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Abstract. Given the FPGA-based partially reconfigurable systems, hardware
tasks can be configured into (or removed from) the FPGA fabric without interfer-
ing with other tasks running on the same device. In such systems, the efficiency
of task scheduling algorithms directly impacts the overall system performance.
By using previously proposed 2D scheduling model, existing algorithms could
not provide an efficient way to find all suitable allocations. In addition, most of
them ignored the single reconfiguration port constraint and inter-task dependen-
cies. Further more, to our best knowledge there is no previous work investigating
in the impact on the scheduling result by reusing already placed tasks. In this pa-
per, we focus on online task scheduling and propose task scheduling solution that
takes the ignored constraints into account. In addition, a novel “reuse and partial
reuse” approach is proposed. The simulation results show that our proposed so-
lution achieves shorter application completion time up to 43.9% and faster single
task response time up to 63.8% compared to the previously proposed stuffing
algorithm.

1 Introduction

The reconfigurability of the FPGA has received much more attentions from various
fields in the last decade. Usually, the FPGA is treated as a slave component in a recon-
figurable system, when required, the complete FPGA is configured to offload the main
processor. In this way, the FPGA can be easily managed as a solid part. With the devel-
opment of the partially reconfigurable FPGAs, only the necessary part of the FPGA can
be partially reconfigured when needed. By doing this, such partially reconfigurable sys-
tems can provide real multi-task function. The partial reconfiguration technology brings
higher FPGA resource usage and faster partial reconfiguration time, but also introduce
a need of an efficient scheduler to manage the hardware tasks.

Offline and online solutions can be used to solve this problem. In an offline so-
lution, the scheduling decision is optimized when the application is compiled. In an
online solution, the information of each task (e.g. execution time, configuration time)
is unknown until it arrives. The online solution provides more adaptivity to various ap-
plications and avoids the application profile step, which is time-consuming. The online
scheduler should, at runtime, assign a required time period to the arrival task. During
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this time period the task can be loaded and execute on the FPGA. The efficiency of the
online scheduler will directly impact the overall performance of the whole system. In
this paper, we focus on this online task scheduling and propose our solution.

In our solution, the basic configuration unit of the target FPGA is a column with the
complete height of the FPGA. This configuration is supported by the popular Xilinx
Virtex FPGA. Each task used in our system occupies a set of continuous columns. In
this way, the size of a task can be only represented by its width. Then the task scheduling
can be processed by using the 2D scheduling model (referred as 2D model in this paper)
described in [10]. As shown in Figure 1(b), in this model, the horizontal axis stands for
the width of the FPGA and the vertical axis represents time. Each task can be treated as a
rectangle in which the height represents the time (e.g. execution time and configuration
time of the task) and the width keeps its original meaning. The scheduling problem now
is similar to the strip packing as presented in [10]. Based on the 2D model, in this paper,
we propose our solution to the online task scheduling problem. The main contributions
of our solution are:

– to provide a modified algorithm which is suitable for searching the complete set of
free allocations(stored as maximum free rectangles) on the 2D model;

– to present an example scheduling heuristic implied on the found allocations;
– to demonstrate a “reuse and partial reuse” approach;

In section 2, related work and our observation are presented. Thereafter, we detail our
proposal in section 3. In section 4, we present the simulation results and evaluate its
performance while comparing against previously proposed stuffing algorithm [10].
Finally, we conclude this paper and discuss future works in section 5.
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Fig. 1. The system architecture and scheduling model

2 Related Work

Online task scheduling is one of the key components of reconfigurable hardware oper-
ating systems [12]. In [10], Steiger et al. described the picture of the online schedul-
ing for real-time tasks running on partially reconfigurable systems. They introduced
a convenient 2D model which can convert the online scheduling problem to the strip
packing. In addition, two online scheduling algorithms (1D Horizon and Stuffing) were
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proposed and evaluated in their work. However, their algorithms can not find all suit-
able scheduling positions for arrival tasks. In some cases, the arrival task is assigned to
a later start time although there are other allocations allowing it to start earlier. Their
algorithms also ignored the hardware constraint brought by the single reconfiguration
port on the single-context FPGA (e.g. Xilinx FPGA), which will bring serious resource
conflict when implementing the algorithms on real hardware. Zhou et al. [15] proposed
a“window-based stuffing” online scheduling algorithm which is based on the 2D model
from [10]. In this algorithm, for each arrival task, a time interval (the start time and the
end time are decided according to the parameters of the arrival task) is defined on the
2D model. The occupied areas of scheduled tasks in the time window are passed to a
placement algorithm (e.g. algorithms from [14][3][2]) to find available allocations for
the arrival tasks. If found, the task is scheduled. This algorithm also ignored the hard-
ware constraint as happened in [12]. Although the algorithm focused on a higher task
acceptance ratio, it did not show obvious reduction of the completion time of the overall
application, which reflects the overall performance of the partially reconfigurable sys-
tems. In [4], Danne et al. proposed a scheduling algorithm for periodic real-time tasks.
In this algorithm, the FPGA area is partitioned into one dimensional slots and each task
has several variants with different size and execution time. All possible combinations
of available tasks are measured by the utilization metrics which is defined in the algo-
rithm. Then the combination of tasks with minimum resource usage will be loaded into
the proper slot. In [7], Jeong et al. described an ILP algorithm. Although their ILP ap-
proach considers prefetch and the hardware constraint of a single configuration port, the
real hardware usage is not taken into account when implementing scheduling. In some
cases, although the ILP shows successful task scheduling result, the assigned areas on
the FPGA are not continuous, which actually leads a fail result.

By investigating the related works, we noticed that, firstly, when the online task
scheduling problem is handled by using the 2D model, there is no suitable algorithms
searching available allocations as we described above (e.g.[12] [10]). The previous
proposed allocation searching algorithms (e.g.[14] [5]) can not serve well for the 2D
model. (We will detail the reasons later in section 3). Secondly, in order to make the
2D model simple, most proposed scheduling algorithms ignored the reconfiguration
port constraint. In this case, applications using such scheduling results will probably
fail when running on the real hardware (detail explanation is in section 3). Thirdly,
previously proposed online scheduling algorithms have not investigated the task reuse.
However, the task reuse is the most direct way to decrease the reconfiguration overhead
and is practical for many applications (details in section 3.5). Fourthly, task dependency
is not well supported by the proposed algorithms, most algorithms used a large number
of random independent tasks as their testbench.

Given these consideration, our proposed online task scheduling solution provides an
allocation searching algorithm running on the 2D model and take the constraint of the
configuration port into account as well as the task dependency. In addition, the “reuse
and partial reuse” is explored. The goals of our solution are: 1) to provide a frame work
solution to solve online task scheduling problems; 2) to generate a shorter completion
time of the overall application running on the FPGA-based partial reconfigurable sys-
tems; 3) to ensure a faster response time for each task in an application.
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3 Our Proposal

In this section we first present the unsuitability of the previously proposed algorithms
aiming to find free allocations when they work on the 2D model. Then, the modified
flow scanning (FS) algorithm [9] which is suitable for the 2D model is detailed. Next,
the approach to overcome the configuration port constraint is detailed. Thereafter, a
“best fit” scheduling heuristic is described. Last the “reuse and partial reuse” approach
is presented.

In our solution, the base part is the algorithm which can find the complete set of free
allocations. The “best fit” scheduling heuristic is an example of using the found free
allocations, other heuristics can also be implied(e.g. we use the found free allocations
in a different way when implementing the “reuse and partial reuse”, which is detailed in
section 3.5). In our solution, the allocation searching algorithm and ”reuse and partial
reuse” are highlighted.

3.1 Allocation Searching Algorithms

The previously proposed algorithms(e.g. [14] [5]) aiming to find the complete set of
available free allocation are mostly based on the 2D matrix model. As shown in Fig-
ure 2(a), the target is modeled as a 2D matrix, all cells are encoded with meaningful
information(e.g. the negative value is assigned to the occupied area, and the positive
value is to the free area). By processing the information of all cells, the complete set of
free allocations can be found. These algorithms work well for the target models which
have exact height and width (e.g. FPGA and multi-processor mesh). However, when im-
plementing such algorithms on the 2D model, things become much more complicated.
As shown in Figure 2(b), if a task arrives at ts and is expected to complete by te, in or-
der to find all available allocations between this interval by using the algorithms based
on the matrix model, information in almost all the cells has to be updated as shown in
Figure 2(c). In addition, the ts and te will probably be different for every task, which
means the size of the matrix has to be changed and all the information encoded in the
cells has to be recalculated and updated every time a task arrives.
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3.2 Modified Flow Scanning Algorithm

In [9], we previously proposed the flow scanning (FS) algorithm which finds the com-
plete set of maximum free rectangles on the FPGA at runtime. To achieve this,
the FS algorithm only need the positions of placed tasks and the width and height of the
FPGA. In this work, the original FS algorithm was modified to be easily implied to the
2D model. The modified FS (mFS) algorithm is use to find all suitable allocations in
the 2D model for arrival tasks. In this section, we will describe how the mFS algorithm
works on the 2D model.

We start the description with an example to explain how the mFS works on the 2D
model as shown in the Figure 3. Assume that a new task arrives at time ts and is ex-
pected to complete by time te. An maximum free rectangle between ts and te is needed
to allocate this task. In the beginning, an initial FRW1 is created at the task arrival
time ts (the FRW in the mFS is defined as a rectangle which has no top line and can
only be expanded upwards). The bottom of this FRW1 is ts and it covers the complete
width of the model, as shown in Figure 3(a). The scanning flow which is from ts to te
in the t direction, will reach the in-edge1 of a previously placed task 1 (PT1) at time tin
in the t direction (shorthand At time = tin:), the initial FRW1 is overlapped with this
edge in X direction, so it becomes a maximum free rectangle (0, 10, ts, tin) (in this
paper, we define such maximum free rectangle as scheduling rectangle (sRectangle)).
Thereafter, two new FRW s are created for the non-overlapping area, as shown in Fig-
ure 3(b), the FRW2 and FRW3. At time = tout: the out-edge of task PT1 is met at this
level, so the out-edge process is performed, which creates a new FRW : FRW4 shown
in Figure 3(c). At time = te: when reaching the top edge (te), which is defined as an
in-edge, all existing FRW s are transferred to maximum free rectangles with top at t =
te. During the scanning process described above, totally four sRectangles were found:
(0, 10, ts, tin), (0, 3, ts, te), (6, 10, ts, te) and (0, 10, tout, te).

In the mFS, there are two basic processes as shown in above example, the in-edge
process and out-edge process. The in-edge process happens when the scanning flow
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1 In the mFS, the bottom edge and top edge of a placed task are named in-edge and out-edge
respectively.
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reaches an in-edge and the out-edge process is called when leaving an out-edge. In
the in-edge process, if a FRW is overlapped with an in-edge in the X direction, a
sRectangle is created by adding to the FRW a top line at the height of the in-edge.
New FRW (s) will also be created if the FRW is not fully overlapped with the in-
edge. In the out-edge process, only one new FRW is created with the bottom at the
same height as the out-edge. Every time when a task arrives, a searching interval is set,
which is the time period between the ts and te. By implying the mFS to the 2D model,
we do not need to rebuild the meaningful matrix every time. The available allocations
are found only by running mFS to scan the searching interval.

3.3 Reconfiguration Port Scheduling

The reconfiguration port is a hardware interface located on the FGPA to implement
the run-time partial reconfiguration. On current FPGAs (e.g. Xilinx FPGAs), only one
reconfiguration port is supported, which means that the configuration of tasks is a se-
quential process. As shown in Figure 4 (a), three tasks PT1, PT2 and PT3 arrive at ts
and are to be scheduled on the same FPGA. If the availability of the reconfiguration
port on the FPGA is not taken into account, the three tasks are scheduled as shown in
Figure 4 (b), which can be treated as a simple strip packing problem. However, if we
check the availability of the reconfiguration port shown in Figure 4 (c), it is obvious
that the configuration of the PT3 can not start at time ts, because the reconfiguration
port is occupied by the PT1. So the scheduling result shown in Figure 4 (b) is not
feasible in reality. A reasonable scheduling result is shown in the Figure 4 (d). Fig-
ure 4 (e) reflects the availability of the reconfiguration port after scheduling the three
tasks.

In our algorithm, a reconfiguration port checking process is added to avoid the con-
fliction of the reconfiguration port scheduling. After the mFS finds the complete set of
sRectangles, the reconfiguration port checking process can be run to check the conflic-
tion between the reconfiguration port availability and the sRectangles. If there is any
conflict, the temporal values of the related sRectangles will be reset. As shown in Fig-
ure 5 (b), the checking process finds that the start time (ts) of original R2 is overlapped
with the configuration time of PT1 and PT2. Consequently, the start time of R2 is reset
to the value shown in the figure.

1PT
ts

(a)

3PT

t

1PT

2PT

t s

3PT

t

(b)

2PT

1T

2T

3T

t t

(c) (d) (e)

Configuration time

Fig. 4. Sequential reconfiguration port



222 Y. Lu et al.

3.4 Best Fit Scheduling Heuristic

In our solution, the scheduling heuristics can be various. We are not aiming to provide a
specific scheduling heuristic for all applications. Because by using our mFS algorithm,
all available allocations on the 2D model can be easily found, we can implement various
heuristics to use these found allocations for different applications.

In this paper, we will give an example scheduling heuristic, the best fit. The best fit
heuristic is to schedule the arrival task into an available sRectangle which results in
less fragmentation and better time performance in the 2D model. Based on our observa-
tion, we created equation (1). For all available allocations, we calculate their BF value
by using equation (1), then the best fit one is chosen according to the values. In equa-
tion (1), Atask stands for the arrival time of a task; Stask represents the starting time
for the task running on the FPGA; Twidth and Rwidth are the width of the task and the
chosen sRectangle respectively; the Eoverlap stands for the length of overlapped edges
between placed tasks and the new task when placed in a chosen rectangle and the Etask

is the perimeter of the arrival task.

BF =
Atask

Stask
× Twidth

Rwidth
× Eoverlap

Etask
......(1)

Equation (1) consists of three components which reflects the time issue and the de-
fragmentation requirements by using the 2D model, as shown in the Figure 5. PTx(x
= 1,2...) stands for the placed task; PTa is the arrival task; Rx(x = 1,2...)is the suitable
sRectangle to locate the arrival task. In Figure 5 (a) (b), when a new task PTa arrives
at ts and is expected to complete by te, R1 and R2 are both suitable for the PTa.
However, allocating PTa in these suitable sRectangles will give different response time
and completion time. In our approach, we allocate the PTa into R2 in order to achieve
shorter response time as well as the earlier completion time. Corresponding to the equa-
tion (1), for various suitable allocations, we choose the one with biggest Atask

Stask
value.

In Figure 5 (c) (d), it can be observed that when the arrival task is placed in the suitable
sRectangle with shorter width (R1), less fragmentation will be created. This reflects the
requirement of larger Twidth

Rwidth
value. In Figure 5 (e) (f), we observed that when placed the

arrival task with more overlapped edges with placed tasks, less fragmentation will be
created. Corresponding to the equation (1), the chosen sRectangle should have largest
value of Eoverlap

Etask
.

In equation (1), the three situations are taken into account by multiplying them to-
gether. For the best fit heuristic, we calculate the BF values of all suitable sRectangles
for the arrival task and choose the one with largest value. We want to mention again that
the best fit heuristic is an example to show how to use these found sRectangles, it can
achieve good performance as shown later in section 4, however, for different situations,
we believe that different heuristics can be applied to the found sRectangles in order to
achieve better results.

3.5 Reuse and Partial Reuse

For the FPGA-based partially reconfigurable systems, the reconfiguration overhead de-
creases the overall performance of systems, some researches were done to reduce or
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hide this overhead(e.g. [1] [6]). Most previous work focus on hiding the reconfigura-
tion time to the users, however, the reconfiguration port is still occupied by these tasks.
In most current FPGAs, only one reconfiguration port is supported, which means that
the reconfiguration is a sequential process. This reflects that the overall configuration
time of all hardware modules in an application is a fixed value. When the number of
the hardware modules is increased and the size of modules becomes bigger (usually
because the logic of modules become complicated), this overall configuration time will
become much longer (sometime even comparable to the execution time of applications).
This is one of the critical reasons to limit the use of partially reconfigurable systems in
real applications. So, the most efficient way to avoid the reconfiguration overhead is
to support reuse of the tasks which have been already placed on the FPGA as much
as possible. During our investigation to many applications, we noticed that different
hardware function modules in the same application usually work on the same objects,
which makes the logic of each module can be reused by others (e.g. the pixel operation
functions in H.264 applications). In addition, many hardware modules contain common
functions (e.g. multiply, memory address generator). Given these reasons, the reuse of
placed tasks is efficient and practical. In this paper, we propose our task reuse and par-
tial reuse (RPR) approach. The “reuse” means to use the logic of placed task Tp to
implement the arrival task Ta, which save the configuration time of the arrival task. The
partial reuse happens in two situations: 1) the logic of placed task Tp can not implement
the complete function of the arrival task Ta but a part; 2) Tp can implement the func-
tion of Ta, but Tp will be removed before it can complete the execution for Ta. When
the partial reuse is applied, the logic of Tp is used for Ta, meanwhile, the Ta itself is
also configured on the FPGA. Once the Ta is ready, the partially processed data will
be transferred from Tp to Ta, then Ta can complete the computation. In this way, the
partial reuse hide the configuration time of Ta to the user.

For the online scheduling, the information about arrival task is unknown until it
arrives, which implies that when implementing the RPR technology, the reusable task
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should exist on the FPGA as long as possible. Given this, we apply another heuristic to
allocate the arrival tasks as shown in the Figure 6. For the data independent task or the
first task in a task graph, it is placed at the bottom left corner of the sRectangle with
fastest response time, e.g. the PT4 and PT1 shown in Figure 6 (b). For the tasks having
data dependence, each task is placed as far as possible (in the horizontal direction) from
its ancestor task, e.g. PT1, PT2 and PT3 shown in Figure 6 (a).

An example of the RPR process is shown in the Figure 7. Assume that the task PT1

to PT4 have already been scheduled and the task PT1 meets the requirements of be-
ing reused by the task PTa arriving at ts. In the 2D model, if the height of sRectangle
above the PT1 is no less than the value of execution time when reusing PT1 for PTa,
the PT1 can be directly reused for execution of PTa after PT1 completes, as shown
in Figure 7 (a). On the contrary, if the height is less than the value, the partial reuse
approach can be implied. The difference of implementing scheduling solution with and
without partial reuse approach is shown in Figure 7 (b) and (c). In Figure 7 (b), PTa is
placed as usual, Instead, the Figure 7 (c) shows that the result of implementing partial
reuse approach. Comparing the task ending time te, the partial reuse approach gives
a better performance. When implementing the partial reuse, an extra period is added
into the task execution time. This price is paid for the necessary data (e.g. state infor-
mation of the hardware module) extracting and transferring from the reused task to the
new configured task(e.g. PTa1 to PTa2 in Figure 7 (c)). The mechanism of this pro-
cess is presented in [8]. When a running task is to be reallocated into other position,
only the bitstreams containing state information will be read back from reconfiguration
port(ICAP). The state information of the running task will be extracted and combined
into the initial bitstream for the target position. According to the experimental results
shown in [8], the total state information exacting and combining time is about 18% of
the task configuration time. In our simulation, we added the same amount extra time as
the task state setting period to the task when implying the partial reuse approach. The
communication structure in our solution is the homogeneous busmacro system which
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was presented in [8]. By using this type of busmacro system, tasks placed on the FPGA
have the same bus interface and share the buses. The connecting interface of tasks to
the buses is same as the interface of custom unit in the “Molen” architecture [11].

The overall algorithm is shown as follow:

Algorithm:
Input: arrival task, searching starting time, searching ending time

if Reuse function checking is true then
assign the arrival task to the reusable module;

else if Partial reuse checking is true then
assign a part of calculation of the arrival task to the reusable module;
searching all free allocations for the rest of the arrival task;
implying scheduling heuristic to choose an allocation;

else
searching all free allocations;
checking conflict of the reconfiguration port;
implying scheduling heuristic;

end if

4 Experimental Evaluation

The target FPGA is Xilinx Virtex II XC2V4000 FPGA which contains 80(row) x 72(col-
umn) CLBs. The total configuration time of the complete FPGA is 39.15ms (SelectMAP
port at 50MHz). On the FPGA, there are total 2156 frames, which is the minimum con-
figuration unit. All the CLBs in one column use 22 frames. The reconfiguration time of
one column is calculated by using the equation shown in [1]: Tcolumn =(frames per col-
umn) x ((total configuration time) / (total frames)) = 22 x (39.15 / 2156) = 0.40ms. The
partial reconfiguration time of each task will be calculated based on these data.

The tasks we used in the experiment were created via two steps. In the first step,
VHDL codes of real hardware tasks (e.g. fmult and update 2 for G721 encoder, DCT
and AES) were generated by DWARV 3 [13]. Then they were synthesized by Xilinx ISE
and implemented on the “Molen” [11]. In this step, we collected information of the real

2 The fmult performs table look-up and the update is control dominated processing of multiple
scalar variables.

3 The DWARV is a toolset performing automatic C-to-VHDL generation [13].
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hardware tasks (e.g. task size, execution time). Considering that the limit number of real
tasks, we generated large amount of theoretic tasks in the second steps. Firstly, we set
the ranges of task size and execution time based on the information collected from the
real tasks. Then the size and execution time of theoretic tasks were randomly chosen in
these ranges. The task size is in the range [5..20] columns and the execution time is in
the range [1.00..50.00] ms. The configuration time of a task is related to its size, e.g. for
a task occupied 5 columns, the configuration time of the task is 0.40 x 5 = 2.00 ms. Our
proposed scheduling approach supports both data dependent and independent tasks. We
used task graph to represent tasks as shown in the Figure 7. The number of tasks in each
task graph was randomly chosen in the range [1..5].

Usually, the partially reconfigurable systems can be categorized into two types. The
hardware operation only and the hardware-software (Hw/Sw) cooperation. In the first
type, all tasks in an application can only run on the hardware target (e.g. FPGAs).
For the second type which supports Hw/Sw cooperation, each task in the application
can either run on the hardware target or the general purpose processor (GPP). In the
experiment, we considered both types. In the simulation of Hw/Sw cooperation type,
two extra parameters of tasks were given: the software execution time of a task (Tset)
and the dummy time (Tdummy) of a task. The Tset is the task execution time when
it runs on the GPP and the Tdummy represents the time that a task can wait for the
scheduling on the FPGA. If the scheduling can not be made within the Tdummy, the
task will run on the GPP. For the tasks generated via DWARV, the two parameters are
collected from the real hardware implementation. For the randomly created tasks, the
Tset is randomly set as 3 to 5 times of the execution time of the task, and the Tdummy

is randomly set as 0.5 to 2.5 times of the execution of the task.
In the experiment, the performance of our proposed approaches (BF and RPR) and

the stuffing [10] were evaluated. The original stuffing algorithm did not support
data dependent tasks and reconfiguration port check, in order to fairly compare our
approaches to the stuffing algorithm, we modified the stuffing algorithm to support
these features. All algorithms were programmed using C, and executed under Linux 2.6
with Intel(R) Pentium(R) 4 CPU 3.00GHz. All algorithms were evaluated in term of
application completion time and single task response time.

4.1 Application Completion Time

The application completion time (ACT ) is defined as the completion time of the ap-
plication. In each simulation run, firstly an application was generated by randomly cre-
ating the task graph and tasks (each application consists of 50 task graphs). Then the
Stuffing, BF and RPR were implied to the application respectively and the ACT
were measured. Totally, 1000 simulation runs were implemented and the results shown
in the table 1 were evaluated by using the following equation:

A

B
=

AETB − AETA

AETB
× 100% ......(2)

The ‘A’ and ‘B’ stands for scheduling algorithms. The AETA and AETB represent the
AET values of the same application when implying ‘A’ and ‘B’ algorithms respectively.
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The A
B stands for the comparison of A to B and its value is calculated by the right side

of equation (2). The positive value means that the AETA is shorter than AETB , which
reflects that algorithm ‘A’ outperforms algorithm ‘B’ (similarly, ‘B’ is better than ‘A’ for
a negative value). If comparing serval algorithms to ‘B’, the best algorithm will show
the closest value to “100%”.

As shown in the table 1, the “Average” column gives the average value of the 1000
simulation runs, and the “Best” and “Worst” columns show the largest and smallest
values respectively. It can be observed in the third row that averagely the BF outper-
forms the stuffing by 11. 3% in term of ACT , and the worst and best cases among
the 1000 simulation runs are 3. 9% and 20.4% respectively. The BF outperforming
stuffing can be explained with 2 reasons: 1) the mFS algorithm used in BF can
find all suitable sRectangles for arrival tasks, which can not be granted by stuffing;
2) by using equation (1), less fragmentation, shorter response time and shorter com-
pletion time can be achieved for the allocation of each task. When implementing our
RPR technology, averagely around 20% tasks are reused or partially reused in an ap-
plication. As shown in the second and fourth rows of the table 1, the RPR achieved
better performance compared to BF and stuffing. This is because when reusing a
placed task Tp for an arrival task Ta, the reconfiguration time of Ta is removed. In ad-
dition, the reconfiguration port can be used to load other tasks during the period when
the Ta should be loaded (the Ta should be loaded when RPR is not implied). Further
more, although extra communication time is required when implying partial reuse, it
helps to achieves shorter completion time and response time as described earlier in the
section 3.5.

Table 1. Comparison of ACT

Average Best Worst
RPR / BF 28. 9% 39.1% 11. 6%

BF / stuffing 11. 3% 20.4% 3. 9%
RPR / stuffing 34.7% 43. 9% 20.8%

4.2 Single Task Response Time

The single task response time (STRT) is defined as the time interval represented by:
Tresponse - Tarrival. The Tarrival stands for the arrival time of a task, and the Tresponse

is the starting time of the task configuration or the starting time of the execution when
reusing a placed task. The STRT is an very important character to measure the system
performance especially for the real-time systems. The results shown in the table 2 are
in the same format as the table 1. The results are calculated by using equation (3) which
holds the similar explanation as the equation (2).

A

B
=

STRTB − STRTA

STRTB
× 100% ......(3)

The BF achieves a better performance at least around 2.4% and averagely 11.7%
less STRT compared to the stuffing. When implementing the RPR technology, the
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Table 2. Comparison of STRT

Average Best Worst
RPR / BF 41.6% 61.6% 12. 5%

BF / stuffing 11.7% 23.4% 2.4%
RPR / stuffing 49. 9% 63.8% 28. 5%

reductions of STRT are averagely around 28. 9% and 34.7% compared to the BF and
stuffing respectively. The explanation for the BF and RPR having better STRT
results can also be referred to the reasons described for the comparison of ACT results.

In our simulation, the execution time for scheduling a task is in a range from 0.09ms
to 0.13ms, averagely 0.11ms. Compared to the reconfiguration time of tasks used in our
simulation (which is from 2.0ms to 8.0ms), the time used for a single task scheduling is
acceptable.

4.3 Hw / Sw System Scenario

In the previous two subsections, we assumed that all tasks can only run on the hard-
ware and we presented the comparison of ACT and STRT among the BF , RPR and
stuffing. In this subsection, the system is assumed to run in the Hw/ Sw mode. In
our approach, when a task arrives, the mFS algorithm finds all suitable sRectangles
for the task in the required searching interval, which is defined as: Tarrive + Tdummy

+ Tconfiguration + Texecution. The Tarrive stands for the arrival time of the task, the
Tconfiguration is the configuration time of the task and the Texecution is the hardware
execution time of the task. By using the mFS algorithm, all suitable sRectangles in the
required time interval are aware, the schedule of a task to the FPGA or the GPP can
be processed immediately when the task arrives. In previously proposed algorithms,
because of unknowing all suitable sRectangles, if an arrival task can not be scheduled
to the FPGA immediately, it has to wait until the end of the dummy time. During that
period, if any suitable allocation found, it will be scheduled to the FPGA, otherwise, it
will be assigned to the GPP after the dummy time.

In the simulation, we used a linked list to represent the availability of the GPP. Each
node in the linked list shows a continuous free period of the processor. If an arrival
task is assigned to the GPP, the task is scheduled in the nearest node(s). An example
of scheduling a task to the GPP is shown in the Figure 8. When task Tx and Ty arrive
at ts, the mFS can not find a suitable allocation for the Tx during the time interval [Ts

Td], so the Tx is decided to run on the GPP. The resource availability of the FPGA
and the GPP are shown in Figure 8 (b)(c) respectively. According to Figure 8 (c), the
Tx is scheduled on the GPP into two time interval txs1 and txs2. The Ty which is
data-dependent with the Tx can only run after the txe (the completion time of the Tx).
The comparison of ACT results of 1000 simulations for the Hw/ Sw cooperation is
shown in the table 3. The BF shows worse performances compared to the stuffing.
By tracing the scheduling process, we found an interesting phenomenon. Under the
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Fig. 8. Task software execution

Table 3. comparison of ACT for Hw/Sw mode

Average Best Worst
RPR/BF 20.74% 39.9% 0.3%

BF/stuffing -4.5% 15.5% -28.5%
RPR/stuffing 21.2% 54.2% -6.7%

HW/ SW mode, although in the beginning, the BF scheduled more tasks to the FPGA
compared to stuffing, the free time periods of the reconfiguration port become much
smaller fragmentation, which results in unusable for the later tasks. On the contrary,
although the stuffing created more fragmentation on the 2D model, it kept the relative
longer free time periods of reconfiguration port, which helped to achieve a good overall
performance. Then we simulated the RPR, as expected, by decreasing the impaction
from availability of reconfiguration port, the PRP achieved averagely 21.2% reduction
of ACT compared to the stuffing.

5 Conclusion and Future Work

In this paper, we proposed an online task scheduling solution for the FPGA-based par-
tially reconfigurable systems. Building upon our allocation search approach, various
scheduling heuristics could be applied to different situations. In addition out “reuse and
partial reuse” approach showed the potential to shorter the ACT and STRT. Our experi-
mental validation has shown that our solution has up to 43.9% shorter ACT and 63.8%
faster STRT compared to the stuffing algorithm. In the future, our work will focus
on: (i) implementing the “reuse and partial reuse” method on our “Molen” prototype
board; (ii) considering the heterogenous resource distribution on the FPGA.
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