
A High-Level Debug Environment
for Communication-Centric Debug

Kees Goossens1 � 2, Bart Vermeulen1, Ashkan Beyranvand Nejad3

1NXP Semiconductors Research / SOC Architectures and Infrastructure
5656 AE Eindhoven, The Netherlands,

�
Bart.Vermeulen,Kees.Goossens � @nxp.com

2Computer Engineering, Delft University of Technology, The Netherlands
3KTH, Royal Institute of Technology, Stockholm, Sweden

Abstract—A large part of a modern SOC’s debug complexity
resides in the interaction between the main system components.
Transaction-level debug moves the abstraction level of the debug
process up from the bit and cycle level to the transactions
between IP blocks. In this paper we raise the debug abstraction
level further, by utilising structural and temporal abstraction
techniques, combined with debug data interpretation and logical
communication views. The combination of these techniques and
views allow us, among others, to single-step and observe the
operation of the network on a per-connection basis. As an
example, we show how these higher-level abstractions have been
implemented in the debug environment for the Æthereal NOC
architecture and present a generic debug API, which can be used
to visualise an SOC’s state at the logical communication level.

I. INTRODUCTION

Modern systems on chip (SOC) are very complex, and,
as a result, their prototype silicon may still contain errors.
Debugging is the process of finding the cause of erroneous
behaviour, which may arise in a hardware or software compo-
nent of the SOC, or in their combination. However, traditional
debug methods and tools often separate hardware debug and
software debug. In addition, current debug methods tend to
focus on the computation, e.g. the programmable processors
and their interaction with memory. But many SOCs contain
multiple processors, and a large part of the SOC debug com-
plexity resides in their interactions (e.g. via shared distributed
memories), rather than the individual processors. For these
reasons, we propose to supplement conventional computation-
centric debug with communication-centric debug methods [1].

Finding the cause of an error is a refinement process. The
state of (part of) the SOC is first examined at a high level of
abstraction (e.g. which applications are running, what kind
of video frame is being processed). Time advances as the
SOC transitions between these high-level states (e.g. go to the
next use case, or to the next video frame), or when high-level
events occur (e.g. the next I frame). When a suspect state or
event is observed, the (debug) user zooms in and examines
the SOC state in more detail, at a lower level of abstraction.
In the end, this may require examining bits and advancing
the SOC by single clock cycles. Transaction-level debug [1]
moves this debug process up from the bit and cycle level to
the transactions between IP blocks. In this paper we raise the
abstraction level of the debug process another step.

Our work addresses multi-processor SOCs containing a
network on chip (NOC). NOCs present many new debug
challenges because they implement split, pipelined, concurrent
transactions on connections between IP blocks. We add on-
chip debug hardware infrastructure, such as monitors, de-
scribed in Section III. This infrastructure is controlled by our
off-chip Integrated Circuit Debug Environment (InCiDE) [2],
which comprises both hardware and software, as described in
Section IV.

In this paper we extend prior work by raising the abstraction
of the debug process in several new ways:

1) Structural abstraction: the user of the debug environment
is presented with the logical NOC topology instead of a
hierarchy of VHDL modules, or series of flip-flops in scan
chains. For example, get_monitor(router) retrieves the
monitor attached to a router, which can be programmed
without knowing the location of its registers in the right scan
chain.

2) Data interpretation: The value of state bits found in
debug scan chains can be interpreted as values in RTL registers
of an IP block, by being aware of the logical hardware
structure. For example, a FIFO can not only be printed as RTL
registers (read and write pointer and a set of data words), but
also as an ordered list of valid data in the FIFO. Similarly, the
debug infrastructure is used at the level of transactions and
start/stop actions are translated to/from appropriate bit values
in registers.

3) Logical communication view: a NOC is a component
that is programmed to implement different use cases (sets of
connections) at a given point in time. Our debug environment
uses information about the NOC configuration and topology
to offer a view in terms of connections that spans multiple
IPs (NIs, routers). For example, get_router(conn) retrieves
the routers used by a connection. This dynamic, logical view
extends the (abstracted) static structural views.

4) Temporal abstraction is the essence of transaction-based
debug, and moves the debug process from the clock cycle
level to handshakes for data elements, requests/responses, and
transactions on a single connection. Single stepping [3] of
one or more connections involves monitoring and controlling
handshakes at multiple locations in the NOC, and is used
to force a particular trace of transactions. In this paper, we

add the capability to single step on multiple connections,
but without forcing a particular order that has to be known
up front (which is unrealistic). With our approach, time is
abstracted to a series of globally consistent states across
multiple connections.

In all cases, multiple connections can be debugged at the
same time, at different levels of abstraction, while other
connections (and related IPs and applications, etc.) are unaf-
fected. This debug environment sets the first step towards our
goal to structurally improve the debug refinement process by
offering logical, high-level views and by allowing interactions
on structure, data, communication, and time.

We compare our approach with related work in Section II.
The new improved on-chip debug hardware infrastructure is
introduced in Section III, and the off-chip software infrastruc-
ture in Section IV. The structure and implementation of the
high-level API for communication-centric debug are described
in Section V. Its use is illustrated in Section VI. We conclude
in Section VII.

II. RELATED WORK

There are two types of work related to our debug environ-
ment: hardware debug tools for SOCs, and software debug
tools for distributed and parallel software.

Hardware debug software, such as [4], [5] allows ba-
sic access to scan chains. RISE++ [6], In-situ debugging
tool [7], and Innerview [8] additionally use abstraction to
map signal names to on-chip locations similar to our debug
kernel InCiDE. [9] addresses hybrid CPU/FPGA systems, and
abstracts from the structural design view of hardware to a
source code view of software. However, none of these take a
communication-centric approach to debugging, or use a logical
view on communication between IPs.

Debug tools for distributed and parallel software include
p2d2 [10], MPVisualizer [11], and visualisation methods
of [12]. Like us, they also instrument (software), monitor, and
act on events. Moreover, they use information on the topology
and message passing state of the software processes involved
in the distributed computation. But this information is only
used after an event has triggered, to retrace a data flow to
possible errors. In our case, the topology and configuration
information is also used earlier, to decide where to monitor
and which events to trigger on.

III. HARDWARE INFRASTRUCTURE

We implement our communication-centric debug method
on the Æthereal NOC [13]. A NOC consists of routers and
network interfaces (NI). The architecture of the NI has been
made more modular compared to earlier work. The NI kernel
still implements network level functions (essentially, moving
data from one NI kernel to another, subject to flow control
and quality of service). Compared to prior work, the NI
shell has been split in a local bus and new NI shells, as
shown in Figure 1. A master is now connected to a local
bus that demultiplexes requests to different slaves to different
NI shells, and interleaves returning responses in the correct

Fig. 1. NOC and Debug Hardware

order. The bus implements a multi-slave (narrowcast) connec-
tion [3]. The local bus uses an IP protocol such as AXI [14]
or DTL [15]. Each NI shell serialises transaction requests
to request messages, and deserialises response messages to
transaction responses. Messages are (de)packetised by NI
kernels, and transported by routers. The architecture at slaves
is similar. A simple connection between a master and a slave
thus contains two unidirectional channels: one for requests,
and one for responses. Figure 1 shows the request channels
(long dashed lines) of a multi-slave connection from master 1
to both slaves, and a simple connection from master 2 to
slave 1. The response channels are the reverse. To offer
quality of service, connections are configured at run time
by programming memory-mapped registers in the NI kernels
and local bus [16]. For debug purposes we add the following
hardware blocks to a SOC: monitors that observe and then
generate events, an event distribution interconnect (EDI),
protocol-specific instrumentation (PSI) to act on events, and a
debug data interconnect (DDI) to read out and program these
blocks. We only discuss the PSIs in more detail and all others
briefly, as they are already discussed in more detail in [1], [3].

Monitors (� in Figure 1) observe the SOC architecture and
generate events when something of interest happens. They can
be placed anywhere, but in our example, we use monitors to
observe links between routers. They are programmed with a
pattern that, when matched with data on the link, triggers an
event. The EDI is a simple high-speed broadcast mechanism
that propagates events to all PSIs. Events can be generated
by monitors, (debuggers on) IPs, and by the user through

the DDI. The DDI is implemented by using dedicated debug
scan chains that are connected to an IEEE 1149.1 Test Access
Port (TAP) [17]. This allows (low-speed) run-time access from
off-chip debug hardware and software (as described in Sec-
tion IV), independently and transparently from the functional
operation of the SOC. The state of the monitors and the PSIs
are observable and controllable via test-point registers (TPR)
that are accessible through the DDI. The state of the functional
IPs is also accessible through the TAP and the manufacturing
test scan chains. However this approach is intrusive, because
it requires that the functional clock is stopped first and then
switched to the debug clock TCK.

To observe and control the state of transactions at the
master or slave we insert PSI hardware blocks. Essentially,
a PSI allows us to observe whether a request or response
is in progress, and whether there are pending responses
(for pipelined transactions). By manipulating the valid/ready
handshakes for various signal groups we can stop requests
from being accepted or responses from being offered to the
master or slave, at the granularity of individual data words
(elements) or whole requests/responses (messages). PSIs are
inserted between master/slave and its local bus to control the
transactions between a master and all its slaves, or a slave and
all its masters (� in Figure 1). They are also inserted between
the local bus and the NI shells, to control the transactions
of a single master-slave pair (� in in Figure 1). PSIs are
programmed through the DDI to perform an action, such as
starting, stopping, or single stepping, at a certain granularity
(element, message, or transaction), when an event is received
through the EDI. The clock of IP blocks can also be stopped
by a PSI.

Given the above debug hardware infrastructure, we can
use the TAP to program monitors with interesting values to
be matched, program PSIs to take actions on events arising
from monitors or user, observe where events took place, and
observe and modify the state of the SOC IPS and the debug
infrastructure.

IV. DESIGN FLOW AND SOFTWARE INFRASTRUCTURE

The NOC hardware is generated by an automated design
flow [18]. Given a specification of the IP ports and a set
of use cases (sets of concurrent applications), the RTL files
of an application-specific NOC instance are generated. The
specification is updated by the flow with the IP to NI mapping
and information on how to configure the NOC at run time
for different use cases. In addition, embedded configuration
software is generated for each use case. The monitors, EDI,
PSIs, DDI, and TAP controller are automatically generated
and instantiated at RTL, when the user requests a debuggable
design. Commercial tools are subsequently used to synthesise
the NOC RTL and insert scan chains. [1], [3]. Scan insertion
tools also produce a debug chain database (DCD) file that
associates the bits in an RTL register (of the IPs and NOC
components) with their position in the debug scan chain.
Figure 2 shows the debug set-up. Off-chip debug hardware and
software, such as our Integrated Circuit Debug Environment

Fig. 2. Debug Software Environment

(InCiDE), connects through the TAP to the on-chip TPRs and
functional scan chains. By programming the TAP, reset, and
clock controllers, the user can place (parts of) the SOC in
functional or debug mode, and inspect or modify the state
of IPs (functional registers) or debug components (test point
registers). InCiDE uses the DCD file to access functional
registers at the right position in the right scan chain. It has
a TCL interface to read, modify, and synchronise on-chip
scan chains and their copies in the off-chip database. InCiDE
can interact with a SOC simulation, an FPGA or real SOC
hardware.

Although the NOC design flow and InCiDE allow us to
automatically generate the required debug hardware to inspect
and modify the network state through scan chains, several
steps are still missing in the current flow. We have automated
the insertion of monitors and PSIs. Currently, these are either
not inserted, inserted everywhere, or at user-defined locations
in the NOC topology. Smart algorithms on where to insert
these are not integrated yet.

Next, the topology.tcl and configuration.tcl files
are generated TCL versions of the corresponding XML files.
The former allows InCiDE to abstract from IP modules to the
NOC topology, to select IP modules based on the topology
(e.g. NIs attached to a given router), and to translate sets of
registers in routers and NIs to higher-level logical views (e.g.
displaying the valid data in a FIFO). The latter defines which
connections are active for all use cases, and maps the logical
view on communication (i.e. connections between IP ports)
to the structural view on communication (e.g. through which
routers a connection goes).

V. DEBUG HIGH LEVEL API

Our API builds on the InCiDE kernel, and consists of four
parts, as illustrated in Figure 2: a control API to control
InCiDE, a query API to inspect the NOC topology and con-
figuration, a print API to display information, and a program

Fig. 3. Debug Abstractions

API to program the debug infrastructure.
These APIs allow a SOC to be debugged at more abstract

levels than the traditional bit and clock cycle level. Figure 3
shows how a SOC’s state is abstracted from scan chains
structures to registers, generic RTL modules, and specific IP
functions such as routers, NIs, and PSIs. The DCD, TPR, and
topology files are used to perform this abstraction. These files
are automatically generated by our NOC tools. One further
abstraction step uses the configuration file to abstract from
a structural hardware view on communication (with routers,
NIs, local busses, etc.) to a logical software-configured view
(with paths, credits, quality of service attributes, channels,
connections, use cases, etc.).

Temporal abstraction is shown on the right side of Figure 3.
This first allows multiple clock cycles to be abstracted to one
or more data element handshakes. Only structural information
on the valid and accept signals used by the communication
protocol are needed for this. The steps to messages on channels
and to transactions on connections move the abstraction level
to the logical communication level.

The next two temporal abstraction levels are more com-
plex as they involve the synchronised stepping of multiple
communication channels. We define a basic single step for
a communication channel to mean that the PSIs involved
have to at least leave their stopped state and process one
communication request. The command sstep(S,L) performs
S single steps in succession for all PSIs in the list L. For
multiple channels, all stopped PSIs of the channels involved
will need to process one communication request.

Note that single stepping forces a unique transaction order
that must be known in advance to accurately represent the
original use case. Otherwise there can be unwanted depen-
dencies between the channels that are single-stepped, which
potentially can lead to a deadlock.

Consider for example the three channels in Figure 1. To
single step these three channels in parallel requires that Mas-
ter 1 performs one transaction to each of its slaves. Suppose
that master 1 repeatedly sends a transaction to either slave 1 or

slave 2. Normally, we don’t know the order (e.g. slave 1,1,2,1,2
etc.). Waiting on a response from both slaves in the wrong
order may cause the single step command to wait indefinitely
after the first response from slave 1.1 Waiting on a single slave,
but guessing the order incorrectly (i.e. starting with slave 2)
will produce the same result.

For this reason we introduce the barrier stepping command
bstep(S,L,N), where at least N out of the PSIs in list L
must perform a single step. Barrier stepping is equal to single
stepping when N is equal to the number of PSIs in L. Returning
to our example, N � 1 enables stepping on master 1 without
deadlock, even when the transaction order to slave 1 and 2 is
unknown in advance.

A. API Implementation

Our debug API is implemented on top of the TCL interface
provided by the InCiDE kernel, by adding a number of TCL
functions and data bases. To support the refinement-based
debug process, the user can mix the original and new abstract
functions as required.

Control API: This API is closest to the basic InCiDE
functionality, and serves to control the (simulated, prototyped,
or real) SOC through the TAP, reset, and clock controllers, and
scan chains. The reset command resets the TAP controller,
and nop tells it to idle for a specific number of TCK cycles.
InCiDE maintains a snapshot of the SOC state data to speed
up user access to the data. These databases can be saved
and reloaded for off-line debugging, using save_state and
load_state. As shown in Figure 1, there are three sets of
scan chains: for functional IPs, monitors, and PSIs. read_tpr
and read_sc scan out and copy the SOC’s debug (monitor and
PSI TPRs) and functional scan chains to InCiDE’s snapshot,
respectively. write_tpr and write_sc do the reverse, to
update the SOC scan chains, after local modifications by
InCiDE. stop sends a stop pulse from the TAP controller
to all PSIs via the EDI. Note that only those that have been
programmed to be sensitive to events will react.

Query API: The DCD file tells InCiDE the mapping of
RTL registers to their location in a scan chain. Registers
have a hierarchical name, to reflect the structure of the IP
modules. However, to debug a NOC-based SOC the NOC
topology and the mapping of IPs to NIs is essential. We
extended the NOC design flow to store this information
in the topology file. The get_

�
router,ni,ip,monitor �

commands enable the user to examine the SOC topology.
A tick (’ � ’) for function get_x(list of y’s) in Table I
returns the list of all objects of type x attached to the objects
in list y. An ’X’ means the function is not possible, and a
dash (’-’) that it has not been implemented yet. For example,
get_monitor(get_router(

�
ni1 �)) returns the monitors

attached to the router attached to NI ni1. Using the argument
all returns all xs. get_tpr accepts master and slave IP names
of connections and returns TPRs related to their PSI modules.

1For simplicity, we assume here that the master only issues non-split
transactions, i.e. at most one outstanding transaction, e.g. AHB. Otherwise
it may take more steps to deadlock.

The debug flow also updates the configuration file that spec-
ifies all use cases, the connections and channels in each use
case, their attributes (path, credits, address map, etc.), and to
which NI they are mapped. With this information, it is possible
to obtain e.g. all channels (get_ch all), all channels depart-
ing from a NI (get_ch ni), or all slaves a master uses in a
particular use case (get_ip conn [get_conn ch [get_ch

ni [get_ni ip master]]]). Please note that some argu-
ments have been omitted for brevity.

These functions dramatically improve the effectiveness of
communication-centric debugging.

argument type
command router NI IP monitor conn. ch.
get router all � X - � �
get ni � all � - � �
get ip X � all - � �
get monitor � - - all X X
get tpr X X � X X X
get conn � � � X all �
get ch � � � X � all

TABLE I
QUERY API COMMANDS

Print API: After selecting the object of interest (router, NI,
TPR) using the query API, the traditional way of displaying
their state would be a list of values in their RTL registers.
By using structural information from all known IP blocks,
i.e. routers, NI, monitors, PSIs, we can interpret the values in
registers. (Note that the structure and hence interpretation of
these components is heavily parametrised.) print_tpr_psi
and print_tpr_mon pretty-print the TPRs of PSIs and mon-
itors, respectively. print_router and print_ni are more
sophisticated because they interpret the read and write pointers
of their FIFOs, to show only the used locations of each FIFO.
We illustrate these functions in Section VI. This API can be
easily extended to include other IPs.

Programming API: The query and print APIs only query
and display NOC state. The programming API deals with
managing the debug activity. First, set_mon_bp enables the
user to set break-points by programming monitors to be
inactive, or to be active and trigger on particular (masked)
data. Using set_psi_action the user specifies to which
events PSIs react and how. They can be passive (do not
act on anything), act unconditionally (e.g. stop, continue,
or single step now), or act when events arrive from the
event distribution interconnect (EDI). All of these can be at
the element (handshake of individual data word) or message
(request/response) granularity.

Second, the programming API implements single step-
ping and barrier stepping, to raise the temporal abstraction
level. continue(L) continues all stopped transactions in
list L, for one or an infinite number of element or mes-
sage handshakes. Single stepping sstep(S,L) is equal to
bstep(S,L,L.length), as discussed above, and performs S
single steps in succession, for all stopped transactions (PSIs)

1 wait until all l in L stopped
2 continue all stopped l in L
3 wait until N elements of L left stop state and stopped again
4 go to 2 if # of passed steps 	 S
5 wait until all l in L stopped

Fig. 4. Example of barrier stepping

in the list L. Barrier stepping bstep(S,L,N) implements that
at least N of the PSIs in L perform a step. Table 4 shows
the pseudo code for barrier stepping, and an example. In the
design of Figure 1, bstep(3,
 ch1,ch2,ch3 � ,2) specifies
stepping three times with at least two channels out of three
proceeding. The crucial part of this algorithm in each step is
where we check that at least two channels left their stop state
and have stopped again. Note that waiting involves querying
the TPRs of the PSIs until they are in the right state, specified
by the quiescent and stopped state bits. Table 4 shows when
the TPRs of the PSIs are programmed (’P’) and when they
are queried (’Q’). ’S’ indicates that a channel has stopped, C
that it has been continued (i.e. is allowed to run), ’R’ that it
has resumed and is running. Note that in step 1, the second
channel is slow to resume running, and has not stopped when
moving to step 2. This is ok because channel 1 and 3 stopped.
In step 2 channel 2 does not need to be continued. Moreover,
at querying moment ’Q*’ two channels have stopped, and the
decision to continue to the next step is taken. The last channel
stopped between the last query and the reprogramming; due
to sampling this was not seen. This is not a problem because
it was not continued, and counts as an event in the next step.

VI. EXAMPLE USE CASE

For the hardware example in Figure 1, a netlist description
of the design and the required API databases are automati-
cally generated by the NOC design flow. We then run our
debugger software with its extended API in order to perform
interactive debugging using a simulated target. The following
demonstrates the use of the API to control the NOC during
debug.

Lines 1 and 2 reset the TAP controller and provide enough
time time to functionally program the NOC. Lines 3 to 10
program break-points inside the monitors on the connection
between Master1 and Slave2, as well as program debug actions
for the request channel of the TPR belonging to the PSI of
Master1. This PSI is programmed to stop communication at
the element level after receiving an event via the EDI. Lines 11
to 13 shows the effect of continuing that stopped transaction
on the PSI’s status.

As a real use-case example demonstration of the barrier

stopping shown in Figure 4, Lines 14 to 17 performed stepping
over all stopped transactions on the request channels at the
master sides of all connections (i.e. Master1 & Master2). The
printed INFO lines show our stepping algorithm at work.

Lines 18 to 20 read back the NOC state and print the content
of the router and NI queues corresponding to the connection
between Master1 and Slave2.

1 api:> reset
2 api:> nop 1000
3 api:> set my_conn [get_conn ip {{{Master1 *} {Slave2 *}}}]
4 api:> set my_tpr [get_tpr {Master1 *} {Slave2 *} M req]
5 api:> set my_mon [get_monitor [get_router conn $my_conn]]
6 api:> set_psi_action $my_tpr -gran e -cond edi
7 api:> set_mon_bp $my_mon {-w 0 -fw 2 -value 3648}
8 api:> write_tpr
9 api:> read_tpr
10 api:> print_tpr_psi $my_tpr

{core1 pi} -> {core4 pt}
Ch. Type

Req
Resp

11 api:> continue $my_tpr
12 api:> read_tpr
13 api:> print_tpr_psi $my_tpr

{core1 pi} -> {core4 pt}
Ch. Type

Req
Resp

14 api:> set my_tpr_all [get_tpr * * M req]
15 api:> set_psi_action $my_tpr_all -gran e -cond edi
16 api:> stop
17 api:> step $my_tpr_all -n 3 -some 2
- INFO: Checking if all Elements are stopped.....
- INFO: All Elements are stopped.
- INFO: Stepping starts.
- INFO: step 1 finished.
- INFO: step 2 finished.
- INFO: step 3 finished.
- INFO: All Elements are stopped.
18 api:> read_sc
19 api:> print_router [get_router conn $my_conn]

BE queue of R00_p1
Q.Nr

18
19

- INFO: No valid data in GT queue of R00_p1.
20 api:> print_ni [get_ni conn $my_conn]

INPUT queue of NI000_p2
Q.Nr

21
22
23
24
25

- INFO: No valid data in OUTPUT queue of NI000_p2.

VII. CONCLUSION

We presented techniques to raise the debug abstraction level
above the transaction level presented in prior work. Structural
and temporal abstraction techniques were combining with
debug data interpretation and logical communication views to
visualise an SOC’s state at the logical communication level. In
addition, we presented a generic debug API, and control debug
operations at the functional communication level. Results were
presented on the implementation of these features in the debug
environment for the Æthereal NOC architecture.

REFERENCES

[1] K. Goossens, B. Vermeulen, R. van Steeden, and M. Bennebroek,
“Transaction-based communication-centric debug,” in Proc. Int’l Sym-
posium on Networks on Chip (NOCS). Washington, DC, USA: IEEE
Computer Society, May 2007, pp. 95–106.

[2] G. Rootselaar and B. Vermeulen, “Silicon Debug: Scan Chains Alone
Are Not Enough,” in Proceedings IEEE International Test Conference
(ITC), Atlantic City, NJ, USA, Sep. 1999, pp. 892–902.

[3] B. Vermeulen, K. Goossens, and S. Umrani, “Debugging distributed-
shared-memory communication at multiple granularities in networks on
chip,” in Proc. Int’l Symposium on Networks on Chip (NOCS), Apr.
2008, pp. 3–12.

[4] L. Jianhua, Z. Ming, B. Jinian, and X. Hongxi, “A debug sub-system
for embedded-system co-verification,” 2001, pp. 777–780. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=982678

[5] E. Moerman, S. Bocq, and J. Verfaillie, “Debug architecture for system
on chip taking full advantage of the test access port,” in ETW ’03:
Proceedings of the 8th IEEE European Test Workshop. Washington,
DC, USA: IEEE Computer Society, 2003, p. 155.

[6] S. Vinoski, “Rise++: A symbolic environment for scan-based testing,”
IEEE Design and Test of Computers, vol. 10, no. 2, pp. 46–54, 1993.

[7] K. A. Tomko and A. Tiwari, “Hardware/software co-debugging for
reconfigurable computing,” in HLDVT ’00: Proceedings of the IEEE
International High-Level Validation and Test Workshop (HLDVT’00).
Washington, DC, USA: IEEE Computer Society, 2000, p. 59.

[8] S. Z. Hanono and S. Z. Hanono, “Innerview hardware debugger: A logic
analysis tool for the virtual wires emulation system,” in Master’s thesis,
Massachusetts Institute of Technology, 1995.

[9] B. Roesler, E. Nelson, “Debug methods for hybrid CPU/FPGA systems,”
in Field-Programmable Technology, 2002. (FPT). Proceedings. 2002
IEEE International Conference on. IEEE Computer Society, 2002,
pp. 243–250.

[10] D. Cheng and R. Hood, “A portable debugger for parallel and distributed
programs,” in In Proc. of Supercomputing’94, 1994, pp. 723–732.

[11] A. P. Claudio, M. B. Carmo, and J. D. Cunha, “Monitoring and debug-
ging message passing applications with MPVisualizer,” PDP, vol. 00, p.
376, 2000.

[12] E. Kraemer and J. T. Stasko, “The visualization of parallel systems: an
overview,” J. Parallel Distrib. Comput., vol. 18, no. 2, pp. 105–117,
1993.

[13] K. Goossens, J. Dielissen, and A. Rădulescu, “The Æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 414–421, Sept-Oct 2005.

[14] AMBA AXI Protocol Specification, ARM, Jun. 2003.
[15] Device Transaction Level (DTL) Protocol Specification. Version 2.2,

Philips Semiconductors, Jul. 2002.
[16] A. Hansson and K. Goossens, “Trade-offs in the configuration of a

network on chip for multiple use-cases,” in Proc. Int’l Symposium on
Networks on Chip (NOCS). Washington, DC, USA: IEEE Computer
Society, May 2007, pp. 233–242.

[17] B. Vermeulen, T. Waayers, and S. Goel, “Core-based Scan Architecture
for Silicon Debug,” in Proceedings IEEE International Test Conference
(ITC), Baltimore, MD, USA, Oct. 2002, pp. 638–647.

[18] K. Goossens, J. Dielissen, O. P. Gangwal, S. González Pestana,
A. Rădulescu, and E. Rijpkema, “A design flow for application-specific
networks on chip with guaranteed performance to accelerate SOC design
and verification,” in Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE). Washington, DC, USA: IEEE
Computer Society, Mar. 2005, pp. 1182–1187.

