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Abstract

In recent years, multicore systems have become a dom-

inant architecture, introducing new challenges that need to

be addressed in order to take full advantage of their effi-

ciency. Reconfigurable computing has also received a great

deal of attention due to its ability to increase the perfor-

mance of an application through hardware execution, while

retaining the flexibility of a software solution. Grouping

tasks within an application contributes to coarse-grained

partitioning, which can eventually improve the performance

of the system. In this paper, we introduce a clustering

framework along with a flexible multi-purpose clustering

algorithm that initiates task clustering at the functional

level based on dynamic profiling information. The cluster-

ing framework can be used as the basic step to modify the

granularity of tasks in the hardware/software partitioning

and scheduling phases. As a result, an elaborate mapping

onto the system resources and possibly a higher degree of

task parallelism becomes feasible. The framework particu-

larly targets two objectives, 1) to form workload-balanced

and 2) loosely-coupled clusters. We evaluated its efficiency

using MJPEG as a case study. The experimental results

comply with the desired clustering metrics defined through

the objectives.

1. Introduction

Over the past years processor technology has fun-

damentally changed. Multicore processors or Chip

Multi-Processors (CMP) are gaining popularity in high-

performance and mainstream computing. However, it in-

troduces new challenges in fully exploiting increased num-

bers of cores for maximal performance. Meanwhile, recon-

figurable computing has also received a great deal of at-

tention due to its capacity to accelerate applications. The

main advantage of reconfigurable computing is its ability

to increase performance through hardware execution, while

retaining the flexibility of software solutions. Typically,

reconfigurable systems consist of traditional microproces-

sors and reconfigurable hardware. Hardware implementa-

tion of a task generally exhibits better performance than

software execution. Moving selected software components

to reconfigurable hardware can improve the performance

of the whole system. Thus, reconfigurable systems benefit

by speeding up the whole application through implemen-

tation of selected application kernels onto reconfigurable

hardware. These technologies can be further combined to

form a reconfigurable multicore system [4].

One of the major requirements for such systems is to

identify which part of an application should be mapped onto

software and which part onto reconfigurable devices. A tra-

ditional way of selecting critical application region(s) for

mapping onto reconfigurable hardware is to utilize program

analyses such as profiling and tracing in order to identify

computation intensive kernel functions. Ending up with

small kernels is a key problem adversely affecting the per-

formance gain of the whole system, since we have to pay

for extra overheads (communication, synchronization, and

configuration) introduced in handling these kernels regard-

less of being in software and/or hardware mode. To tackle

this problem, coarse-grained partitioning of an application

is generally considered to improve the performance of an

implementation by decreasing the costs involved, which

could also result in increased parallelism [6]. Grouping re-

lated kernel functions is the first step to intensify the coarse-

grained partitioning. Furthermore, after clustering the prob-

lem size is reduced, and this benefits the runtime of the syn-

thesis process.

Most researches acknowledge the hardware/software

partitioning problem as a crucial step in proper task allo-

cation under given system constraints. Various algorithms

have been proposed to solve this problem ranging from

simple algorithms to sophisticated ones [2, 7, 9, 10]. Task



scheduling and mapping onto underlying architecture is

commonly addressed in subsequent stages [3, 5]. Here, we

deviate from this routine as our general clustering algorithm

is introduced early in Design Space Exploration (DSE) prior

to actual HW/SW partitioning, scheduling, and mapping

phases. We try to establish a comprehensive and flexible

framework for creating efficient task groups with varying

granularity, meanwhile taking into account predefined sys-

tem/architecture resource constraints and preferences. Tra-

ditionally, these constraints and preferences are checked at

late design stages, which lengthens the whole process and

raises the costs involved. Somehow related to our work, [8]

presents a clustering method as a preprocessing phase to a

hardware/software partitioning and scheduling system. The

approach is primarily focused on scheduling optimization.

In contrast, our framework is more comprehensive and can

be utilized for various design optimizations.

The main motivation of introducing the clustering frame-

work as a preprocessing phase is to suppress undesirable

task partitioning (assembling and/or splitting) cases which

prove to be inappropriate, unnecessary, and non-optimal

in subsequent design space exploration stages for HW/SW

partitioning, scheduling and mapping. The flexible algo-

rithm presented is capable of considering various criteria to

come up with optimal or nearly optimal solutions suited for

different cases. It also contributes to the portability of the

partitioning scheme for different heterogeneous multicore

reconfigurable systems, since system- and/or architecture-

specific details can be peeled off from the core of parti-

tioning process. In addition, the outcome of the cluster-

ing phase along with valuable dynamic profiling informa-

tion extracted from an application can provide hints to ap-

plication developers for individual design optimizations and

refinements such as possible coarse-grained parallelism de-

tection and extraction.

The rest of this paper is organized as follows. In Sec-

tion 2, we describe our clustering framework along with the

introduction of data usage analysis process. In Section 3,

the clustering algorithm is proposed and discussed. A case

study is presented in Section 4. Finally, Section 5 is de-

voted to the concluding remarks and some comments for

future work.

2. Clustering framework

Currently, the proposed clustering framework focuses on

two primary goals, namely, workload balancing and mini-

mizing inter-cluster data communication. These goals ad-

dress the most critical aspects of application development

and execution in multicore reconfigurable systems. Need-

less to say, load balancing between clusters is the main

property for performance gain in coarse-grained parallelism

and the total communication time of a task’s execution,

either in hardware or software mode, is directly affected

by the amount of inter-cluster data exchange. The flexi-

ble multipurpose clustering algorithm presented here is also

capable of considering other objectives such as satisfying

system/architecture constraints including FPGA resources

(area/gate constraints, bus bandwidth, etc.).

In order to form abstractions of control and data depen-

dencies, two graph representations are employed. Control

dependencies are examined via a conventional call graph

and a new graph named Quantitative Data Usage (QDU)

graph is introduced to illustrate the amount of data usage

dependencies between functions.

Extraction of the exact and precise data dependencies is

only possible through static source code analysis involving

exhaustive conditional statements analysis, input data diver-

sity analysis and alias tracking, which have proven to be elu-

sive when comprehensive program constructs are present in

source code. Nevertheless, systems adopting this approach

should impose some constraints on programming style and

constructs to be able to produce desirable outcomes. An

alternative approach would be to conduct simulated run(s)

of the target application to track data accesses in memory.

Although this technique may be prone to produce biased,

inaccurate, and sometimes erroneous information about the

actual application behavior, in most cases it can provide

valuable information, which closely approximates the real

pattern of data communication. Moreover, it’s absolutely

feasible with no restrictions on the structure of currently

available programs.

In the proposed framework, data usage tracking is han-

dled at function level, which implies a coarse granularity,

yet delivers a sufficiently detailed overview of quantitative

data dependencies within a program. Since the clustering

framework generally plans to form task groups as primary

building blocks for application development and execution

on chip multiprocessors, we only need to go through the

tracking process at coarse level in order to compensate for

the resulted overheads of target application execution on

the underlying architecture. Therefore, we do not consider

instructions or small basic blocks within functions in this

work. Tackling the problem at this level also benefits from

the fact that it’s more likely the clustering algorithm ends up

with loosely coupled partitions regarding data communica-

tions via memory. Figure 1 depicts the clustering frame-

work data flow along with other coupled units. It should be

stressed that here we only focus on the representation of the

new QDU graph, its implementation and integration within

the simulation tool set and the clustering algorithm formu-

lation.

2.1. Annotated call graph

A basic call graph reveals the relations of caller and

callee functions in a program. There are several profiling

tools that can report these relations based on source code
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Figure 1: Clustering framework

or run-time analyses. The procedure involves recording all

the function calls and returns. Initially, it’s considered as

a control dependency outline, since it shows the sequence

of program execution in a coarse scale. However, regard-

ing the fact that a caller function typically feeds input data

to the callee, which in someway produces data as a return

value, initiates also the concept of data dependency scheme

among the co-operating functions.

What we need for our detailed analysis is beyond just the

relations between functions. An annotated call graph not

only visualizes these relations, but also contains the number

of times a particular function is called, a particular func-

tion’s self-contribution to the whole execution time, and a

particular function’s entire contribution as an aggregate of

its descendants. The execution time contribution is used for

workload balancing in the proposed clustering algorithm.

2.2. Quantitative Data Usage (QDU) graph

Main memory data usage is tracked during simulated

run(s) to identify exactly which function is reading what

amount of data produced by which function. To record

the required information during a program run, we need to

monitor each unique memory address that is accessed in-

side a function. The most recent write access to a partic-

ular location is tagged by the respective caller and is then

transformed into a data communication record when an-

other function reads from that particular address. The entire

records are subsequently examined and combined to form

the quantitative data usage graph. In order to spot, extract

and track the memory access data within the simulated run

outputs, we designed and implemented a memory access

recording module. The tracking process utilizes trie data

structure for proper and fast storage and retrieval.

Considering hexadecimal digits in memory addresses, a

trie structure with base 16 is used. Each hexadecimal digit

in a 32-bit memory address corresponds to one level in the

trie data structure, leaving 8 levels deep in the hierarchy for

complete address tracing. In order to save space as much as

possible in module implementation, we have designed the

structure to grow dynamically only on demand.

The recording process is accomplished in two distinct

phases. In the first phase, we trace an 8-level trie for a

particular memory address provided by the simulation tool

set. For each access three different arguments are specified,

namely, memory address, function ID, and read/write flag.

In case of a write access, the corresponding memory cell

representative in the trie is labeled with the caller function

ID. When a read flag is detected, the function ID responsi-

ble for the most recent write in the memory cell is retrieved

and passed along with the consumer function ID to the sec-

ond phase where a data communication record is created.

A 16-level trie structure is employed for this phase in order

to accommodate both the producer and consumer function

IDs. Figure 2 depicts the dynamic trie data structure used

in the recording module. There may be cases where for a

consumer function there is no prior producer, i.e., reading

from a location where the data has not been tagged by write

flag in that address. We call these compile-time data and it

occurs for example when a function tries to read a constant.

The module was implemented and integrated into the open

source SimpleScalar tool set [1].
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Figure 2: Dynamic trie data structure

3. Clustering algorithm

The purpose of the clustering algorithm is to look for

(strongly) interconnected functions in order to bind them

in a cluster. As discussed subsequently, the term inter-

connected refers to more than just functions which exten-

sively exchange data, though this characteristic is consid-

ered to have a critical role in clustering. As the main unit



in the framework, the clustering algorithm role in subse-

quent processing is crucial. The formed clusters consti-

tute the complex coarse kernel blocks for HW/SW parti-

tioning/scheduling/mapping tasks (threads) on the underly-

ing architecture. Performance estimation feedbacks by the

respective units will be used for additional cluster refine-

ments. The extracted information in the framework and

the clusters are also used as hints to the parallelization unit,

where application revision is done in order to exploit pos-

sible coarse-grain parallelism. Grouping the functions into

clusters divides the data communication streams between

functions in two classes, Intra-cluster (connecting functions

within a cluster) and Inter-cluster (connecting functions in

different clusters). In order to perform the clustering, some

metrics and properties are taken into account. We have clas-

sified them into five different categories as follows.

Balanced clusters - forming clusters that are nearly bal-

anced with respect to the workload (total executing time).

Loosely-coupled clusters - as few inter-cluster data

streams as possible will increase the overall performance

and facilitates concurrent tasks execution.

Tightly-coupled functions within clusters - functions hav-

ing close interactions are likely to be related and hence

should be considered as a unit. This coupling can be ad-

dressed to bidirectional data streams, huge amount of data

exchange, workhorse strategy, etc.

Balanced data streams - the communication loads for

inter-cluster data streams are expected to be nearly bal-

anced. This also implicitly involves the number of required

streams between clusters and the channel bandwidth speci-

fications.

Resource constraints satisfaction - some sys-

tem/architecture constraints may apply in clustering,

e.g., On-chip mapping area constraints.

Based on these properties, we also present some heuris-

tic rules which will be used as anticipation criteria in the

selection process. These rules are supposed to improve the

quality of formed clusters.

- If a function only has data communication with an-

other one or is only called by another function (accord-

ing to the annotated call graph), it is desirable to put

them inside the same cluster.

- If current cluster is relatively small in terms of overall

execution time, it is desirable to favor the node with

highest contribution in the selection criterion and vice

versa. Definition of a small/large cluster is totally sub-

jective, however, it is simple to consider number of

clusters and estimate a contribution percentage, e.g.,

for 5 clusters, we expect a contribution of about 20%

by each cluster.

- It is beneficial to limit the number of bidirectional data

streams between clusters as much as possible. These

data streams impose severe restrictions on subsequent

parallelization process.

The heuristic rules can be revised and augmented for

adaptation to individual system design, architectural or user

preferences and requirements. The outline of the cluster-

ing algorithm is presented in figure 3. To form clusters

around compute-intensive kernels, initially we spot those

kernels which pass a minimum contribution threshold. This

value is defined per case. For example, if we plan to end

up with approximately four clusters, minimum amount of

about 10% looks appropriate. This boundary value could

be increased if too many kernels are selected or decreased

if insufficient kernels meet the condition. We also conduct

another strategy to discard excessive picked out kernels to

ensure not ending up with surplus small clusters at last. In

the preprocessing step, pair of kernels that are topologically

close to each other (at most within distance of d in the QDU

graph) are compared and the kernel with lower contribution

is excluded, unless the to-be-discarded kernel has a contri-

bution percentage higher than a threshold value, making it

illogical to discard. As an example, when we are heading

for five clusters, two kernels with 15% and 18% contribu-

tions are both expected to form their own clusters no matter

how topologically close they are. Following this step, initial

clusters are created with each selected kernel as an initia-

tor. These clusters will grow gradually during subsequent

stages.

In the main body of the algorithm, at each iteration, clus-

ters are augmented with the best interconnected neighbor

node. For each cluster, the candidates are evaluated by a

ranking function. The function inspects and assigns a value

to each node indicating the suitability of the node for merg-

ing with the current cluster. The selection process is in-

tensely affected by the definition of the ranking function,

providing high flexibility for the clustering algorithm. In

order to adapt to different policies for cluster creation, indi-

vidual elements and parameters consisting the function def-

inition could be customized. As an initial attempt to exam-

ine our algorithm, we defined the function in the following

simple format, considering only two major elements in se-

lection criterion.

Roverall(nodei) = C1Rexe(nodei) + C2Rcom(nodei)

where Roverall returns the final rank for nodei. Rexe

refers to the execution-time rank of nodei among the can-

didates to merge with the questioned cluster. A proper rank

is expected to be determined according to heuristic rules.

For example, if we are currently eager to merge a compute-

intensive kernel with our small cluster, the node with the

most contribution to the execution time of the application
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Figure 3: Clustering algorithm

gets the highest rank among candidates. Higher rank im-

plies better chance for selection. Rcom is estimated to reveal

data communication intensity of nodei with respect to the

nodes currently residing in the questioned cluster. Tighter

data usage interactions (quantitatively) infers greater like-

lihood for inclusion in the current cluster. C1 and C2 are

weighing coefficients to adjust individual ranks in the final

multi-objective function output. In our experiment, we have

assumed balanced stressing factors for these two parame-

ters, setting both to 0.5. Should we have some constraints

that by definition disqualify candidate(s), they must be ap-

plied prior to ranking function evaluation. Some heuristic

rules could also act as rank revisors in favor or against cer-

tain candidate(s). As an example, regarding the first rule

mentioned here previously, a candidate which has a dedi-

cated caller in the cluster is expected to get the highest rank

possible.

Conflict resolution should also be addressed for clusters

competing to draw inward an identical candidate. As clus-

ters set off to grow, this could happen when a particular

candidate appears on top of the lists of two or more clus-

ters due to high scores assigned by the ranking function. In

this case, we favor the cluster in which the examined candi-

date has achieved the highest score. For all other clusters,

new top candidates (if any) appearing just next in lines are

selected. The same process is repeated until all conflicts

(some new conflicts may appear during substitution) are re-

solved. When we merge the candidates with relevant clus-

ters, some cluster properties and parameters should be up-

dated in order to present the current status within the grow-

ing cluster. These parameters are particularly used in check-

ing the conditions to finalize clusters as well as in ranking

function and constraints checking. For example, if a cluster

is growing big with respect to the total execution time con-

tribution and it is exceeding the predefined threshold, we

may opt to mark the cluster as finished. Generally, the point

where we decide not to continue with a particular cluster

is subjective and should be declared in constraints. The last

phase in the clustering algorithm is concerned with handling

the nodes which had no chance to end up inside clusters in

the main loop. This rarely happens provided that we define

proper and reasonable constraints complying with the un-

derlying system and corresponding application. However,

we propose two solutions to handle this situation. In the

first, we can set about to put all the remaining nodes in an

extra cluster or more if desired. The same procedure as de-

scribed in step IV of the algorithm could also be employed.

Another solution would be to relax constraint(s) which pre-

vent the nodes to be merged with the currently chosen num-

ber of clusters. It should also be noted that if we are already

applying some hardware mapping constraints or some un-

compromising conditions for the clusters, it may not be fea-

sible to go for the second solution. In that case, we certainly

have difficulties running the application totally in hardware.

4. Case study

For an initial evaluation of the proposed clustering

framework and algorithm, we have used an implementa-



Table 1: Clusters in the MJPEG application

Cluster Main Kernel Number of Functions Kernel’s contribution Cluster’s contribution

1 DoubleReferenceDct1D 1 34.34% 34.34%

2 UseHuffman 19 21.08% 24.69%

3 Quantize 6 5.42% 18.07%

4 ReferenceDct 7 19.88% 22.89%

tion of the MJPEG algorithm as a case study. The appli-

cation contains 33 functions with an absolute computation-

intensive DCT kernel (DoubleReferenceDct1D), identified

by the profiling tool. To have a clear estimation of the mem-

ory access recording module performance, we measured

CPU utilization and memory usage delivered by executing

the application. The values were obtained on a 2.0GHz In-

tel Core2 Duo machine with 2.0GB of physical memory.

The instrumented simulator augmented with the memory

access recording module is about 8× slower than the unin-

strumented version, which itself is 128× slower than a na-

tive implementation. The integration of the module within

the simulator seems promising as it takes about 25 minutes

for the whole simulation to conclude, which could be the

case for similar computation-intensive applications. Fur-

thermore, it is apparent that the instrumented version ex-

hibits a large memory overhead compared to a normal sim-

ulation since we had to keep track of all memory accesses,

however, it is still acceptable. In this application, approxi-

mately 199828 KB is recorded as the memory overhead.

We opted to partition the application in four clusters.

With this respect, the cluster corresponding to the top

computation-intensive kernel DoubleReferenceDct1D was

immediately concluded with only one function, while other

clusters grew gradually. UseHuffman is the largest cluster

regarding the number of functions inside, since it contains

all the I/O-related routines in the application with nearly no

contributions to the whole execution time. Quantize and

ReferenceDct include 6 and 7 functions respectively with

contributions near the optimum values. The results are sum-

marized in Table 1.

5. Conclusion and future work

In this paper, we introduced a robust clustering frame-

work coupled with a flexible multipurpose clustering algo-

rithm that initiates task clustering at the functional level.

The clustering framework uses dynamic profiling informa-

tion as a base for partitioning and produces clusters of bal-

anced interconnected functions. The case study showed that

the clustering algorithm can produce proper clusters which

can be further utilized in application design optimizations,

HW/SW partitioning and mapping, and task scheduling on

the target architecture. To come up with optimal objectives,

a thorough inspection of various parameters is needed in or-

der to utilize them in the ranking function, which is the key

component in forming clusters. Furthermore, we plan to ex-

tract additional dynamic information from simulated run(s)

to reveal the pattern of data accesses within an application.

The data is crucial for task parallelism detection and hence

needed for the parallelization unit development.
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