
Hybrid Resource Discovery Mechanism in Ad Hoc Grid

Using Structured Overlay

Tariq Abdullah1, Luc Onana Alima2, Vassiliy Sokolov1,

David Calomme2, Koen Bertels1

1Computer Engineering Laboratory, EEMCS, Delft University of Technology,

Mekelweg 4, 2624 CD, Delft, The Netherlands
2Distributed Systems Laboratory, University of Mons, Belgium

1{m.t.abdullah, v.sokolov, k.l.m.bertels}@tudelft.nl, 2{luc.onana, david.calomme}@umh.ac.be

Abstract. Resource management has been an area of research in ad hoc grids for

many years. Recently, different research projects have focused resource manage-

ment in centralized, decentralized or in a hybrid manner. In this paper, we discuss

a micro economic based, hybrid resource discovery mechanism. The proposed

mechanism focuses on the extension of a structured overlay network to manage

the (dis)appearance of matchmakers in the grid and to route the messages to the

appropriate matchmaker in the ad hoc grid. The mechanism is based on the emer-

gent behavior of the participating nodes and adapts with respect to changes in

the ad hoc grid environment. Experiments are executed on PlanetLab to test the

scalability and robustness of the proposed mechanism. Simulation results show

that our mechanism performs better than previously proposed mechanisms.

1 Introduction

Ad hoc grid (also called Public Resource Computing [1], Desktop Grid Computing

[2], or Volunteer Computing) has autonomous, geographically distributed, and hetero-

geneous nodes with intermittent participation. The intermittent participation of nodes

results in varying workload of the resource manager. Furthermore, different underly-

ing network infrastructures and varying access/use policies of the nodes increase the

administrative complexity of the resource management system in the ad hoc grid.

There exist different resource discovery techniques for ad hoc grid. Centralized ap-

proaches are efficient and consume less time to find a resource. But these approaches

have a single point of failure and are not scalable. In contrast to centralized approaches,

peer to peer (P2P) approaches are scalable and depict low management complexity.

Whereas, the P2P approaches are less efficient and can have time and network over-

head while finding a resource. P2P and centralised systems are often considered to be

mutually exclusive and reside on both ends of an infrastructural spectrum. We consider

them to be part of a continuum where the system should be capable of restructuring

itself in either of these states, or any intermediate state between those two extremes.

This paper is an extension of the work presented in [3], where, we proposed a re-

source management mechanism that enabled the ad hoc grid to self-organize according

to the workload of the resource manager (referred to as matchmaker hereafter). The

mechanism is based on the emergent behavior of the participating nodes and adapts it-

self with respect to the changes in the ad hoc grid environment. In [3], we assumed the

availability of a structured overlay network to handle node join/leave, de(segmentation)

of ad hoc grid, message routing among matchmakers, node to matchmaker message

exchange and matchmaker to node message exchange. Furthermore, a node belonged

to only one matchmaker and there was no mechanism to find a new responsible match-

maker in the event of a matchmaker failure. We now address some of the open issues

reported there.

This paper focuses on some of the open issues mentioned above. The main contri-

butions of the paper are as follows. The proposed extension defines the algorithms for

node joining, for finding a responsible matchmaker by a joining/existing node, for ad

hoc grid segmentation (by promoting nodes as matchmakers), and for ad hoc grid deseg-

mentation (by demoting matchmakers as normal nodes). Experiments are executed, on

PlanetLab [4], to verify that the proposed extension enables ad hoc grid to self-organize

according to the workload of the resource manager. The proposed extension makes our

hybrid resource discovery mechanism, for ad hoc grid, dynamic and flexible.

The rest of the paper is organized as follows. An overview of the related work and

necessary background knowledge to understand the proposed model is in section-2.

Section-3 describes the proposed extension of the structured overlay network. Section-

4 explains the experimental setup and discusses the results. Section-5 concludes the

paper and describes our future work.

2 Related Work & Background Knowledge

In literature, we find different solutions for load balancing in distributed systems. Mer-

cury [5] used node leave/rejoin for load balancing. The overloaded node leaves and

then joins the ring as a neighbor of a lightly loaded node. Node leave/rejoin introduces

message overhead. Cai et al. [6] used customized hashing function. The customized

hashing functions required a prior knowledge of the attributes value distribution. Mas-

troianni et al. [7] used unstructured P2P networks to construct a super-peer model for

resource discovery in grids and used experience based query forwarding. Attribute en-

coding of static or dynamic computational resource information for resource discovery

in DHT based overlay networks is also studied in [8]. The majority of the encoded

attributes may be mapped to a small set of nodes in the overlay network, therefore

attribute encoding may result in a load imbalance condition. Padmanabhan et al. [9]

proposed a self-organized grouping method that formed and maintained autonomous

resource groups. These resource groups are formed according to some pre-specified

resource characteristics and each group contained a set of similar resources. The main

drawback of their work is that there is no load balancing mechanism among the groups

formed. Butt et al. [10] implemented a P2P based Condor flocking to share resources

in different Condor pools. They did not consider the dynamic introduction/removal of

Condor pools or the workload condition of a Condor pool manager.

The above discussed approaches used different ways to distribute the workload of

one matchmaker among multiple matchmakers. These include node leave/rejoin [5],

customized hash functions [6], super peer model on top of unstructured networks [7],

or attribute encoding [8]. All these approaches attempt to balance the workload of the

resource manager/ matchmaker by sharing the workload, they may end up with an in-

appropriate infrastructure for the given state of the grid.

2.1 Continuous Double Auction based Resource Allocation

Our ad hoc grid consists of autonomous, dynamic, volatile and loosely connected nodes

that can join, leave or change their roles whenever needed. Each node is composed

of three agents: Consumer, Producer and Matchmaker. Structure of these agents is

depicted in Figure-1. The Resource/Task Manager module of the producer/consumer

agent prepares asks/bids. The resource offers are called asks and the resource requests

are called bids. An ask is defined by attributes like resource quantity, Time To Live

(TTL) and resource price in this paper. A bid is represented by resource quantity, job

execution time, bid price and Time To Live (TTL) in this paper.

The matchmaker uses Continuous Double Auction (CDA) to perform resource allo-

cation in its MatchMake module. The matchmaker agent continuously receives asks/bids

from producer/consumer agents and stores the received asks/bids in the offer/request

repositories, maintained by the Repository Manager module. The matchmaker finds

the matches between the producers and consumers by matching offers (starting with

lowest ask price and moving up) with requests (starting with highest bid price and

moving down). The matchmaker matches a compatible ask/bid pair immediately. A

compatible ask/bid is a resource offer/request pair where resource request (bid) con-

straints are satisfied by the matching resource offer (ask). The received ask/bid remains

in the offer/request repositories of the matchmaker till the expiry of its Time To Live

(TTL). The Segmenter Module performs segmentation and desegmentation by promot-

ing and demoting the matchmakers. All consumer/producer to matchmaker and vice

verse communication is done through the communication module of the respective

consumer/producer or matchmaker agent. The communication module uses underly-

ing structured overlay network for communication between the consumer/producer or

matchmaker agent.

P
ro

d
u

c
e
r

C
o
m

m
u
n
ic

a
ti
o
n

J
o
b
 M

a
n
a
g
e
r

R
e
s
o
u
rc

e

M
a
n
a
g
e
r

C
o

n
s
u

m
e
r

C
o
m

m
u
n
ic

a
ti
o
n

J
o
b
 M

a
n
a
g
e
r

T
a
s
k

M
a
n
a
g
e
r

Underlying Structured Overlay Network

M
a
tc

h
M

a
k
e
r

M
a
tc

h
M

a
k
e

Segmenter

C
o
m

m
u
n
ic

a
ti
o
n

R
e
p
o
s
it
o
ry

M

a
n
a
g
e
r

Fig. 1: System Architecture

The Job Manager Module of consumer/producer agents is responsible to execute

the consumer jobs and return the computation results to the consumer, after receiving a

matchmaking notification from the matchmaker. The producer/consumer does not have

a system wide (global) knowledge and are not aware of the other’s ask/bid prices. The

producer/consumer use a dynamic history based pricing function to calculate the ask/bid

price for each offered/requested resource [3].

2.2 Transaction Cost (TCost) Threshold Determination

The matchmaker attaches a transaction cost (TCost) to each offer/request, which reflects

the workload of the matchmaker. The node submitting a request/offer is supposed to

pay this TCost to the matchmaker. Every node is given an initial budget which can

be used to this purpose. Formula for calculating TCost, discussion of TCost upper and

lower thresholds for promoting normal nodes as matchmaker and demoting underloaded

matchmaker nodes as normal nodes are described in our previous paper [3].

3 Proposed Algorithm

There can be N nodes in our experiments. Each node can play the role of a consumer,

producer or a matchmaker. A producer node offers its available resources (such as CPU,

memory, disk space or bandwidth). A consumer node requests for the desired resources

to execute its job. The node playing the role of a mediator between the consumer and

the producer nodes are named as resource allocators or matchmakers in this work. The

matchmaker receives offers and bids of resources from the nodes in the ad hoc grid,

which are then matched by the matchmaker. Each node is assigned a unique node iden-

tifier (nodeID). As the proposed algorithm is an extension of a structured P2P overlay

network, principally any structured P2P overlay network, can be used to implement

the proposed algorithm. We used Pastry [11] to implement the proposed extension. As

the Pastry identifier space can have 2128
− 1 unique identifiers, the maximum number

of nodes (N) in our ad hoc grid can also be 2128
− 1. There can be a maximum of M

matchmakers out of N nodes.

The whole identifier space is divided into zones. Each zone has a responsible match-

maker. Each joining consumer/producer/matchmaker node is provided with M, N and

the zonenumber to which the node belongs to. It is ensured that each consumer/producer

node is under the responsibility of a matchmaker. When a matchmaker becomes over-

loaded then it promotes its predecessor matchmaker node to perform matchmaking.

The consumer/producer nodes under the responsibility of overloaded matchmaker are

now under the responsibility of the predecessor matchmaker. In case, the predecessor

matchmaker is already performing matchmaking (i.e active) then the excess workload is

forwarded to the successor matchmaker of the overloaded matchmaker. The algorithm

for matchmaker promotion is explained in Section-3.1.

Conversely, when a matchmaker is underloaded then it demotes itself and informs

its predecessor and successor matchmakers about the change in its matchmaking sta-

tus. The successor matchmaker of the demoted matchmaker becomes the responsible

matchmaker for consumer/producer nodes that were previously under the responsibil-

ity of the demoted matchmaker. After demoting itself, the demoted matchmaker will

forward the request/offer messages to its successor matchmaker node. The demoted

matchmaker also informs the consumer/producer node, under its responsibility, about

the change of its matchmaking status and about their new matchmaker. The matchmaker

demotion (desegmentation) algorithm is explained in Section-3.2.

A consumer/producer node finds its responsible matchmaker node with the provided

information, after joining the ad hoc grid. In case there is only one matchmaker in the ad

hoc grid then it becomes responsible matchmaker for all the consumer/producer nodes.

The consumer/producer node can submit request/offer to the matchmaker node after

finding the responsible matchmaker node. Each matchmaker node maintains matchmak-

ing status information (active/inactive) about its predecessor and successor matchmaker

nodes. The matchmaker does so by exchanging matchmaking status information with

its successor and predecessor nodes. The algorithms for node joining and matchmaker

discovery are explained in Section-3.3 & 3.4 respectively.

3.1 Matchmaker Promotion: Segmentation

This algorithm is executed by an overloaded matchmakers in the ad hoc grid. An over-

loaded matchmaker (say Mi is matchmaker for zone i) promotes its predecessor match-

maker node (say Mi−1).

The newly promoted matchmaker (Mi−1) changes its matchmaking status to active,

as depicted in Figure-2a & Figure-2b. The matchmaker (Mi−1) updates its predeces-

sor matchmaker (Mi−2) about the change in its matchmaking status. The matchmaker

(Mi−1) is now ready to perform matchmaking for the consumer/producer nodes belong-

ing to zone i−1.

The consumer/producer nodes belonging to zone i − 1 are still unaware of the

change of their new matchmaker in their zone. We applied “correction on use” pol-

icy to update the consumer/producer nodes belonging to zone i− 1. The matchmaker

Mi , after promoting its predecessor (Mi−1) as active, will process the currently received

request/offer message from nodes belonging to zone i− 1 and will update the respec-

tive node, in zone i− 1, about their new matchmaker (Mi−1). The consumer/producer

nodes in zone i− 1 change their responsible matchmaker to Mi−1 from Mi and send

the request/offer messages to their new matchmaker (Mi−1). This process is graphically

illustrated in Figure-2c.

If the predecessor matchmaker (Mi−1), of matchmaker Mi, is already active then

the overloaded matchmaker node (Mi) will forward its excess workload to its successor

matchmaker (Mi+1). The matchmaker promotion algorithm is listed in Algorithm-1.

As stated before, there can be N nodes (consumer/producer/matchmaker) in the ad

hoc grid and there can be a maximum of M matchmakers (M < N), out of N nodes. The

ad hoc grid is thus divided into maximum of (N/M)− 1 zones. This zone information

is only effective when there is an active matchmaker in that zone. If the matchmaker

for a zone i does not exist or is inactive then the consumer/producer nodes, continue

looking for an active matchmaker in the successor zones of zone i (refer Section-3.4

for details). The number of effective zones increases with the promotion of matchmak-

ers and decreases with the demotion of matchmakers, explained in Section-3.2. In this

way, the matchmaker promotion results in the segmentation of the ad hoc grid and the

matchmaker demotion results in desegmentation of ad hoc grid.

Algorithm 1 Promote Matchmaker

1:IF(Mi is overloaded) THEN

2: Mi Query Mi−1matchmaking status

3:IF(Mi−1 matchmakingstatus is f alse) THEN

4: Mi change Mi−1 matchmaking status to TRUE

5: Mi−1 update its changed matchmaking status to Mi−2

6: Mi update matchmaker change to consumer/producer nodes in zone i−1

7:ELSE

8: Mi Forwarded excess workload to Mi+1

9:END IF

10:END IF

Are you active?

No

1: A
re you active?

2: N
o

MM463 1

15

17

3133

47

49

MM1 MM3

MM2

(a)

MM4

I am
 overloaded, becom

e active

I am
 overloaded, becom

e

active

MM1

17

1515

3131MM2 3333

47

MM3MM3

4949

6363 MM4 11

(b)

MM463

31

Request/Offer message

P
ro

ce
ss

 t
h
e

received message

63

MM1

1717

1515

313333 MM2

4747

4949

MM4 11

2: Process the

received message

for next message

3: MM2 is your matchmaker

1: Request/Offer message

MM3MM3

(c)

Fig. 2: Promote a Matchmaker

3.2 Matchmaker Demotion: Desegmentation

This algorithm is executed by an underloaded matchmaker in the ad hoc grid. An un-

derloaded matchmaker (say Mi is matchmaker for zone i) demotes itself by changing

its matchmaking status. The demoted matchmaker updates its predecessor matchmaker

node (Mi−1) and successor matchmaker node (Mi+1) about the change in its matchmak-

ing status, as depicted in Figure-3a & Figure-3b.

Algorithm 2 Demote Matchmaker

1:IF(Mi is underloaded) THEN

2: Mi change its matchmaking status to FALSE

3: Mi update its changed matchmaking status to Mi−1

4: Mi update its changed matchmaking status to M+1

5: Notify consumer/producer nodes about change of matchmaker

6:END IF

MM4

31

1:
 A

re
 y

ou a
ct

iv
e?

2:
 Y

es

313333

MM1

1717

1515

11MM46363

4949

MM3

4747

MM2

(a)

-I a
m

 u
nder

lo
ad

ed
,

bec
om

in
g in

ac
tiv

e

MM3

47

33 MM2 31

15

MM1

17

MM4 163

49

(b)

MM4

31

R
equest/O

ffer m
essage

Fo
rw

ar
di

n
g

re
qu

es
t/o

ff
er

 m
es

sa
ge

MM2 313333

11MM46363

4747

4949

2:
 F

o
rw

ar
d
 r
eq

u
es

t/
o
ff
er

m
es

sa
g
e

1: R
equest/O

ffer

m
essage

3
: M

M
4
 is

 yo
u
r

m
a
tc

h
m

a
k
e
r

MM3

1717

MM1

1515

MM3

(c)

Fig. 3: Demote a Matchmaker

The “correction on use” policy is also applied to update the consumer/producer

nodes in zone i about the change of their responsible matchmaker. The matchmaker

node Mi, after demoting itself, will forward the currently received request/offer mes-

sages, from nodes in zone i , to its successor matchmaker node (Mi+1). The matchmaker

Mi also sends a message to the respective consumer/producer node, about the change

of matchmaker from Mi to Mi+1. The consumer/producer nodes in zone i change their

responsible matchmaker to Mi+1 from Mi and send the request/offer messages to their

new matchmaker (M+1). This process is graphically illustrated in Figure-3c. The match-

maker demotion algorithm is listed in Algorithm-2.

3.3 Node Joining Algorithm

Each joining consumer/producer/matchmaker node is provided with M, N and the zone

number to which the node belongs to. We used Pastry node join protocol [11] for node

joining in our ad hoc grid. After joining the ad hoc grid, the consumer/producer and

matchmaker node performs different set of actions.

The consumer/producer node discovers its responsible matchmaker node with the

provided information (refer Section-3.4). It can send the resource request/offer mes-

sages after discovering the responsible matchmaker.

A matchmaker node maintains matchmaking status information (active/inactive)

about its predecessor and successor matchmaker nodes. When a matchmaker node joins

the ad hoc grid then it exchanges predecessor/successor matchmaking status informa-

tion. The algorithm for joining the ad hoc grid is listed in Algorithm-3.

3.4 Matchmaker Discovery

As stated before, there can be N nodes (consumer/producer/matchmaker) in the ad hoc

grid and there can be M matchmakers, out of N nodes. (N being the maximum number

of nodes and M being the maximum number of matchmakers in ad hoc grid). The first

node of each zone is considered the matchmaker for the previous zone. In this way each

consumer/producer node is under the responsibility of a matchmaker.

Algorithm 3 Node Join Algorithm

1:Node join the ad hoc grid into zone i

2:IF (Joiningnodeis Consumer/Producer) THEN

3: CALL Find −Responsible−Matchmaker

4:ELSE IF (JoiningnodeisMatchmaker) THEN

5: Query predecessor node’s matchmaking status

6: Query successor node’s matchmaking status

7: END IF

8:END IF

Algorithm 4 Discovering Responsible Matchmaker

1:Consumer/producer node join the ad hoc grid into zone i

2:IF (Mi is active) THEN

3: set Mi as responsible matchmaker

4:ELSE

5: set I = i + 1

6: set counter = 1

7: WHILE (counter < M)

8: Query MatchmakerI

9: IF (MatchMakerI is active) THEN

10: set MatchMakerI as responsible matchmaker

11: BREAK

12: END IF

13: I = I +1

14: counter = counter + 1

15: END WHILE

16:END IF

The “Matchmaker Discovery” algorithm is executed by the joining consumer/producer

node for discovering its responsible matchmaker node. If the matchmaker (say Mi) for

zone i is active then the joining consumer/producer node sets this matchmaker (Mi) as

its responsible matchmaker (refer Figure-4a). The consumer/producer node will send

all its resource requests/offers messages to this matchmaker.

If the matchmaker for a zone does not exist (say matchmaker Mi for zone i does not

exist), then the consumer/producer node checks for the successor matchmaker (Mi+1) of

Mi. The consumer/producer node continues searching for an active matchmaker node,

until it finds one (refer Figure-4b & Figure-4c). It is important to mention that the

algorithm for finding a responsible matchmaker by a newly joining node does not cover

matchmaker node failure. The matchmaker failure handling will be in our future work.

The algorithm for finding the responsible matchmaker by a newly joining node is listed

in Algorithm-4.

4 Experimental Setup & Results

The purpose of the experiments is to validate the proposed algorithm and to assess how

it allows self organization. To this purpose, the proposed extension is implemented on

MM4 163

15

17

3133

47

49

MM3

1:A
re you active?

2:yes

MM4 163

15

17

3133

47

49

MM2

MM3

1: A
re you active?

2: yes

MM1

(a)

63

17

3133

47

49

1:A
re you active?

2:N
o

63

17

3133

47

49

MM2

1: A
re you active?

2: N
o

15

MM3 MM1

1MM4

(b)

3
:A

re
 y

o
u

 a
c
tiv

e
?

4
:Y

e
s

3
: A

re
 y

o
u

 a
c

tiv
e
?

4
:
Y

e
s

MM463 1

MM1

15

17

MM2 33 31

MM3

4949

4747

(c)

Fig. 4: Discovering a Responsible Matchmaker

Pastry [11] and is tested on PlanetLab [4]. Pastry[11] is a completely decentralized,

scalable and self-organizing structured overlay network with respect to node join/leave

or departure and overlay network maintenance. Although we used Pastry in this work,

it can be replaced with any other structured P2P overlay network.

The message routing process in Pastry is briefly described as follows. When a node

receives a message from another node, it first checks whether the destination nodeID

falls within its leaf set or not. If the destination nodeID exists in its leaf set, then the

message is directly forwarded to the destination node, otherwise the routing table of

the node that received the current message is used and the message is forwarded to the

node that shares a common prefix with the destination node ID by at least one digit.

The routing performance of Pastry is scalable and the maximum expected number of

routing steps is log2b N [11], where b is a Pastry configuration parameter with b = 4 as

the default value and N is the total number of nodes in the Pastry ring. We refer to [11]

for Pastry details.

PlanetLab is an open, geographically distributed computing environment/test-bed.

PlanetLab makes it possible to demonstrate the scalability and robustness of a proposed

mechanisms given real network traffic, generated from real users while considering the

inherent unpredictability of the Internet. It [4] currently includes more than 893 ma-

chines, spanning 461 sites and 40 countries. Over 600 research projects, called service,

are currently running on the PlanetLab. Each project runs in its own network of vir-

tual machines, called slice. A slice isolates projects from each other. Moreover there

is no centralized control over resources in PlanetLab. Data represented in the paper is

extracted after 1/4th of the experiment time has elapsed.

The matchmaker’s throughput is determined in terms of its matchmaking efficiency,

Transaction Cost (TCost) and the response time. The matchmaking efficiency is calcu-

lated in terms of request/offer utilization. The request utilization is calculated as

(∑MatchedRequest/∑Request)∗ 100

and the offer utilization is calculated as

(∑MatchedO f f er/∑O f f er)∗ 100

The Transaction Cost (TCost) calculation and TCost upper and lower threshold determi-

nation is discussed in Section-2.2. The matchmaker response time is the time interval

between receiving a request/offer message by the matchmaker and the time instance

when matchmaker has processed a request/offer message.

The experiments are executed with varying numbers of the participating nodes.

The number of the nodes is varied from 15-650 and the number of matchmakers is

varied from 1-5. The workload is managed in such a way that the maximum num-

ber of matchmakers are needed and then gradually decreased to provoke the demotion

of matchmakers to normal nodes again. The Job execution time, job deadline and re-

quired/offered resource amount are randomly generated from a predefined range. Quan-

tity of requested/offered computational resource is varied for each request/offer mes-

sage. The TTL of a request/offer message is fixed to 10000 milliseconds, reflecting the

delays observed in PlanetLab.

4.1 Experimental results

In this section, we first present the experimental results with one matchmaker. Later, we

present experimental results with multiple matchmakers to show the effect of dynamic

promotion and demotion of matchmaker(s). The effect of promotion (segmentation of

ad hoc grid) and demotion (desegmentation of ad hoc grid) of matchmaker(s), in ad hoc

grid, on Transaction Cost (TCost), matchmaker response time and consumer/producer

utilization are compared with the ad hoc grid having only one matchmaker.

0

5

10

15

20

25

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

M
e
s
s
a
g
e

s
 (

 T
h
o
u

s
a
n
d

s
)

%
 U

ti
li
z
a
ti
o
n

Experimet Time

Offer
Request
Messages

(a) Request/Offer Utilization of One Matchmaker

with increasing workload

0

5

10

15

20

25

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

M
e
s
s
a

g
e

s
 (

T
h
o

u
s
a
n

d
s
)

T
C

o
s
t/

 R
T

im
e

Experiment Time

Tcost
RTime*40 (milliseconds)
Messages

(b) TCost & Response Time of One Matchmaker

with increasing workload

Fig. 5: Ad Hoc Grid with One Matchmaker

Figure-5a depicts the effect of request/offer utilization with increasing workload

of one matchmaker. Request, represents the consumer utilization and offer represents

the producer utilization in Figure-5a. Whereas, Figure-5b depicts the effect of the con-

sumer/producer TCost and response time variation with increasing workload of one

matchmaker.

Figure-5a & 5b indicate that the TCost and the response time increase with increas-

ing workload and consumer/producer utilization decreases with the increasing work-

0

5

10

15

20

25

0

9

18

27

36

45

0 50 100 150 200 250 300 350

M
es

sa
ge

 (T
ho

us
an

ds
)

TC
os

t /
 R

Ti
m

e

Experiment Time

TCost

RTime*100

Message

2 MMs

2 MMs

1 MM

3 MMs

3 MMs4 MMs 4 MMs5 MMs

1 MM

Fig. 6: TCost & Response Time with Multiple Adaptive Matchmakers

0

5

10

15

20

25

0

20

40

60

80

100

0 50 100 150 200 250 300 350

M
es

sa
ge

 (T
ho

us
an

ds
)

%
 E

ffi
ci

en
cy

Experiment Time

Message

Request

Offer

1 MM

2 MMs
3 MMs5 MMs

1 MM

2 MMs

3 MMs

4 MMs

4 MMs

Fig. 7: Matchmaking Efficiency with Multiple Adaptive Matchmakers

load of one matchmaker. The increasing trend of TCost and response time, and de-

creasing trend of the consumer/producer utilization represent that the matchmaker is

overloaded and is unable to maintain its matchmaking capacity. It also implies that the

consumer/producer have to pay a higher TCost for availing the matchmaking service.

The matchmaker needs additional matchmakers, at the point, when its matchmaking

efficiency starts to decrease. This is the point, where our mechanism becomes useful.

Figure-6 depicts the TCost and Response Time variation in presence of multiple

adaptive matchmakers. The TCost value keeps on increasing with increasing match-

maker workload. A new matchmaker is introduced when the first matchmaker reached

its TCost threshold value. When a new matchmaker is introduced, the TCost value de-

creases. The opposite is observed when a matchmaker is removed. Evidently, the TCost

also increases/decreases temporarily reflecting changes in the workload of the overall

grid. Overall and compared with the TCost evolution with a single matchmaker and

increasing workload (Refer Figure-5b), the TCost remains relatively stable and does

not increase (Refer Figure-6). Instead of going up with an increasing workload, the in-

crease of the number of matchmakers has a stabilizing effect on the response time. This

is exactly what was expected.

Figure-7 depicts the matchmaking efficiency with multiple adaptive matchmakers.

The matchmaking efficiency remains 80% with increasing workload of the matchmaker.

Whereas, in case of one matchmaker, matchmaking efficiency showed a continuous

decreasing trend with increasing workload (Refer Figure-5a).

In conclusion, we can observe from the above experiments that the capability of the

ad hoc grid to instantiate multiple matchmakers has a stabilizing effect on the TCost

and response time without affecting negatively the offers/request utilization. This way,

we guarantee that the transaction cost and response time become invariant to the scale

on which the grid is operating. These conclusions also confirm that the proposed al-

gorithms for joining ad hoc grid, finding responsible matchmaker, promoting a match-

maker, demoting a matchmaker and message routing on P2P overlay network work as

expected.

5 Conclusions

A dynamic, self-organizing mechanism, for a dynamic ad hoc grid infrastructure was

proposed in this paper. The proposed mechanism focuses on the extension of a struc-

tured overlay network to manage the (dis)appearance of matchmakers in the grid and to

route the messages to the appropriate matchmaker in the ad hoc grid. The mechanism

dynamically segmented the ad hoc grid into multiple segments and merged the ad hoc

grid segments according to the workload in the ad hoc grid. The matchmaking efficiency

and capacity of the ad hoc grid was sustained, in spite of the increasing workload, by

applying the proposed mechanism. All experiments were executed on PlanetLab pro-

viding a realistic platform for testing the proposed mechanisms. Our future research

will focus on the failure handling of the matchmaker node. We will also look into a

different QoS issues for the proposed mechanism.

References

1. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: 5th

IEEE/ACM International Workshop on Grid Computing. (2004)

2. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: Architecture and performance of an

enterprise desktop grid system. JPDC 63(5) (May 2003) 597–610

3. Abdullah, T., Sokolov, V., Pourebrahimi, B., Bertels, K.: Self-organizing dynamic ad hoc

grids. In: 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems

Workshops. (October 2008)

4. PlanetLab Online, https://www.planet-lab.org/

5. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute

range queries. In: The ACM SIGCOMM Conference. (2004)

6. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A multi-attribute addressable network for

grid information services. Journal of Grid Computing 2(1) (2004) 3–14

7. Mastroianni, C., Talia, D., Verta, O.: A super-peer model for building resource discovery

services in grids: Design and simulation analysis. In: European Grid Conference. (2005)

8. Gupta, R., Sekhri, V., Somani, A.K.: Compup2p: An architecture for internet computing

using peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems 17(11)

(2006) 1306–1320

9. Padmanabhan, A., Wang, S., Ghosh, S., Briggs, R.: A self-organized grouping (SOG) method

for efficient grid resource discovery. In: 6th IEEE/ACM International Workshop on Grid

Computing. (2005) 312–317

10. Butt, A.R., Zhang, R., Hu, Y.C.: A self-organizing flock of condors. JPDC 66(1) (2006)

145–161

11. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. In: 18th IFIP/ACM International Conference on Distributed

Systems Platforms. (2001)

