpimgy

Total scheduler workload

——conf10-nodes64
—+—conf20-nodes64
—e—conf30-nodes64

conf40-nodes64
. i —+—conf50-nodes64

Avg. waiting time per task

)

=)

=)

=)

=)

03 7 5
10 10" Numberof tasks 10

(a) Avg. scheduling steps per task.

10°

0 5
10" Numberof tasks 10

(b) Total scheduler workload (y-axis on log scale).

(A) Total Number of Nodes=64.

10°

10" Numberof tasks ~ 10°

(c) Avg. task waiting time (y-axis on log scale).

Avg. scheduling steps per task

(3]

(4]

(5]

(6]

(7]

(8]

(9]

sk s confS0-nodes128

[[~—confl0-nodes128
-+ conf20-nodes128
*}|~=conf30-nodes128
conf40—nodes128

Total scheduler workload
=)

/N

=)

——conf10-nodes128
——conf20-nodes128
—o—conf30-nodes128

conf40-nodes128
—+conf50-nodes128

Avg. waiting time per task

10" Numberof tasks 10°

(d) Avg. scheduling steps per task.

10" Numberoftasks 10°

(e) Total scheduler workload (y-axis on log scale).

a s
10" Number of tasks 10

(f) AVg task Waiting time (y-axis on log scale).

(B) Total Number of Nodes=128.

Figure 6: The SAP Scheduling Strategy with a Fixed Set of Configurations. (A) Total nodes=64 and (B) Total nodes=128.

of Supercomputer Applications, vol. 11, pp. 115-128,
1996.

S. J. Chapin, et. al, “The Legion Resource Manage-
ment System,” in Proceedings of the 5th Workshop
on Job Scheduling Strategies for Parallel Processing,
pp. 162-178, 1999.

D. Erwin, “UNICORE - A Grid Computing Envi-
ronment,” in Lecture Notes in Computer Science,
pp- 825-834, 2001.

K. Compton and S. Hauck, “Reconfigurable Comput-
ing: A Survey of Systems and Software,” ACM Com-
puter Survey, vol. 34, no. 2, pp. 171-210, 2002.

TeraGrid, “FPGA Resources in Purdue University.”
http://www.rcac.purdue.edu/teragrid/userinfo/fpga.

S. Wong and M. Ahmadi, “Reconfigurable Archi-
tectures in Collaborative Grid Computing: An Ap-
proach,” in Proceedings of the 2nd International Con-
ference on Networks for Grid Applications (GridNets),
2008.

F. Dong and S. G. Akl, “Scheduling Algorithms for
Grid Computing: State of the Art and Open Prob-
lems,” Technical report no. 2006-504, 2006.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task
Scheduling Algorithms for Heterogeneous Proces-
sors,” in Proceedings of the 8th Heterogeneous Com-
puting Workshop (HCW), pp. 3—17, 1999.

97

[10]

[11]

[12]

[13]

[14]

[15]

H. Casanova, “Simgrid: a Toolkit for the Simula-
tion of Application Scheduling,” in Proceedings of the
First IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid), pp. 430-437,
2001.

H. J. Song, et. al, “The MicroGrid: a Scientific Tool
for Modeling Computational Grids,” Journal of Scien-
tific Programming, vol. 8, no. 3, pp. 127-141, 2000.

R. Buya and M. M. Murshed, “GridSim: A Toolkit
for the Modeling and Simulation of Distributed Re-
source Management and Scheduling for Grid Com-
puting,” Concurrency and Computation: Practice and
Experience, vol. 14, no. 13-15, pp. 1175-1220, 2002.

S. Wong, T. V. As, and G. Brown, “p-VEX: A Re-
configurable and Extensible Softcore VLIW Proces-
sor,” in IEEE International Conference on Field-

Programmable Technology (ICFPT), 2008.

G. Marsaglia and W. W. Tsang, “The Ziggurat Method
for Generating Random Variables,” Journal of Statis-
tical Software, vol. 5, no. 8, pp. 1-7, 2000.

G. Marsaglia and W. W. Tsang, “A Simple Method for
Generating Gamma Variables,” ACM Transactions on
Mathematical Software, vol. 26, no. 3, pp. 363-372,
2000.

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

