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Abstract—Regular multi-core processors are appearing in the
embedded system market as high performance software pro-
grammable solutions. The use of regular interconnect fabrics
for them allows fast design time, ease of routing, predictability
of electrical parameters and good scalability. k-ary n-mesh
topologies are candidate solutions for these systems, borrowed
from the domain of off-chip interconnection networks. However,
the on-chip integration has to deal with unique challenges at
different levels of abstraction. From a technology viewpoint,
interconnect reverse scaling causes critical paths to go across
global links. Poor interconnect performance might also impact
IP core speed depending on the synchronization mechanism at the
interface. Finally, this might also conflict with the requirements
that communication libraries employed in the MPSoC domain
pose on the underlying interconnect fabric. This paper provides
a comprehensive overview of these topics, by characterizing
physical feasibility of representative k-ary n-mesh topologies and
by providing silicon-aware system-level performance figures.

I. INTRODUCTION

The execution of many multimedia and signal process-
ing functions has been historically accelerated by means
of specialized processing engines [1]. With the advent of
multi-processor system-on-chip (MPSoC) technology, perfor-
mance of hardware accelerators is becoming accessible by
combining multiple programmable processor tiles within a
multicore system [2]. In addition, the performance of latest
application specific integrated processors (ASIPs) [4] together
with the high availability of transistors is making the design
of custom hard-wired logic always less convenient (time-to-
market, respin risks). The underlying principle is that efficient
computation can be achieved while only marginally impacting
programmability and/or configurability, and architectures can
be devised that address the computation requirements of an
entire application domain [3].

In this context, tile-based architectures cope effectively with
the productivity gap, in that they provide parallelism through
the replication of many identical blocks placed each in a tile
of a regular array fabric [3], [6], [7]. This approach makes
performance scalability more a matter of instantiation and
connectivity capability rather than architecture complexity.

Perhaps the most daunting challenge to make MPSoC
technology mainstream is to realize the enormous bandwidth
capacities and stringent latency requirements when intercon-
necting a large number of processing cores. This task is on
burden of the global intrachip communication infrastructure.
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Networks-on-chip (NoCs) are generally believed to be the long
term solution to the communication scalability issue [8].

Topology selection is a NoC design issue which needs to
be addressed in the early design stages and which has deep
implications both on final system performance and on physical
network feasibility. NoC architectures can be designed with
both regular and custom topologies. The primary advantages of
a regular NoC architecture are topology reuse, reduced design
time, ease of routing, better control of electrical parameters
and hence less design respins and a higher degree of per-
formance predictability. The 2D mesh is currently the most
popular regular topology used for on-chip networks in tile-
based architectures, because it perfectly matches the 2D silicon
surface. Unfortunately, 2D meshes show very poor scalability
properties in terms of diameter, average minimal hop count
and bisection bandwidth.

In contrast, topologies with more than 2 dimensions are
attractive for a number of reasons. First, increasing the number
of dimensions in a mesh results in higher bandwidth and
reduced latency. Second, the number of dimensions can be
traded-off with the number of cores per switch, thus giving
rise to concentrated topologies saving network components
and trading bandwidth for latency. Third, wiring on a chip
comes at a lower cost with respect to off-chip interconnections.
However, wiring is also the challenging aspect of these topolo-
gies, since their mapping on a bidimensional plane involves
the existence of wires with different lengths. Depending on
the physical design technique, the more complex connectivity
pattern may impact performance, area and power in different
ways, such as a decreased operating frequency or a higher link
latency.

The objective of this paper is to assess performance of k-
ary n-mesh topologies while considering design constraints
posed by real-life HW/SW MPSoC platforms. This makes
the analysis more insightful and trustworthy than traditional
abstract exploration frameworks based on pencil-and-paper
floorplanning considerations. These latter often ignore the
presence of non-routable hard IP blocks, the asymmetric tile
size, the use of link pipelining to sustain network speed
or the dependence of switch critical path on its radix. The
relentless scaling of silicon technology to the nanoscale regime
is making the interconnect delay issue even more critical and
is causing the network critical path to move from the logic to
global network links. By leveraging a backend synthesis flow
for regular NoC architectures, we characterize the mapping
efficiency of a given topology on the silicon layout, targeting
a 65nm technology node.

We extract physical parameters from the physical synthesis
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and expose them to the system-level simulation tool, thus
coming up with silicon-aware performance figures. At this
level, network performance is usually characterized by means
of synthetic traffic patterns (such as uniform or hot-spot), in the
best case reflecting average communication bandwidth of real-
life applications. This paper aims to go a step further, by con-
sidering the requirements that a recently proposed middleware
library for MPSoC communication poses on the underlying
interconnect fabric. In essence, we consider network traffic
generated by synchronization mechanisms implemented in
software. Finally, we provide a model of the chip I/O interface,
thus capturing the implications of I/O performance on that of
specific k-ary n-mesh topologies.

II. PREVIOUS WORK

Although widely used across a number of network on chip
(NoC) designs [3], [11], the 2D-mesh NoC topology lacks of
scalability and tends to concentrate traffic in the center nodes
[10]. This has motivated works in the open literature that come
up with optimized NoC topologies while keeping regularity
properties as much as possible. A novel interconnect topology
called spidergon was proposed in [12], where each core is
connected to the clockwise, counterclockwise and diagonal
node. A traditional wormhole-routed mesh augmented by a
hierarchical ring interconnect for routing global traffic is
illustrated in [13]. NOVA is a hybrid interconnect topology
targeted at an FPGA, and is compared in [14] with star, torus
and hypercube topologies. Gilabert et al. propose in [15] to
use high-dimensional topologies, using different metal layers
to soft long link delay and trading-off dimensions with the
number of cores per router. The work in [10] proposes a
concentrated mesh architecture with replicated subnetworks
and express channels.

Topology exploration is an active research area due to the
large scale of on-chip networks and to the feasibility chal-
lenges posed by nanoscale technologies. An effort to compare
mesh and torus topologies under different routing algorithms
and traffic models with respect to their performance and power
consumption is described in [17]. Theoretical uniform traffic
based on the request/reply paradigm is used to assess ring, 2D-
mesh, spidergon and unbuffered crossbar topologies in [18].
[19] claims that from an energy standpoint, high-dimensional
tori should never be selected over hierarchical or express
cubes.

As technology scales to the nanometer regime, topology
analysis and exploration needs to be performed with tools
that account for the effects of nanoscale physics, largely
impacting final performance and even feasibility of many
NoC topologies. A general guideline driving network-on-chip
(NoC) design under severe technology constraints consists of
silicon-aware decision-making at each hierarchical level [21].
This is likely to result in less design re-spins and in faster
timing closure. In this direction, new tools are emerging that
guide designers towards a subset of most suitable candidates
for on-chip network designs while considering the complex
tradeoffs between applications, architectures and technologies
[22], [23].

Our previous work in [24] presents silicon-aware topology
analysis for a network with 16 nodes. A transaction level
simulation environment is presented that explores the imple-
mentation space of k-ary n-mesh topologies and provides
guidelines and constraints for the physical synthesis. This
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Fig. 1. Tile abstraction and mapping of producer-consumer communication
handshake on network transactions.

paper significantly extends the work in [24], while keeping the
same layout-aware approach. First, the emphasis here is not
on capturing the sensitivity of system performance to physical
parameters, but rather on the assessment of such parameters
for selected k-ary n-mesh topologies when designed for max-
imum performance. Second, the analysis of topology relative
performance and area is extended to 64 node networks as
well, thus providing a scalability analysis. Third, we point
out the key impact of specific physical design techniques on
the performance-cost trade-off of topologies under test.

III. TOPOLOGY EXPLORATION FRAMEWORK

A. NoC architecture

Our realistic topology exploration framework utilizes the
the xpipesLite NoC architecture [5]. The switching fabric
implements a 2-cycle-latency (one for switch operation and
one for traversing the output link), output-queued wormhole-
switched router supporting round-robin arbitration on each
output port. The implemented flow-control scheme is stall/go
[25].

The switch is parameterizable in the number of its inputs
and outputs, its link width as well as in the size of the output
buffering. For this work, 6-flit buffers are assumed and the
link (and flit) width is set to 32 bits.

The network interface (NI) is designed as a bridge between
an OCP 1 interface and the NoC switching fabric. Its purposes
are the synchronization between OCP and network timing, (de-
) packetization, the computation of routing information (stored
in a Look-Up Table, LUT) and flit buffering to improve per-
formance. The NI performs clock domain crossing, however in
order to keep the architecture simple the ratio between network
and core clock frequencies needs to be an integer divider.

1Open Core Protocol – standard end-to-end communication protocol

16 tiles 64 tiles
Topology 4-ary 2-ary 2-ary 8-ary 2-ary 2-ary

2-mesh 4-mesh 2-mesh 2-mesh 6-mesh 4-mesh
Max Arity 6 6 10 6 8 10

Total Switches 16 16 8 64 64 16
Tiles x Switch 1 1 4 1 1 4

Total Ports 80 96 40 352 384 192
Bisection Cut 4 8 2 8 32 8
Ideal Diameter 6 4 3 14 6 4

TABLE I
TOPOLOGIES UNDER TEST
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Both switches and network interfaces were originally
modeled in SystemC as synthesizable RTL-equivalent mod-
els. However, conducting system level performance analysis
with RTL simulation would imply unaffordable simulation
times and resources. For this reason, in [16] we presented
transaction-level (TL) models abstracting all relevant mecha-
nisms of the xpipesLite architecture (retiming, buffering, ar-
bitration, flow control, switching, synchronization), including
injection and ejection interfaces. We proved an accuracy of TL
simulation within 0.03% of RTL simulation while achieving
one order of magnitude faster simulation speeds. A 256 core
system with 16 millions of OCP read burst transactions can
be simulated in a couple of hours.

Interestingly, the TL simulator can backannotate silicon-
dependent parameters from the physical synthesis such as link
latency and maximum operating frequency of NoC building
blocks, thus making silicon-aware decision making viable
even at the highest layers of the design hierarchy. Such
parameters were extracted from post-layout analysis for 16
node topologies and projected for 64 node ones.

B. Topologies under test

The target of our analysis is a tile based architecture where
each tile is assumed to include at least one processor and
one local memory core. Therefore, the asymmetric tile size
needs to be accounted for when laying out the topology: this
puts traditional assumptions on mesh and hypercube wiring in
discussion.

Meshes can be referred to as k-ary n-meshes. The topology
has kn routers in a regular n-dimensional grid with k switches
in each dimension and links between nearest neighbors. More-
over, the n-hypercube topology is a particular case of a mesh
where k is always 2. Also, each switch can have one or more
tiles attached.

In this paper we devise topologies for two system scales,
namely topologies for 16 tiles and topologies for 64 tiles. In
the 16 tiles category, we analyze a 4-ary 2-mesh (referred
to as 2D-mesh from now on) with one tile per switch, a
2-ary 4-mesh (4-hypercube) with one tile per switch, and a
2-ary 2-mesh with 4 tiles per switch. The 4-hypercube is a
representative topology for those ones featuring a number of
dimensions higher than 2, while the 2-ary 2-mesh illustrates
the properties of concentrated topologies, connecting more
nodes to the same switch.

In the 64 tiles category, we analyze a 8-ary 2-mesh (also
referred to as 2D-mesh) with one tile per switch, a 2-ary 6-
mesh (6-hypercube) with one tile per switch and a 2-ary 4-
mesh with 4 tiles per switch. These topologies were chosen
with the same criteria as for the 16 node systems.

Table I shows some representative data for the studied
topologies. Please note that even with 1 tile per switch,
2 switch input and 2 switch output ports are required to
connect the tile, since it includes an initiator and a target
NI, each with one input and one output port to the switch
for receiving/sending data. The initiator NI uses the output
port to send out packets and the input port to receive packets
carrying read response data. The target NI uses the input port
to receive packets carrying write data or read requests for the
connected target. Read responses are packetized and sent out
through the output port.

C. Backend synthesis flow

The practical feasibility of topologies under test was ex-
plored by means of a semi-automated design flow spanning
from RTL description to layout-level verification. This enables
us to explore and validate topologies down to the place-
ment and routing steps, thus accounting for the effects of
nanoscale technologies. The flow has been conceived for the
physical synthesis of 2D-meshes and multi-dimension regular
topologies. We use industrial tools for placement-aware logic
synthesis and for place-&-route on an STMicroelectronics
65nm SVT technology optimized for low-power.

The first step of our backend synthesis flow is placement-
aware logic synthesis through Synopsys Physical Compiler,
applied to switch and network interface modules in isolation.
This tool keeps optimizing the gate level netlist based on
the expected placement and the wire loads it implies. The
final resulting netlist considers placement-related effects and
makes performance estimated at this level more trustworthy.
Post-synthesis max. frequency however represents a theoretical
upper bound, since the critical path is computed inside the
modules and actual routing of switch-to-switch links will then
cause a further unpredictable performance drop.

Floorplanning and place&route are performed with the
Cadence SoC Encounter tool. Computation tiles are replaced
by non-routable hard obstructions of size 2mm x 1mm. At
first, hard black boxes are manually placed on the floorplan.
Fences are then defined to limit the area where the cells of
each network-on-chip module can be placed. Subsequently, the
tool automatically places cells without trespassing the fences.
Fence size is devised based on the report of the Physical
Compiler on floorplan cell area of each module, while fence
position depends on the switch placement strategy. Our choice
was to aim at uniform latency across wiring dimensions. As an
example, the placement strategy for a 2-ary 4-mesh topology
with 4 tiles per switch is illustrated in Fig. 2.

Subsequent steps include clock tree synthesis and power
supply network insertion. Each IP core is assumed to be an in-
dependent clock domain with its own clock tree. In this work,
we assume all IP cores to work at the same frequency, which
depends on the network speed and on the divider applied to
the frequency-ratioed clock domain crossing mechanism at the
network interface. After the power nets have been routed, the
tool begins to route the logic wires. After an initial mapping,
search and repair loops are executed to fix any violations.
As a final step, post-routing optimizations are performed,
including crosstalk and antenna effect minimization. Finally,
a signoff procedure can be run by using Synopsys PrimeTime
to accurately validate the timing properties of the design.

D. Communication semantics

In our work, a transaction-level simulator of the xpipesLite
NoC architecture is used for system-level performance analy-
sis. The clock cycle accuracy with respect to RTL simulation is
proved in [16], which also demonstrates its superior simulation
speed. This section recalls only the details of network traffic
generation.

Our approach is to project network traffic based on the
latest advances in communication middleware for MPSoCs
and to assess its performance with an on-chip network as the
communication backbone. We derive from the queue-based
library in [9] the guidelines for producer-consumer interaction.
That library is suitable for a number of MPSoC architectures,
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16 tile 64 tile
4-ary 2-ary 2-ary 8-ary 2-ary 2-ary 2-ary 2-ary

Topology 2-mesh 4-mesh 2-mesh 2-mesh 6-mesh 6-mesh 4-mesh 4-mesh
High-Speed Reduced

Max. switch arity 6 6 10 6 8 8 12 12
Post-synthesis freq. 1 Ghz 1 Ghz 850 Mhz 1 Ghz 900 Ghz 900 Ghz 790 Mhz 790 Mhz

Post-layout. 786 MHz 640 Mhz 600 Mhz 786 Mhz 640 Mhz 786 Mhz 500 Mhz 500 Mhz
Core speed (max. 500) 393 MHz 320 Mhz 300 Mhz 393 Mhz 320 Mhz 393 Mhz 250 Mhz 500 Mhz

Cell Area 949k µm2 1108k µm2 733k µm2 4461k µm2 7356k µm2 22784k µm2 2610k µm2 2611k µm2

Power 0.67 W 0.64 W 0.32 W — — — — —
Latency on top dimensions

Dimension 3 — — — 1 1 2 1 1
Dimension 4 — — — 1 1 2 2 2
Dimension 5 — — — 1 2 2 — —
Dimension 6 — — — 1 3 3 — —

TABLE II
PHYSICAL PARAMETERS OF TOPOLOGIES UNDER TEST

including the tile-based MPSoC scenario addressed in this
paper. Therefore, we built an abstraction layer on top of
our TL simulator, which models the behavior of a processor
tile and of its HW/SW communication support. In essence,
the tile architecture consists of a processor core and a local
memory core, as illustrated in Fig.1(a). Both cores are con-
nected to the network through a network interface initiator
and target respectively. We assume that the two network
interfaces can be used in parallel. While the processor is
reading/writing from/to other tiles, the processor core of other
tiles can read/write from/to the tile local memory. We assume
producer-consumer communication between tiles based on the
handshake in Fig.1(b). The producer checks local semaphores
indicating whether there are previous pending messages for
the target destination. If not, it writes communication data to
the local tile memory and notifies data availability to the con-
sumer by unblocking a remote semaphore. The consumer was
meanwhile performing local polling on that semaphore. The
producer is then free to carry out other computation or commu-
nication activities to other consumer tiles. The consumer then
reads computation data from the producer tile, and sends a
notification upon completion. This allows the producer to send
another message to this specific consumer. The implementation
of this communication protocol involves 4 network transac-
tions: notification of data availability, read request, actual data
transfer and notification of transfer completion. The producer
local polling is performed in order to avoid congesting the
network in case the consumer is slow in absorbing its input
messages. The consumer local polling allows the consumer to
synchronize data transfer operations from multiple producers.
This avoids the collision of multiple packets in the network
from the producers to the same consumer, since this latter
operates all transfers once at a time. Under these working
conditions, concentrated architectures trading bandwidth for
latency become attractive. However, physical implementation
effects might put this picture in discussion.

IV. PHYSICAL SYNTHESIS

Link latency and maximum achievable frequency are key
parameters to determine performance, area and power of each
topology. However, they can only be quantified by post-layout
analysis. This motivates our bottom-up approach to topology
exploration. Due to synthesis time constraints, real physical
parameter values were obtained only for 16 tile systems, while
those for 64 tile systems were extrapolated based on the
synthesis experience on the smaller systems and on ad-hoc
scalability experiments.

Fig. 2. Floorplan of a 2-ary 4-mesh with 4 tiles per switch.
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Fig. 3. Switch-to-switch distance and associated critical path.

A. 16 tile networks

Network building blocks have been synthesized in isolation
for maximum performance. Post-synthesis achievable frequen-
cies are reported in Table II - 3rd row. They only account for
timing paths in network logic and ignore those going through
switch-to-switch links. We always found the critical paths to
be in the switches and never in the network interfaces, and this
explains why the network speed closely reflects the maximum
switch radix of each topology.

When post-layout speed is considered, we observe that inter-
switch wiring has caused a significant performance drop for
all topologies, depending on the wiring intricacy of each of
them. As reported in Table II - 4th row, the more complex
connectivity pattern of 2-ary 4-mesh results into a larger
frequency drop than the 2D mesh. The 2-ary 2-mesh pays
its lower number of switching resources with a larger switch-
to-switch separation, and hence with a severe degradation of
network performance due to link delay.

Since frequency-ratioed clock domain crossing is imple-
mented in xpipesLite network interface, network speed affects
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IP core speed. For this latter, a maximum value of 500 MHz is
assumed in the context of multi-core embedded microproces-
sors. In spite of the post-layout speed drop, IP cores cannot
sustain the network speed just at the same and therefore a
divider of 2 is applied (Table II - 5th row).

The total larger number of switch I/O ports used by the
4-hypercube well motivates its larger area footprint than the
2D mesh. Cell (floorplan) area is considered in Table II - 6th
row, while chip floorplan area is not reported since no specific
optimizations were applied to it. Although the 2-ary 2-mesh
has half the number of switches, its area is not halved as well,
due to the fact that those fewer switches have a larger radix.

B. 64 tile networks

For 64 tile networks, we had to assume a different physical
design technique than for smaller scale systems. In fact, should
switch-to-switch link delay still impact overall network speed,
this latter would become unacceptably low. For this reason,
link pipelining becomes mandatory. While it might turn out
to be expensive for 16 tile systems, for larger networks it
can break long timing paths across on-chip interconnects and
sustain network speed even in presence of long links.

The number of pipeline stages depends on the link length
on the layout. As a first approximation, layouts for 64 node
topologies can be obtained in a modular way by replicating
those of 16 node topologies 4 times. So, for instance, the
layout of a 2-ary 6-mesh can be derived from that of the 4-
hypercube while from a 2-ary 2-mesh it is possible to draw
the layout of a 2-ary 4-mesh. Since in the 64 tile systems
the switch radix is larger, the main inaccuracy may only
regard the size of some routing channels. The 2D mesh is
an exception to this scaling policy, in that its extension to 64
tiles is straightforward and retains the switch radix.

From the layouts, we were able to project link lengths
for each topology dimension and, consequently, link latencies
when link pipelining is applied. Table II reports latency results
for the top dimensions, since the lower ones always feature
1 cycle latency. This way, the same post-layout frequency
of the originating 16 tile topologies could be retained. The
only exception regards the 2-ary 4-mesh, where the maximum
frequency is determined by the large switch radix and not by
link delay anymore.

The mapping function between wirelength and link delay
has been experimentally derived. We placed two switches
in the layout at increasing distance, and measured the post-
routing critical path going through the switch-to-switch link
as a function of the distance. The resulting curve is illustrated
in Fig.3. We have two physical design options. Repeater stages
can be used in link segments to speed up signal propagation,
resulting in an almost linear increase of critical path delay.
This technique also allows to limit the number of link pipeline
stages. In contrast, some previous works advocate the use
of unrepeated global wires to avoid an exponential increase
in area and power. As can be observed from Fig.3, the
consequence would be a steep increase of link latency, and
hence of retiming stages. We leave the exploration of the most
power-efficient solution for previous work, and consider the
combined use of repeater and retiming stages in this work.

In order to point out the key role of physical design
techniques in determining system performance, we consider
two topology variants featuring the same connectivity pattern
of presented topologies but different physical parameters.
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Fig. 4. Normalized execution time for 16 tile topologies.

The high-speed version of the 2-ary 6-mesh topology illus-
trated in Table II (7th column) differs from the reference 2-ary
6-mesh only for the higher post-layout operating frequency,
which was made equal to that of the 2D mesh. This was
allowed by an aggressive use of link pipelining, applied also to
the links in the third and forth dimensions. Since each pipeline
stage is not just a retiming stage but also a flow control stage,
it needs to have a 2 slot buffer, and this leads to the significant
area overhead illustrated in Table II with respect to the baseline
2-ary 6-mesh. The same design technique could not be applied
to the 2-ary 4-mesh, since the high switch radix poses an
upper bound to the performance optimization achievable by
link pipelining.

On the other hand, maximum speed of the 2-ary 4-mesh is
so low that a modification of the frequency ratio at the network
interface might become convenient. In fact, if we change the
ratio from 2 to 1, we enable IP cores to run at the same speed
of the network. So, the network slowdown might be offset by
speeding up the IP cores. We refer to this topology with NI
divider set to 1:1 as the reduced 2-ary 4-mesh.

V. TOPOLOGY PERFORMANCE RESULTS

In order to simplify topology analysis, we assumed a work-
load distribution between the tiles which de-emphasizes the
role of the topology mapping algorithm. In fact, we consider a
parallel benchmark consisting of one or more producer tasks, a
scalable number of worker tasks and 1 or more consumer tasks.
Every task is assumed to be mapped on a different hardware
tile. The producer task(s) reads in data units from the I/O
interface of the chip and distributes it to the worker tasks.
There are no constraints on which worker tile has to process
a given data unit. Output data from each worker tile is then
collected by one or more consumer tiles, which write them
back to the I/O interface. All communications follow the queue
based semantics illustrated in Subsection III-D. The following
assumptions were made on the I/O interface. A maximum of
8 I/O ports is assumed for 64 tile systems, each one used for
input or for output. This number was reduced to 2 I/O ports for
16 tile systems. Such ports are accessed through sidewall tiles.
The mapping of producer(s) and consumer(s) tasks is therefore
constrained to these tiles. This I/O architecture is compliant
with that of commercial embedded microprocessors, such as
[3]. We set latency for access to the off-chip I/O devices as
a function of their frequency. We considered 20 cycles at 500
MHz and 15 cycles at 350 MHz.

While insensitive to worker tile mapping on the topology,
our benchmark is still sensitive to I/O tile mapping on the chip
periphery. For this reason, two scenarios are considered:
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OneSided: all the I/O tiles are placed on the same side of
the chip. This mapping has a high probability of I/O streams
collision.
FourSided: I/O tiles are spread across the four sides of the
chip. For 64 tile systems, at least one input and one output is
placed at each side. For 16 tile systems, I/O tiles are placed at
opposite sides to balance the average number of hops to input
and output tiles for all workers.

A. 16 tile

Figure 4 shows performance of 16 tile topologies in clock
cycles and elapsed time. The left side shows results for
OneSided mapping, while the right side shows results for
FourSided mapping. In OneSided, the hypercube (2-ary
4-mesh) reduces total number of cycles by 27.4%. In this
mapping, inputs and outputs are placed at the top of the chip.
Therefore, path length is very irregular, as tiles located at the
top of the chip can reach input and output through a shorter
path than the tiles located at the bottom. This makes topologies
with higher network diameter more sensitive to this effect.
Moreover, the probability of collision between I/O streams is
quite high, thus penalizing topologies with fewer dimensions.
The concentrated hypercube (2-ary 2-mesh) reduces cycles
only by 1.6% over the hypercube, despite its lower diameter.
The main reason for this lies in the chip I/O: as the bottleneck
introduced by the topology is alleviated, the external I/O
bottleneck arises. So, the maximum improvement that can be
achieved in the 16 tile system is bounded by I/O speed. On the
other hand, FourSided mapping (see Figure 4) reduces I/O
streams collision probability while providing homogeneous
path length, thus decreasing performance differences among
topologies.

Unfortunately, these results become irrelevant when consid-
ering the real operating frequency of each topology. While in
OneSided mapping the reduction of cycles of the 4-hypercube
barely compensates for its lower frequency, in Foursided
mapping it is not enough, and the 2D mesh turns out to be
the best topology overall.

Finally, Figure 4 shows the energy consumed by each topol-
ogy. These numbers are measured on the post-layout netlists
illustrated in Section IV. While the 4-hypercube consumes
almost the same or even more energy than the 2D mesh
depending on the I/O tile mapping, the concentrated hypercube
shows superior energy saving properties (from 40 to 50% less
than the 2D mesh).

B. 64 tile

Fig.5 shows performance of 64 tile topologies for both
mappings in cycles and real elapsed time. The projected link
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Fig. 6. Relative performance comparison between 2-ary 6-mesh and its
high-speed variant leveraging aggressive link pipelining.

latencies from Table II are considered for each topology. The
trend observed in 16 tile systems with respect to the I/O
tile mapping seems to be confirmed also in 64 tile systems.
With this system scale, the impact of the different operating
frequencies of the topologies is even more apparent. For in-
stance, performance in cycles of both non-reduced hypercubes
seems quite similar, but when frequency is taken into account,
performance results are very different.

Again, the 2D mesh outperforms both the non-reduced
hypercubes, due mainly to two reasons. The first one is of
course the decreased operating frequency of the hypercubes,
which is the price to pay for the more intricate physical routing
(6-hypercube) or for the longer links used to interconnect few
network resources sparse all around the chip (4-hypercube).
Performance improvements in cycles are not such to offset
the lower operating speed. However, one might expect a larger
cycle reduction from an hypercube, which conflicts with the
real 10% reduction measured in our simulations. This is due
to the fact that the systems under test are I/O constrained,
since computation tiles spend around 50% of their time waiting
to send data to the consumer tile. This constraint introduces
an upper bound to topology-related performance optimiza-
tion. Removal of the I/O bottleneck has to be considered
as mandatory to achieve performance differentiation between
topologies.

An interesting effect can be observed when looking at the
results of both 2-ary 4-mesh topologies. In the reduced one,
clock domain ratio is set to 1, so NoC and tiles work at
the same frequency, allowing to increase tile speed to 500
MHz. In this case, although the number of cycles is greatly
reduced (29% less cycles than the 2D mesh), the low network
frequency compensates for that, so performance is very similar.
However, the reduced 2-ary 4-mesh requires 4 times less
switches than the 2D mesh, half the number of ports and works
at half the frequency, so power requirements are going to be
lower, while preserving performance.

Finally, the effects of an aggressive utilization of re-timing
stages over performance was analyzed for the 2-ary 6-mesh.
Figure 6 shows the performance of 2-ary 6-mesh and of its
high-speed variant in both cycles and elapsed time. As can be
observed, the high-speed 2-ary 6-mesh slightly increases the
number of cycles. However, the increased operating frequency
is high enough to reduce elapsed time by 27% over the
baseline topology. This might cause the high-speed 2-ary 6-
mesh to become competitive with the 2D mesh performance-
wise, but a significant area and power overhead needs to
be taken into account, associated mainly with the additional
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buffers used in retiming stages.

VI. CONCLUSIONS

This paper takes a bottom-up approach to the assessment of
k-ary n-mesh topologies for regular tile-based architectures.
Scalability of presented results to 64 tile architectures is
considered. The paper considers a number or real-life issues:
physical constraints of nanoscale technologies (post-layout
performance, area and power results are given), different
physical design techniques, the role of the chip I/O, the
communication semantics of middleware for MPSoCs and the
role of I/O tile mapping.

We found that the intricate wiring of multi-dimension
topologies or the long wires required by concentrated k-ary n-
meshes can be changed into 2 different kinds of performance
overhead by means of proper design techniques:

• operating frequency reduction. This is likely to be the
technique of choice for small scale systems. In this case,
in spite of a lower number of execution cycles, multi-
dimension topologies loose in terms of real execution
time due to lower working frequency. Nonetheless, reduc-
ing the number of dimensions and connecting more cores
to the same switch represent a way to trade performance
for power and area;

• increase of link latency. An aggressive utilization of re-
timing stages allows to sustain operating frequency while
increasing network latency. The switch delay associated
with its radix poses an upper bound to the effectiveness
of this technique. Finally, a significant area and power
overhead is to be expected, since retiming stages need to
be also flow control stages.

Overall, we found the 2D mesh to still outperform the hy-
percubes even in 64 tile systems. This is counterintuitive, since
hypercubes should scale better in principle. The motivation lies
in the mismatch between multi-dimension topologies and the
2D silicon surface (whatever the kind of performance overhead
it is changed into) and in the chip I/O bottleneck, which
prevents an aggressive performance speed-up at least in clock
cycles. Removal of this bottleneck is mandatory to achieve
significant performance differentiation between topologies.

These considerations are architecture-specific to some ex-
tent. The xpipesLite NoC for instance uses frequency-ratioed
clock domain crossing at the network interface. So, we found
the opportunity to take profit of the low speed of concentrated
hypercubes to change the frequency divider at the network
interface and to have the cores running faster. We therefore got
a topology that achieves the same performance of the 2D mesh
while consuming much less hardware resources and power.
The availability of more complex synchronization techniques
such as asynchronous FIFOs at network interfaces may extend
this benefit to other topologies as well.
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