
State-of-the-art Reconfigurable Multithreading

Architectures

Pavel G. Zaykov, Georgi K. Kuzmanov, Georgi N. Gaydadjiev

Computer Engineering Laboratory,

EEMCS, TU Delft, P.O. Box 5031, 2600 GA Delft, The Netherlands

{P. Zaykov, G.K.Kuzmanov, G.N.Gaydadjiev} a tudelft·nl

Technical Report: CE-TR-2009-02

Abstract

This report provides a survey on the existing proposals in the field of
reconfigurable multithreading architectures (ρMT). Until now, the recon-
figurable architectures have been classified according to implementation
or architectural criteria, but never based on their ρMT capabilities. More
specifically, we identify reconfigurable architectures that provide implicit,
explicit or no architectural support for ρMT. Further subdivision of these
three classes is also provided by the proposed taxonomy. For each of the
proposals, we discuss the conceptual model, the limitations and the typ-
ical application domains. We also summarize the main design problems
and identify some key research questions related to highly efficient ρMT
support. In addition, we discuss the application prospectives and propose
possible research directions for future investigations.

1 Introduction

Contemporary embedded systems require high processing power and often em-
ploy varieties of different functionalities. Modern appliances, such as digital
cameras, mobile phones, personal media players, handheld gaming consoles and
many electronic devices used in medical and automotive industries employ mul-
tithreading supported either by the Operating System (OS) or by dedicated
hardware mechanisms. In these devices, threads are typically employed for pro-
cessing(exchanging) data among multiple sources. Such examples are: drivers
that handles user interaction from touchscreen displays/ buttons, management
of wireless network protocols, multimedia (audio and video) computations, etc.
During the quest of maximum performance and flexibility, the hybrid architec-
tures combining one or more embedded General Purpose Processors (GPPs)
with reconfigurable logic have emerged. There is a clear trend which shows
that in the near future there will be more embedded systems integrating recon-
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figurable technology. The first indications of such approaches were presented
in [51], [21], [39]. It is envisioned that multithreading support will become an
important property of such systems.
One of the fundamental problems in multithreaded architectures is efficient sys-
tem resource management. This has been successfully solved in contemporary
GPPs using various implicit and explicit methods. In literature [50], the explicit
techniques have been further partitioned into three main categories: Block Mul-
tithreading (BMT) - employing Operating System (OS)/ compiler approaches
and Interleaved/ Simultaneous Multithreading (IMT/ SMT) using hardware
techniques. However, none of these solutions can be applied straightforwardly
for managing reconfigurable hardware resources. The main reason is that the
reconfigurable hardware is changing its behavior per application, unlike the
GPPs, which have fixed hardware organization regardless the programs running
on them. Yet, current state-of-the-art architectures do not provide efficient
holistic solutions for accelerating multithreaded applications by reconfigurable
hardware.
In this technical report we approach the reconfigurable multithreading (ρMT)
architectural problems both from the hardware and the software prospective.
The specific contributions of the report are as follows:

• We analyze a number of existing reconfigurable proposals with respect to
their architectural support of ρMT. Based on this analysis, we propose a
taxonomy with three main classes, namely: reconfigurable architectures
with explicit, implicit and no ρMT support. Further subdivision of these
three classes is also provided;

• We summarize several design problems and state open research questions
addressing performance efficient management, mapping, sharing, schedul-
ing and execution of threads on reconfigurable hardware resources;

• We provide our vision for promising research directions and possible solu-
tions of the identified design problems;

The technical report is organized as follows: in Section 2, a taxonomy cover-
ing related projects is presented. More details about the design problems and
the status of the current state-of-art, completed with our vision on some pos-
sible application prospectives and potential research directions are described in
Section 3. Finally, the concluding remarks are presented in Section 4.

2 A Taxonomy Of Existing Proposals

A taxonomy on Custom Computing Machines (CCM) with respect to explicit
configuration instructions has been already proposed in [40]. However, that
study did not consider multithreading support as a distinguishing feature. In
this section, we introduce a taxonomy of existing reconfigurable architectures
with respect to the ρMT support they provide. We identify three main classes
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Figure 1: A Conceptual Behavioral Model of ρMT Related Projects

of such architectures, namely: with explicit, with implicit, and with no archi-
tectural ρMT support. Note, the meaning that we relate to the definitions of
explicit and implicit ρMT, is different from what is used in GPP systems. In
general purpose systems, the classification is based on multithreading support
from algorithmic point of view [50]. In our taxonomy we use as a distinguishing
feature the presence of architectural/ µ-architectural extensions for creation/
termination of multiple threads on reconfigurable logic. If we classify the ρMT
research projects based on the GPP explicit multithreading technique, our tax-
onomy would look like as follows:
– Reconfigurable Block Multithreading (ρBMT): e.g. [51], [58], [59];
– Reconfigurable Interleaved Multithreading (ρIMT): e.g. [27];
– Reconfigurable Simultaneous Multithreading (ρSMT): e.g. [48], [35];
In this technical report, we consider a different classification prospective. In
architectures with no ρMT support, application threads are mapped into re-
configurable hardware using software techniques – either at the OS or at the
compiler level. This software approach provides unlimited flexibility, but the
performance overhead too often penalizes the overall execution time especially
for real-time implementations. On the other hand, architectures with implicit
ρMT support, provide performance efficient solutions at the cost of almost no
flexibility due to the fixed underlying microarchitecture (µ-architecture) facili-
tating multithreading. To exploit the flexibility provided at both the software
level, as well as by the reconfigurable hardware at the µ-architectural level and
to achieve higher system performance, a third emerging class of architectures is
identified and termed as architectures with explicit ρMT support. Hereafter, we
enlighten the proposed taxonomy through examples of existing reconfigurable
architectures.
A conceptual behavioral model of an ρMT system is depictured in Figure 1. The
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picture represents the basic steps in the management and execution process of
multiple threads. Initially, the programmer creates applications (tasks – Section
A) or kernel service (Section B) composed of multiple threads. Later, during
run-time when an application is selected for execution, depending on the system
status information, the Top-level Scheduler (Section C) passes threads to local
schedulers (Section D and E). The local reconfigurable scheduler (Section E) ac-
commodates multiple units - queues, scheduling algorithm, placement technique
and loading process. The synchronization between different threads is managed
by e.g. semaphores (Section F). The different sections of the behavior model,
depicted in Figure 1, are implemented either at the software level, or at the µ-
architectural level, depending on the particular architecture. Hereafter, we shall
reveal how different popular reconfigurable proposals manage the scheme from
Figure 1 and based on their architectural support for ρMT, we shall classify
them.

2.1 Modern state-of-the-art reconfigurable architectures

The reconfigurable hardware allows the designer to extend the processor func-
tionality both statically and at run-time to speed up the application by execut-
ing its critical parts in hardware. In [14], a survey on architectural proposals
targeting GPP cores extended with reconfigurable logic is presented. However,
that paper has not considered ρMT as a classification criterion. In the years
after, a few more reconfigurable proposals have been introduced, capable to be
supported by an OS without any specific hardware modifications. We choose to
briefly introduce the following two of these later reconfigurable projects, uncov-
ered by [14], because we consider them as a natural evolution of contemporary
embedded systems and potentially good candidates for future explicit ρMT ex-
tensions:
MOLEN: We choose The Molen Polymorphic Processor [51] proposed by CE
Lab, TUDelft, The Netherlands, as an example of tightly coupled (processor/
co-processor) fine-grained reconfigurable architecture. It combines a GPP with
several reconfigurable Custom Computing Units (CCU-es). The processor has
an arbiter, which partially decodes and issues instructions to either of the GPP
or the reconfigurable coprocessor (RP). A general one-time extension of the in-
struction set is proposed to support an arbitrary functionality implemented in
the CCU. The very basic operations of the RP are “set” and “execute”. The
“set” instruction configures the CCU for a particular functionality and the “ex-
ecute” instruction performs the actual computation on the CCU. Altogether
up to eight instructions are proposed to extend the instruction set to achieve
the complete system functionality. The Molen concept has been successfully
employed in various projects in the domain of multimedia [23] and cryptogra-
phy [12]. In the Molen original papers, multithreading has not been discussed,
but a follow-up research towards multithreading has been reported in [48]. An
overview of this enhanced MT version of Molen is examined in the Subsection
2.3.
Montium TP: As an example of a Coarse Grained Reconfigurable Array
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(CGRA) processor core, we choose Montium TP [21], designed by RECORE
Systems. It combines five identical Custom Reconfigurable Processing Units
(CRPU) in a single chip, connected through a simple 2D-mesh communication
infrastructure. This architecture has the following characteristics: once config-
ured, it does not issue any instructions (just processes the data). It does not
have a fixed instruction set architecture (ISA) - the application is encoded at
microcode level and has fast reconfiguration response time, because of its coarse-
grained hardware structure. In its current implementation, the Montium TP is
capable to support execution of multiple threads (applications) but only at the
OS level. The CRPU does not have support for context-switching - multiple
threads are not capable to share the same hardware resources. The processor
was originally targeting the domain of streaming applications: i.e., broadcast
and multimedia.
Although, in our investigations, we are particularly interested in the embedded
systems domain but for the completeness of our survey, we also briefly consider a
few large-scale (high-performance) proposals. Many contemporary mainframe/
supercomputing platforms, such as Altix Family by SGI [3], ProLiant server
by HP [2], Convey hybrid-core HC-1 [4], RAMP emulation platform [1], employ
reconfigurable hardware to speed-up computationally intensive kernels. Though
no particular attention on ρMT on these machines is paid in the literature, we
believe that multithreading applications can be mapped on them using different
(no trivial) software techniques [47].
Preliminary investigations indicate that an efficient ρMT processor would allow
better overall system performance [48] as the thread management overhead at
the software level could be dramatically reduced. In addition, [48] provides clear
indications that multithreading should be also addressed by the state-of-the-art
real-time reconfigurable systems at the hardware level.

2.2 Architectures with no ρMT support

As we have already classified architectures with no ρMT support provides si-
multaneous execution of multiple threads at the software level only – either by
the OS or by the compiler without any explicit support.

2.2.1 OS support for ρMT

In this section, we group all known OS targeting reconfigurable devices and
implementing in software - Section A, B, C, D, E and F from Figure 1. The
first proposal, which identifies some of the necessary services, that an Operating
System for reconfigurable devices should support, is presented in [58] and [16]
by a research group at the University of South Australia.
BORPH [42]: The research work presented in [42] and [43] by the University
of California - Berkeley, identifies that application migration from one reconfig-
urable computing platform to another, using conventional codesign methodolo-
gies, requires from the designer to learn a new language and APIs, to get famil-
iar with new design environments and re-implement existing designs. Therefore,
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BORPH is introduced as an OS designed specifically for reconfigurable comput-
ers, sharing the same UNIX interface among hardware and software threads,
which speeds up the design process. The major difference between BORPH and
conventional OS-es for Field Programmable Gate Array (FPGA) architectures
comes from the fact that the system reconfigurable logic are treated as a first-
class computational resources instead of coprocessors. The BORPH contains
three basic components: concept of hardware process and a set of universal
interfaces - input/ output registers (IOREG) and hardware file input/ output
(I/O) interface. The proposal has the following limitations - hardware threads
are executed on but do not share reconfigurable resources. Experimental results
are produced from simple applications such as: wireless signal processing, low
density parity check decoder and MPEG-2 decoding.
SHUM-uCOS [60]: Another design, tackling the problems caused by the essen-
tial differences between software and hardware-tasks is the SHUM-uCOS by the
Fudan University, China [60]. The authors propose an real-time OS (RTOS) for
reconfigurable systems employing uniform multi-task model. It traces and man-
ages the utilization of reconfigurable resources, improves the utilization and the
parallelism of the tasks with hardware task preconfiguration. Detailed descrip-
tions of the abstract layers and their functionality are presented in [60] and [61].
For evaluation of the system, the authors use benchmarks and multiple voice
over Internet protocol (VOIP) compression/ decompression algorithms.

2.2.2 Compiler techniques for multithreading on reconfigurable plat-

forms

The most common feature of the architectures grouped in this subcategory is
the responsibility of the compiler for task partitioning, scheduling and manage-
ment of the system resources. The major reason to employ multithreading in
these architectures is to hide reconfiguration latencies.
MT-ADRES [59]: In MT-ADRES by IMEC, Belgium, the DRESC Compiler
Framework [30] has been extended to support several threads.
The most significant limitation of this proposal is the inability to execute/ termi-
nate threads at run-time which is posed by the compiler static scheduling and
optimization algorithms, operating with Control Data Flow Graph (CDFG).
Control decisions, such as hiding the reconfiguration latencies and resource man-
agement are taken at compile time. Due to the implementation complexity and
the fact that the Very Long Instruction Word (VLIW) processor and the CGRA
have complete access to the register file, the DRESC compiler [30] limits the
execution to only one computing resource at a time, which reduce potential
performance gains. All experiments providing information about MT-ADRES
performance are achieved through multimedia simulations.
UltraSONIC [20]: Another proposal falling in this category is the UltraSONIC
project, represented by Sony Research Labs, UK [20]. It is a reconfigurable ar-
chitecture optimized for video processing. It has a list of Plug-In Processing
Elements (PIPEs), connected through several buses. The programmer receives
an architecture abstraction through an API interface. In [57] and [31], the au-
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thors introduce multitasking to the architecture. The goal is achieved through
two-phase clustering algorithm working on a Directed Acyclic Graph (DAG).
The phases are: partitioning (based on Tabu Search) and list scheduling (a static
technique). The algorithm places and schedules tasks, applying the following
system constraints: FPGA resources, shared resource conflicts, configuration
time, communication and processing overhead. The system also has a Task
Manager, responsible for task creation and termination procedures. Because of
its static nature, the architecture has the same limitations as the MT-ADRES
project [59]. The system is initially designed for the multimedia and the data
encryption application domains.

2.3 Architectures with implicit ρMT support

The proposals from this category share one common feature - the detailed mul-
tithreading support on reconfigurable threads is implicit, i.e. hidden from the
system programmer. The Instruction Set Architecture (ISA) does not have ded-
icated special instructions for thread creation and termination procedures. The
functionality is achieved with µ-architectural extensions while preserving the
architectural model. Bellow, we describe some of the existing proposals falling
into the category.
Reconfigurable Extensions for the CarCore Processor: In [48], the au-
thors combine a simultaneous multithreaded processor (SMT) CarCore [49](a
simulation model, architecturally compatible with Infenion TriCore 1 Processor)
with a Molen style reconfigurable coprocessor [52]. To minimize the complexity
of the implementation, the authors employ several constrains to the architec-
ture. They modeled a hardware scheduler, which supports execution on recon-
figurable logic of only one thread at a time, preserving the real-time capability
for it. Once a thread is started for hardware execution, it could not be inter-
rupted until it is finished (no context-switching). There is no additional ISA
extensions for reconfigurable thread management. The ISA extension comprises
only the Molen polymorphic ISA and no additional specific instructions for mul-
tithreaded support. Meanwhile, other non-real-time threads can continue their
execution employing the latencies of the real-time thread. The implementation
includes two scheduling policies – fixed-priority and round-robin, over four ex-
ecuting threads.
The REDEFINE project [38], [7] by the Indian Institute of Science, Banga-
lore, proposes a synthesis methodology to realize applications written in a high
level language (HHL) on the coarse-grained Runtime Reconfigurable Hardware
(RRH). Contrary to related projects in the field, they assume that the whole
application could be represented as a set of custom instructions executed on
RRH. The custom instructions are not based on occurrence statistics, but are
based on co-execution (e.g. both paths of branch instruction). The transforma-
tion of the application (in HHL) to hardware proceeds in three steps: 1) The
compiler transforms HHL specification to DFG; 2) The compiler partitions the
DFG into various application substructures called HyperOps (equal to a thread
in our classification); 3) The HyperOps are synthesized into hardware config-
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urations. At run-time, depending on the availability of computing elements
on the fabric and the data dependencies among different HyperOps, a subset
of clusters (composed of HyperOps) ready for execution are scheduled based
on pre-order depth first search. Each HyperOp contains information about its
data-dependent successors. Because of the lack of detailed description, we as-
sume that this control information is provided implicitly.
Hthreads [35]: The Hthreads(Hybrid Threads) model presented by University
of Kansas [35], [8] is multi-layer computational architecture which aims to bridge
the gap between the programmers and complex reconfigurable devices. Some
of the main system features are the migration of thread management, synchro-
nization primitives and run-time scheduling services (Figure 1, Section F) for
both hardware and software threads into hardware module accessed from the
GPP only through an universal bus. The authors represent hardware threads
with user defined component (designed by the programmer), state controller
and universal interface (Register Set). Synchronization procedures are per-
formed through semaphores. In the proposal, the CPU is only interrupted
when a change in the system state requires the CPU to switch to another ac-
tivity. Such changes include timers expiring, devices completing an assigned
activity and generating an interrupt. The basic system components are: 1)
software thread management (SWTM) which is only responsible for scheduling
of software threads. It is executed in parallel with the CPU threads, which
reduce the overhead and context switching jitter. The SWTM scheduler man-
ages all CPU interrupt requests, including external-device interrupt, expiring
timers, terminating, blocking and unblocking threads; 2) hardware thread in-
terface component (HWTI) which provides management and distributed control
(through command and status registers) of threads executed on reconfigurable
resources. Some of the major limitations in the implementation of the Hthreads
model are as follows: 1) threads executed on reconfigurable resources are not
scheduled, instead they are directly loaded when it is necessary and 2) threads
are not sharing the reconfigurable resources even when the thread is marked
as blocked/ idle. Because of the fact that the system does not have modifica-
tions at architectural and µ-architectural levels, the proposal is classified as an
implicit ρMT. The experimental results are provided in the image processing
application domain.
Reconfigurable Multithreaded Architecture Model [56], [55]: The pro-
posal is presented by a research group in the Hamburg University of Tech-
nology, Germany. Their primary idea is to map computational threads via
pipelined configuration technique into available physical reconfigurable hard-
ware resources. The fixed resource limitations are overcome by virtualizing
the computational, communication and memory resources in the reconfigurable
hardware. The architecture is based on a synchronous multifunctional pipeline
flow model using coarse-grained reconfigurable processing cells and reconfig-
urable data paths. Descriptors are used for run-time and partial reconfigu-
ration, which enables the processor cells to be configured by Time Division
Multiple Access (TDMA). By itself, the descriptors represent small configu-
ration templates in special opcodes, extending a conventional ISA. Therefore,
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the ISA grows proportionally with the design complexity and the number of
the configuration templates. Compared to existing architectural proposals, the
difference comes from the fact that, the authors do not employ the GPP to
control the reconfigurable resources. Instead, a hardware approach is taken -
a Microtask controller is employed. Current implementation does not support
dynamic (runtime) scheduling of incoming workloads. The ideas are not ap-
plied in heterogeneous systems yet, represented by a combination of GPP and
reconfigurable logic. The designer is responsible for partitioning and mapping
the CDFG in microtasks (subtasks), by allocating the flow graph nodes to the
system processing resources. The simulation results of streaming multimedia
applications are studied.
The research group at the university of Karlsruhe [10] introduces an architec-
ture capable to manage execution of multiple run-time threads (called Special
Instructions - SI) through a ’Special Instruction Scheduler’(SI scheduler). Each
Molecule is composed of one or several Atoms representing elementary data
paths. Multiple Molecules (varying in resource usage & performance) compose
each Special Instruction. As a result, the SI Scheduler implicitly selects (without
additional control instructions) for execution a mixture of dynamically loaded
data paths with conjunction with base processor instructions. The authors ex-
amines multiple run-time algorithms based on Molecule loading sequences. Be-
cause of the reduced granularity and increased possibility of resource reusage,
the system achieves high system performance, tested with H.264 and CIF-video
applications.

2.4 Architectures with explicit ρMT support

The basic idea of this ρMT class is to combine the flexibility of the software
and the reconfigurable hardware with the potential performance efficiency of the
latter and to support ρMT, both at the software level and at the µ-architectural
level. There are several partial solutions in the literature which do not provide
such a compete mixed model of ρMT - the software and the hardware corpo-
rate together to provide simultaneous execution of multiple threads. In such
a model, the system services (e.g. scheduling, resource management) should
be optimally separated between software and µ-architectural levels. Combined
with efficient memory management and thread/function parameters exchange
through dedicated registers, an architecture with explicit ρMT support would
potentially reduce the intra- and inter- thread communication costs. Similar
approaches are taken in the following proposals:
OS4RS [29]: In [29], [32] and [33], a research group at IMEC, Belgium, in-
vestigates the concepts and reveals some of the open questions, raised by the
run-time multithreading and interconnection networks [28] for heterogeneous re-
configurable SoC. The novelty of their approach resides in the integration of the
reconfigurable hardware in a multiprocessor system completely managed by the
OS for Reconfigurable Systems (OS4RS). The system maintains several threads
by a two-level scheduler. The high-level scheduler is handled in software by
the main GPP, which stores the running tasks as a linked list. The low-level/
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local scheduler can be implemented in software or hardware depending on the
type of the slave computing resources (GPPs or reconfigurable logic). Note,
that in the current implementation of OS4RS, hardware threads are not sharing
the same reconfigurable resources. The OS has several services executed on the
main GPP, responsible for monitoring the status of the heterogeneous system
and distributing the workload among slave processing units. Due to the fact
that a software approach is taken to solve heavily computational problems, such
as real-time scheduling, resource allocation and loading, it will eventually be-
come a system bottleneck during heavy computation periods. In their current
implementation, the top-level scheduler (Figure 1, Section C) is implemented in
software and the local-level hardware (reconfigurable) scheduler (Figure 1, Sec-
tion E) is not implemented, yet. The authors also propose a proof-of-concept
method for context-switching and migration between heterogeneous resources
by saving the task state. The questions related to thread state translation be-
tween GPP register set and reconfigurable logic are still open. The OS4RS has
been tested in JPEG frame decoding and experimental 3D video game. Accord-
ing to the project time schedule, the next generation of the system is expected
to be designed between 2008 and 2010.
Reconfigurable Multithreaded processor [26], [27] by the University of
Wisconsin-Madison: The authors augment SandBlaster 3000 simulator [19] with
Polymorphic Hardware Accelerators (PHAs), which combine properties of func-
tional units and reconfigurable hardware. The processor by itself has four mul-
tithreaded Digital Signal Processor (DSP) cores and an ARM processor that
provides support for user interface and OS. The research study investigates
potential benefits of closely coupled reconfigurable hardware to multithreaded
processor. The work could be separated into two topics: the first one is to inves-
tigate architectural techniques to provide hardware-software interface between
the multithreaded processor and PHAs, the second one is to evaluate the po-
tential benefits of incorporating PHAs in a multithreaded DSP to improve the
system performance. The PHAs are implemented as a functional units at the
execution stage of the processor pipeline. The instruction set is extended with
four instructions for read/ modify the PHA state/ mapping procedures. The
multithreading is mainly employed to hide the reconfiguration time. Each one of
the PHA blocks contains PHA control interface, reconfigurable block(executing
user logic) and optional registers. Configuration of the PHA is done, by loading
a sequence of instructions to specific register, accessed by PHA control interface.
If a certain high priority task requires a PHA, it is only dedicated to it, without
any interference with the other threads. In case of interrupt, thread’s PHA inner
state could be saved and the unit is released. Therefore, the processor supports
context switching over reconfigurable resources. In case of a lack of PHAs, a
realtime thread could preempt a non-realtime one. Once configured, in case of
identical PHA instructions, the PHA could be reused by different threads. Be-
cause of the fact that PHAs are not sharing the same reconfigurable area, there
is no necessity for placement algorithm. Some of the system model assumptions
are: the PHAs are not sharing the same reconfigurable resource area, as a result
there is no necessity for placement algorithms. The architecture is limited to In-
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terleaved Multithreading called Token Triggered Threading. The authors argue
the choice of such an approach instead of Simultaneous Multithreading, because
of the possible power consumption reduction. The authors investigate two PHA
binding techniques - static & dynamic. The implementation includes only static
(compile time) mapping approach. In case of a run-time binding, the system
provides realtime constraints by restricting PHA reusage among threads.

2.5 Summary of the Proposed Taxonomy

Based on the criteria of the provided ρMT support, the aforementioned archi-
tectures can be briefly classified as follows:
I. No architectural ρMT support:
I.1. OS support for ρMT: Molen [51], Montium [21], SGI Altix [3], HP Pro-
Liant server [2], Convey hybrid-core HC-1 [4], RAMP [18], South Australia [58],
BORPH [42], SHUM-uCOS [60];
I.2. Compiler techniques for ρMT: MT-ADRES [59], UltraSONIC [20];
II. Implicit architectural ρMT support:
CarCore Processor extensions [48], REDEFINE [38], Hthreads [35], Reconfig-
urable Multithreaded Architecture Model [55], University of Karlsruhe [10];
III. Explicit architectural ρMT support :
III.1. µ-architecture + OS: Reconfigurable Architectures of this kind are just
emerging. This approach is promising for high performance efficient scheduling
and execution of threads on reconfigurable hardware due to the hardware &
software co-design of the ρMT managing mechanisms. OS4RS [29];
III.2. µ-architecture + compiler: Reconfigurable Multithreaded processor [27].

3 Design Problems & Open Research Questions

The very basic design questions related to thread scheduling on reconfigurable
resources are:

• Which threads to execute, schedule or preempt at certain instance of time
(e.g., when the requested reconfigurable area of prepared for execution
hardware threads is higher than the available area)?

• Where to place a thread (in case of several possibilities)?

• When to reallocate the newly created threads and how to efficiently hide
the reconfiguration latencies?

Depending on model assumptions, from complexity point of view, the scheduling
problem on reconfigurable logic could be reduced to several well-known NP-
Hard problems [44], [62], [9], [36]. Therefore, one of the ways to be solved
is by reducing it to the well-known Bin-Packing problem, i.e., the scheduling
problem could be solved by the introduction of an advanced heuristic algorithm.
Some open research questions, partially and completely solved design problems,
grouped by topic, are presented in the following subsections.
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3.1 Hiding reconfiguration latencies

In reconfigurable systems, the reconfiguration latency is caused by the time
needed for the configuration bitstream to set the reconfigurable device for the
particular operation. Typically, configuration latency is introduced during the
initial task loading (tasks are composed of one or multiple threads). This is one
of the major system delays and causes severe performance degradation in case
of frequent reconfigurations. In literature, the most common ways to hide or
minimize the reconfiguration latency are:
1. Compressing the task’s bitstream. Different techniques are examined in [37];
2. Employing prefetch technique and local caching for earlier reconfiguration
(overlap reconfiguration with computations). The existing prefetch technique
proposals are grouped into three categories:
– Static – predictions are performed at design time by the compiler (e.g., The
Molen compiler [34]);
– Dynamic – at runtime by the reconfigurable scheduler, which stores most
recent configurations [24];
– Hybrid (combining the Static & Dynamic approaches) [13], [24]. In case of
missprediction, alternative Hybrid methods [24] always pay time penalty, by
delaying the reconfiguration. In [17] and [37], the authors propose inter-task
placement in case of free reconfigurable area, but it is only limited to periodic
hardware tasks. For aperiodic tasks, the problem has not been solved.

3.2 Optimized inter-thread communication scheme

The Erlangen-Nuremberg Slot Machine (ESM) [25] has target several problems
common for contemporary FPGA based architectures such as: limitations of
partial support on Actual FPGAs; I/O pin, intermodule communication and
local memory dilemmas. The authors underline as a major advantage of the
ESM platform its unique slot-based architecture which allows the slots to be used
independently of each other by delivering peripheral data through a separate
crossbar switch. The decision to exploit an off-chip crossbar is in order to have
as many available resources on the FPGA for partially reconfigurable modules
as possible. The ESM architecture is based on the flexible decoupling of the
FPGA I/O-pins from a direct connection to an interface chip. This flexibility
allows the independent placement of application modules in any available slot
at run-time. As a result, run-time placement is not constrained by physical
I/O-pin locations as the the I/O-pin routing.

3.3 Scheduling and placement algorithms

In the research work presented in [46] by ETH Zurich, Switzerland, the au-
thors propose several algorithms to manage the sharing of resources in the
reconfigurable surface. Their proposal includes system services for a partial
reconfiguration, which by scheduling the dynamically incoming threads solve
the problems with complex allocation situations. Detailed description of the
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system model could be found in [45] and [53]. The primary idea of the project
is to separate threads into two groups according to their arriving times - syn-
chronous and arbitrary. For threads with aperiodic arriving times, the authors
propose two non-preemptive techniques: “horizon” and “stuffing” methods [44].
On the other side, for threads with periodic arriving times, authors propose
another two preemptive scheduling algorithms: “EDF-NF” and “MSDL” [15].
Unfortunately, the preemptive methods are not adaptable for threads with arbi-
trary arriving times, because the system cannot guarantee that each preempted
thread, previously executed for some period of time, will finish before it’s rela-
tive deadline. Each one of the scheduling techniques is combined with optimized
placement method named “On the Fly Partitioning” [54], based on Bazargan
partitioner [11].
The algorithms are further enhanced by a research group at Fundan Univer-
sity [62]. They introduce an advanced heuristic algorithms based on “stuff-
ing” technique [44]. The authors prove that the combination of a schedul-
ing algorithm with a recognition-complete placement method does not result
to a recognition-complete technique. Therefore, they enhanced the “stuffing”
scheduling algorithm [44] and named the new one: “windows-based stuffing”.
In [63], the authors propose “Compact Reservation” (CR) scheduling algorithm
which attains recognition-earliest scheduling (arrange the start time of a newly
arrived thread as early as possible) by exploiting the knowledge about temporal
properties of each thread. In [6] the cases of potential thread migration de-
pending on the workload is examined – a newly arrived thread is started either
in software or in hardware. Slightly different approach is proposed in [17] by
a research group at the Paderborn University. They enhance a single proces-
sor algorithm (e.g., a stochastic server) with preemption support (limited only
during the time of reconfiguration) for hardware tasks.

3.4 Context switching

In [22], the authors clearly identify the two possible techniques for context
switching of hardware threads in partially reconfigurable FPGAs. The tech-
niques are named as follows:
1) Thread Specific Access Structures – when the scheduler decides to switch a
thread, it’s current state is saved in an external structure. The major advantages
of this approach are the high data efficiency and its architecture independence.
The disadvantages come from the fact that each thread is different and it is diffi-
cult to design a standard generic interface. On the other hand, the designer also
needs detailed knowledge about the structure and the behavior of the thread,
therefore the method is not applicable for IP Cores represented by black-box
functional blocks. In [41], the authors explore the control software required to
support thread switching as well as the requirements and features of context
saving and restoring in the FPGA coprocessor context. Similar approach is
taken in [5] - each hardware thread is represented by one complicated Finite
State Machine (FSM). In case of context switching, the scheduler saves current
FSM state together with multiple data registers.
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2) Configuration Port Access – the thread bitstream is completely downloaded
from the FPGA chip and the state information is filtered. In [22], the authors
design custom tools for offline bitstream processing. The advantages of the
approach are: additional design efforts and information about internal thread
behavior are not needed. In [5], the authors additionally compress the bitstream
(bitwise XOR) to minimize the size and delay of downloaded data. The method
is named “ReadBack technique”.

3.5 Real-time support for reconfigurable hardware threads

In the literature, there are two basic approaches (described below) capable to
deliver real-time support for software/ hardware heterogeneous platforms:
1) Per-case solutions using Heuristic Algorithms – many of the proposed algo-
rithms (see Subsection 3.3) support “Commitment Test” - each newly created
hardware thread is checked for successful termination before its deadline and
critical affects (e.g., delays) on other executing threads. Unfortunately the pro-
posed ideas (heuristic algorithms) are designed only for independent hardware
threads with known executing times, therefore they are not applicable for hard-
ware threads with data, resource or communication dependencies.
2) Complete Solutions on Conventional Reconfigurable Platforms (e.g., BORPH
[42], UltraSonic [20], Hthreads [35]) – none of them supports reconfigurable re-
source sharing among executing threads. In case reconfigurable area is shared,
all possible resource collisions are solved at compile time.

3.6 Run-time creation and termination of threads

Currently, all existing proposals (Section 3) offer partial solution for schedul-
ing non-preemptive and periodic preemptive only tasks on reconfigurable logic.
Therefore, the open question arises: “How to manage creation and termination
of data, resource and communication dependent real-time threads?”. The topic
is still open and it is closely related to Subsection 3.5. It is one of our primary
objectives to make further investigations in future research. Many of the current
projects (e.g., [25], [42]) have run-time creation as a feature, but none of them
provides resource sharing and real-time support for data dependent threads.

3.7 Hardware scheduler agnostic to the employed embed-

ded GPP

The main research question still stays open: “When and under what circum-
stances the hardware scheduler should initialize a communication to the GPP?”.
All current solutions are for specific architectures and do not provide general
holistic approach to the scheduling problem.
Table 1 summarizes the design problems and open research question discussed
in this section.
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Table 1: Design Problems & Open Research Questions
Partially [PS] & Completely [CS] Solved Design Problems:

[CS] - Hiding reconfiguration latencies by prefetching, context
switching and resource reusage among threads; [13], [24], [37]

[PS] - Optimized inter-thread communication scheme; [25]
[PS] - Real-time thread support by the reconfigurable
architecture; [48], [42], [20], [35]

[PS] - Preemptive techniques [context switching] for threads with
arbitrary arriving times. Consider inter-thread data dependencies,
free reconfigurable area and communication profile; [46], [45], [62], [44]

[PS] - Thread migration between software and hardware; [41], [22], [5]
[PS] - Consider virtualization and protection; [56], [55]
[PS] - Rescheduling of threads, depending on the workload; [17]
[PS] - Run-time creation and termination of threads; [25], [42]
Open Research Questions [O]:

[O] - Hardware scheduler agnostic to the employed embedded GPP
processor;
[O] - System performance evaluation parameters;
[O] - Intra-thread management by the scheduler;

3.8 Application Prospective & Potential Research Direc-

tions

One of the direct gains from employing a ρMT architecture, after solving the
open questions from Section 3, would be the capability for time efficient run-time
creation, termination and management of multiple threads sharing the recon-
figurable resources without critically affecting (delaying) each other. Possible
future research could extend the functionality and overcome some limitations
providing, e.g.:
1. Real-time and runtime support of multiple hardware threads through archi-
tecture agnostic hardware scheduler. It could support run-time creation and
termination of multiple threads mapped into reconfigurable logic and hardware
system implementation. The compiler would be only responsible for inter-thread
optimizations. The hardware scheduler would manage intra-thread optimiza-
tions;
2. More sophisticated scheduling policies capable to fairly distribute resources
among multiple resource-dependent hardware threads. Introduction of a metric
evaluating the resource distribution and potential thread starvation.
3. Hiding of reconfiguration latencies and efficient thread-preemption and mi-
gration model with estimation of performance costs. For periodic and sporadic
threads, the migration might take place right after the end of the current iter-
ation.
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4 Conclusions

In this report, we provided a survey and proposed a taxonomy of existing re-
configurable architectures with respect to their support of multithreading on
reconfigurable resources. We identified three main classes – explicit, implicit
and no ρMT support, each one of them with several sub-categories. We further
summarized a number of identified design problems and several research ques-
tions, which addressed performance efficient management, mapping, sharing,
scheduling and execution of threads on reconfigurable hardware resources. We
provided our vision for potential research directions and possible solutions of
some open research topics. We marked which of the identified design problems
have been partially or completely solved and which research questions remain
open.
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