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Abstract—In this paper, we propose new techniques for im-
proving the performance of applications running on a reconfig-
urable platform supporting the Molen programming paradigm.
We focus on parallelizing loops that contain hardware-mapped
kernels in the loop body (called K-loops) with wavefront-like
dependencies. For this purpose, we use traditional transforma-
tions, such as loop skewing for eliminating the dependencies and
loop unrolling for parallelization. The first technique presented
in this paper improves the application performance by running
in parallel on the reconfigurable hardware multiple instances
of the kernel. The second technique extends the first one and
determines how many kernel instances should be scheduled
for software execution in each iteration, concurrently with the
hardware execution, such that the hardware and software times
are balanced. In the experimental part, we present results when
parallelizing the Deblocking Filter (DF), which is part of the
H.264 encoder and decoder, after skewing the main DF loop
to eliminate the data dependencies. For the unroll factor 8, we
report a loop speedup of up to 4.78.

I. INTRODUCTION

Reconfigurable Computing is an increasingly popular ap-

proach to increase application performance, as it combines the

flexibility of the General Purpose Processor (GPP) with the

speed of the (reconfigurable) hardware. The common solution

is to identify the application kernels and to accelerate them

in hardware. Loops are an important source of performance

improvement, as they represent or include kernels of modern

real-life applications (audio, video, image processing, etc).

In our research, we focus on parallelizing loops that contain

hardware-mapped kernels in the loop body (called K-loops).

Assuming the Molen machine organization [1] as our frame-

work, we aim at improving application performance by run-

ning multiple kernel instances in parallel on the reconfigurable

hardware, while there is also the possibility of concurrently

executing code on the General Purpose Processor (GPP).

In this paper, we address the case when data dependen-

cies that prevent parallelization by simple loop unrolling can

be eliminated by transforming the loop body using loop

skewing. The contributions of this paper are: a) a technique

for parallelizing K-loops with wavefront-like dependencies,

running all kernel instances on the reconfigurable hardware;

b) a technique for parallelizing K-loops with wavefront-like

dependencies, running part of the kernel instances in hardware

and part in software; c) experimental results for the Deblock-

ing Filter (DF) K-loop, part of the H.264 encoder/decoder.

This work is supported by the FP6 EU project hArtes, with integrated
project number 035143

The techniques are based on profiling information about area

consumption, memory transfers and execution times. Since the

DF kernel execution time is not constant, in the experimental

part we take into account the average time and the maximum

time of a number of kernel executions when applying the

presented techniques. For the unroll factor 8, we report a loop

speedup for different picture sizes between 3.47 and 4.4, when

the average execution time is considered. When the maximum

kernel execution time is considered, the speedup for the unroll

factor 8 is between 3.77 and 4.78.
The rest of this paper is organized as follows. Section II

introduces the framework and background work, while a

comparison with related work is performed in Section III.

Section IV presents the problem statement and Section V

presents the proposed methodology. Experimental results are

shown in Section VI, while we draw the final conclusions in

Section VII.

II. BACKGROUND (THE FRAMEWORK)

The work presented in this paper is related to the Delft

Workbench(DWB)1 project. The DWB is a semi-automatic

toolchain platform in the context of Custom Computing Ma-

chines (CCM) which targets the Molen polymorphic machine

organization [1], supporting the entire design process. The

Molen framework allows multiple kernels/applications to run

simultaneously on the reconfigurable hardware. The architec-

ture is based on the tightly coupled processor co-processor

paradigm, where a general purpose core processor (GPP)

controls the execution and reconfiguration of a reconfigurable

co-processor. The Molen machine organization has been im-

plemented on Virtex-II Pro device [2].
In the preliminary stage of profiling and code estimation the

application kernels are identified. Note that in this context, a

kernel is a part of the application where a large percentage of

the execution time is spent. Also, the kernel itself has to be

quite large in order to justify the hardware mapping, because

the transfer of the parameters and any other memory reads are

expensive in terms of execution time.
The source code is then transformed such that the applica-

tion kernels reside in independent functions which are anno-

tated with specific pragma directives needed by the compiler.

The purpose is to speed up the application execution by map-

ping and executing the identified kernels on the reconfigurable

hardware.

1http://ce.et.tudelft.nl/DWB/
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Then, the Molen compiler identifies functions annotated

with specific pragma directives and replaces the function calls

with associated set/execute pseudo-functions. Based on

the Architecture Description File, the compiler generates the

executable file, replacing and scheduling function calls to the

kernels implemented in hardware with specific instructions

for hardware reconfiguration and execution, according to the

Molen programming paradigm [3]. The Molen compiler is

based on the GCC compiler for PowerPC.

The DWARV automatic hardware generator [4] is used to

transform the selected kernels into VHDL code targeting the

Molen platform. The automated code generation is envisioned

for fast prototyping and fast performance estimation during

the design space exploration.

for (j=0; j<N; j++){
for (i=0; i<M; i++)
A(i,j) = F(A(i-1,j),A(i,j-1));

}

for (t=1; t<M+2*N; t++){
pmin = max(t%2, t-2*N+2);
pmax = min(t, M-1);
for (p=pmin; p<=pmax; p+=2){
i = p;
j = (t-p)/2;
A(i,j) = F(A(i-1,j),A(i,j-1));

}
}

a) loop before skewing

b) loop after skewing

Fig. 1. Loop with wavefront-like dependencies.

A. Loop skewing

Loop skewing is a widely used loop transformation for

wavefront-like computations [5], [6]. Consider the example in

Fig. 1a). In order to compute the element A(i, j) in each

iteration of the inner loop, the previous iteration’s results

A(i − 1, j) must be available already. Therefore, this code

cannot be parallelized or pipelined as it is currently written.

Performing the affine transformation (p, t) = (i, 2 ∗ j + i)
on the loop bounds and rewriting the code to loop on p and

t instead of i and j, we obtain the ”skewed” loop in Fig.

1b). The iteration space and dependencies for the original and

skewed loops are showed in Fig. 2 a) and b), respectively.

a) The dependencies for       

    the loop before skewing

b) The dependencies for   

     the loop after skewing

i

j

t=(1/2)*j+i

p

i

Fig. 2. Loop dependencies (different shades of gray show the elements that
can be executed in parallel).

III. RELATED WORK

Several research projects develop C to VHDL frameworks,

trying to exploit as much as possible the advantages of

reconfigurable systems by maximizing the parallelism in tar-

geted applications and accelerating kernel loops in hardware.

Directly connected to our work are [7], [8] and [9], where

hardware is generated after optimizing the kernel loops.

The work of Guo et al. [7] is part of the ROCCC – C to

hardware compilation project whose objective is the FPGA-

based acceleration of frequently executed code segments (loop

nests). The ROCCC compiler applies loop unrolling, fusion

and strip mining and creates pipelines for the unrolled loops

in order to efficiently use the available area and memory

bandwidth of the reconfigurable device.

Weinhardt and Luk [8] introduce pipeline vectorization, a

method for synthesizing hardware pipelines based on software

vectorizing compilers. In their approach, full loop unrolling,

as well as loop tiling and loop merging are used to increase

basic block size and extend the scope of local optimizations.

The work of Gupta et al.[9] is part of the SPARK project

and uses shifting to expose loop parallelism and then to

compact the loop by scheduling multiple operations to execute

in parallel. In this case, loop shifting is performed at low level,

unlike us who perform it at high (functional) level. The shifted

loops are scheduled and mapped on the hardware, as in the

case of the projects presented previously.

COMPAAN [10], [11] is a compiler (method and a tool

set) for transforming affine nested loops programs written

in Matlab into a Kahn Process Network specification. The

transformations supported by the Compaan compiler are: un-

folding, plane cutting, skewing and merging. Compaan is used

in conjunction with the Laura [12] tool, which operates as a

back-end for the compiler. Laura maps a KPN specification

onto hardware, for example, FPGAs.

Our approach is different than the ones above, as we do not

aggressively optimize the kernel implementation to improve

the application’s performance, but work at high (functional)

level. Our approach is to speedup the application by execut-

ing multiple kernel instances in parallel. The benefit of this

approach is that it improves the performance irrespective of

the kernel’s hardware implementation.

In this paper, we extend the work in [13], where loop

unrolling and loop shifting were considered for parallelizing

loops by executing multiple instances of a kernel concurrently.

Parallelizing with loop unrolling and/or shifting imposed sev-

eral constraints regarding the inter- and intra-iterations data

dependencies of the loops. In our current work, we relax

some of these constraints and thus we can address a wider

range of applications. We analyze loops with wavefront-like

dependencies and break these dependencies by applying loop

skewing. Although the parallelization is performed using the

loop unrolling technique, the skewed loop will no longer be

a rectangular loop as in the previous cases2. New formulas

are therefore needed to compute the estimated speedup. In

addition, a new executional strategy is proposed, exploring
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more the architectural capabilities. It assumes running part of

the kernel instances in software, in parallel with the kernel

instances that run concurrently in the hardware.

IV. PROBLEM STATEMENT

Within the context of Reconfigurable Architectures, we

define a kernel loop (K-loop) as a loop containing in the loop

body one or more kernels mapped on the reconfigurable hard-

ware. The loop may contain also code that is not mapped on

the FPGA, but will always execute on the GPP (in software).

The software code and the hardware kernels may appear in

any order in the loop body.

for (i=0; i<N; i++) {

/* Function that executes always on the GPP */
do_SW (blocks, i, ...);

/* Kernel function */

K (blocks, i, ...);
}

Fig. 3. K-loop with one hardware mapped kernel.

A simple example of a K-loop is illustrated in Fig. 3.

One challenge we address in our work is to improve the

performance for such loops by applying standard loop trans-

formations to maximize the parallelism inside the loop.

A number of loop transformations (such as loop unrolling,

software pipelining, loop shifting, loop distribution, loop

merging, or loop skewing) can be used successfully to maxi-

mize the parallelism inside the loop and improve the perfor-

mance. In previous work [13], the effects of loop unrolling

and loop shifting on K-loops containing well known multime-

dia kernels: DCT, SAD, Quantizer, convolution (Sobel) were

studied. This work imposed several constraints regarding the

inter- and intra-iterations data dependencies for the K-loop,

which are the following. In order to be able to apply loop

unrolling and run in parallel multiple instances of the kernel,

data dependencies between K(i) and K(j), for any iterations i
and j, i �= j, may not exist. In order to perform loop shifting

and then concurrently execute the code on the GPP and on the

FPGA, one more constraint needs to be satisfied: there should

be no data dependencies between do_SW(i) and K(j), for

any iterations i and j, i �= j.

In this paper, we relax the data dependencies constraints

and analyze the impact of loop skewing on accelerating K-

loops. The problem statement is the following: for a skewed

K-loop containing a kernel K, find the optimal unroll factor u
which maximizes the performance, such that a maximum of u
identical instances of K run in parallel on the reconfigurable

hardware. Note that the innermost loop of a skewed loop has

a variable number of iterations, depending on the value of the

outer index variable.

The method proposed in this paper addresses this problem,

given a C implementation of the target application and a

2In Fig. 5 from the ‘Methodology’ section we illustrate how the number
of iterations of the inner skewed loop varies.

TABLE I
GENERAL AND MOLEN-SPECIFIC ASSUMPTIONS

Loop nest
� loop bounds are known at compile time;

Memory accesses
� memory reads in the beginning, memory writes in the end;
� on-chip memory shared by the GPP and the Custom Com-
puting Units (CCUs) is used for program data;
� all necessary data are available in the shared memory;
� all transactions on shared memory are performed sequen-
tially;
� kernel’s local data are stored in the FPGA’s local memory,
not in the shared memory;

Area & placement
� shape of design is not considered;
� placement is decided by a scheduling algorithm such that
the configuration latency is hidden;
� interconnection area needed for CCUs grows linearly with
the number of kernels.

VHDL implementation of the kernel. Our algorithm com-

putes at compile time the optimal unroll factor, taking into

consideration the memory transfers, the execution times in

software and hardware, the area requirements for the kernel,

and the available area (we assume no constraints regarding the

placement of the kernel). Note that in this paper we consider

that the execution time in hardware may vary for different

kernel instances. Our assumptions regarding the application

and the framework are summarized in Table I.

for (j=0; j<N; j++) {
for (i=0; i<M; i++) {

/* Function that executes always on the GPP */
do_SW (blocks, i, j...);

/* Kernel function */

K (blocks, i, j, i-1, j-1...);
}

}

Fig. 4. K-loop with one hardware mapped kernel and inter-iteration data
dependencies.

Motivational example: Throughout the paper, we will use

the motivational example in Fig. 4. It consists of a K-loop

with two functions: do_SW — which is executed always on

the GPP — and K, which is the application’s kernel and will

be executed on the reconfigurable hardware. Implicitly, the

execution time for do_SW is smaller than the execution time

of K on the GPP.

We assume that in each iteration (i, j) data pointed by

(blocks, i, j) are updated based on data previously computed

in iterations (i − 1, ∗) and (∗, j − 1). Thus there are data

dependencies between instances of K in different iterations,

similar to the dependencies shown in Fig. 2a).

V. METHODOLOGY

In this section, we present techniques that can be applied

to K-loops that cannot be parallelized directly because of

data dependencies. Using the loop skewing transformation
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TABLE II
NOTATIONS

M , N the dimensions of the initial loop (before skewing);

Tsw number of cycles for one instance of the software
function (the function that is always executed by
the GPP — in our example, the do_SW function);

TK(sw)/TK(hw) number of cycles for K() running in soft-
ware/hardware (average of several instances or
maximum, depending on the case);

TK(hw)(u) number of cycles for u instances of K() running in
hardware, defined in (3) (the case u ≤ um);

Tloop(sw) number of cycles for the loop nest executed com-
pletely in software;

Tit(t) the hardware execution time for an iteration t,
assuming the unroll factor u;

Th/h(u)/Th/s(u) the hardware execution time for the skewed loop
when all/part of the kernels instances are running
in hardware, assuming the unroll factor u;

Sh/h(u)/Sh/s(u) the speedup for the skewed loop when all/part
of the kernels instances are running in hardware,
assuming the unroll factor u.

presented in Section II, the data dependencies are eliminated.

For the resulted loop, we show how the optimal unroll factor

is computed and what is the estimated speedup.

The unroll factor depends on the area, memory transfers

and execution times for the software/hardware functions. The

area bound for the unroll factor is pretty straightforward, as

you cannot run in parallel more kernels than they fit on the

available FPGA area.

Memory accesses: Performance increases until the com-
putation is fully overlapped by the memory transfers per-
formed by the kernel instances running in parallel and we
denote by um the unroll factor where this case happens. A
very detailed explanation of how the memory bound um is
computed is provided in [13]. We consider that Tr, Tw and
Tc are, respectively, the times for memory read, write, and
computation on hardware for kernel K, as indicated by the
profiling information. Using the notations:

Tmin(r,w) = min (Tr, Tw) ; Tmax(r,w) = max (Tr, Tw) , (1)

the memory bound is derived as:

u ≤ um =

⌊
Tc

Tmin(r,w)

⌋
+ 1 (2)

Then, the time for running u instances of K on the reconfi-
gurable hardware is:

TK(hw)(u) =

{
Tc + Tmin(r,w) + u · Tmax(r,w), if u ≤ um

u · (Tr + Tw), if u > um
(3)

Speedup: We use the notations presented in Table II.
The loop in our motivational example has the same iteration

domain as the loop in Fig. 1a), therefore after skewing the
iteration domain will be the same as in Fig. 1b). The outer
loop will have N +M−1 iterations. For simplicity, we assume
that M ≤ N . The number of iterations of the inner loop (Nit)
varies according to Fig. 5. The maximum number of iterations
of the inner loop is min(M,N) = M and there are (N −
M + 1) such iterations. This means that M is the maximum
available parallelism. A mathematical formulation for Nit is:

Nit(t) =

{
M, M ≤ t ≤ N
t, 1 ≤ t < M or N < t < M + N

(4)
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Fig. 5. The number of iterations of the inner skewed loop.
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Fig. 6. Kernels’execution pattern in an iteration.

Next, we compute the hardware execution time for the skewed
loop assuming the unroll factor u as the sum of the execution
times in each outer iteration t. First, we consider the method
with all kernel instances running in hardware and second, the
method with part of the kernels running in software. Note
that the time to execute the loop nest completely in software
(Tloop(sw)) does not depend on the unroll factor:

Tloop(sw) = (Tsw + TK(sw)) ·M ·N (5)

a) With all kernels in hardware: The hardware execu-
tion time for the skewed loop with all kernel instances running
in hardware when unrolling with factor u is:

Th/h(u) =

M+N−1∑
t=1

Tit(t) (6)

Tit(t) represents the execution time of the Nit(t) kernels in
the iteration t. Considering Nit(t) from (4), Th/h(u) becomes:

Th/h(u) = 2 ·
M−1∑
t=1

Tit(t) + (N −M + 1) · Tit(M) (7)

After skewing, the inner loop can be parallelized to improve
the performance. Depending on the relation between Nit(t),
um and u, the Nit(t) kernels in outer iteration t should
execute in groups of u concurrent kernels and not all kernels
in parallel. The groups execute sequentially, as depicted in
Fig. 6a). The number of groups with u kernels is the quotient
of the division of Nit(t) by u, denoted by q(t). One more
group consisting of r(t) kernels will be executed, where r(t)
is the remainder of the division of Nit(t) by u. Then, the time
to execute the Nit(t) kernels in hardware is:

Tit(t) = q(t) · TK(hw)(u) + TK(hw)(r(t)), (8)

Assuming the unroll factor u, let q and r be the quotient and
the remainder of the division of M by u, respectively. Then
M = q ·u+r, r < u. The hardware execution time becomes:

Th/h(u) = 2 · [ Tit(1) + . . . + Tit(u) ]
+ 2 · [ Tit(u + 1) + . . . + Tit(u + u) ]

+ . . . + 2 · [ Tit(q · u + 1) + . . . + Tit(q · u + r) ]
+ (N −M − 1) · Tit(q · u + r)

(9)
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By expanding each Tit(t) from (9) according to (8), we
obtain:

Th/h(u) = 2 · [ TK(hw)(1) + . . . + TK(hw)(u) ]
+ 2 · [ TK(hw)(u) + . . . + 2 · TK(hw)(u) ]

+ . . . + 2 · [ q · TK(hw)(u) + TK(hw)(1) + . . . +
+q · TK(hw)(u) + TK(hw)(r) ]

+ (N −M − 1) · [ q · TK(hw)(u) + TK(hw)(r) ]
(10)

Then, by grouping all the similar terms, Th/h(u) becomes:

Th/h(u) = 2 · q ·
u−1∑
i=1

TK(hw)(i) + 2 ·
r−1∑
i=1

TK(hw)(i)

+ (N −M + 1) · TK(hw)(r)

+ q · (N − u + 1 + r) · TK(hw)(u) (11)

The speedup at loop level will be:

Sh/h(u) =
Tloop(sw)

Th/h(u) + Tsw ·M ·N . (12)

b) With part of the kernels in software: It is possible

that better performance is achieved if not all kernel instances

from an iteration are executed in hardware. Since the degree

of parallelism varies with the iteration number according to

Fig. 5, balancing the number of kernels that run in software

and in hardware for each iteration would lead to a significant

overhead. Assuming a certain unroll factor u (u < M ), we

look only at the iterations t with Nit(t) > u and compute

the number of kernels (denoted by v(t)) that need to run in

software such that the iteration execution time is minimized.

There are N + M − 2 · u − 1 such iterations, namely the

iterations t with u < t ≤ N + M − u.
Then, v(t) is the number of kernels for which the kernels

running in software execute in approximately the same amount
of time as the kernels running in hardware. The time to execute
v(t) kernels in software is:

TK(sw)(v(t)) = v(t) · TK(sw) (13)

The execution pattern for Nit(t) = 22, with v(t) = 2 kernel

instances running in software is depicted in Fig. 6b). In this

context, qv(t) and rv(t) are the quotient and the reminder of

Nit(t)− v(t) divided by u, respectively.
The time to execute the remaining Nit(t)− v(t) kernels in

hardware is:

TK(hw)(t, v(t)) = qv(t) · TK(hw)(u) + TK(hw)(rv(t)) (14)

By using (3) in (14), TK(hw)(t, v(t)) becomes:

TK(hw)(t, v(t)) = (Nit(t)− v(t)) · Tmax(r,w) +

+

⌈
Nit(t)− v(t)

u

⌉
· (Tc + Tmin(r,w)) (15)

Then, the optimum number of kernels that should run in
software in the iterations t with Nit(t) > u is the closest
integer to the value of v(t) that satisfies the relation:

TK(sw)(v(t)) = TK(hw)(t, v(t))⇐⇒ (16)

v(t) · (TK(sw) + Tmax(r,w)) = Nit(t) · Tmax(r,w) +

+

⌈
Nit(t)− v(t)

u

⌉
· (Tc + Tmin(r,w)) (17)

The value of v(t) depends on the number of kernels in

iteration t (Nit(t)),which represents the available parallelism,

and on the weight of the memory transfers (Tmax(r,w))). The

larger the value of Nit(t) and the weight of the memory

transfers compared to the kernel’s execution time (in software

and hardware), the larger the value of v(t). The unroll factor

u also influences the number of kernels to execute in software,

as a larger value of u implies that more kernels will execute

in hardware and fewer in software. These considerations are

illustrated in Section VI, where we present the experimental

results.
By rounding the value of v(t) to the nearest lower integer,

the execution time for the kernels in software in iteration t
will not be larger than the execution time for the kernels in
hardware. Therefore, the overall time for executing all the
kernel instances in iteration t is given by the hardware time:

Tit(t, v(t)) = TK(hw)(t, v(t)) ⇒ (18)

Tit(t, v(t)) = qv(t) · TK(hw)(u) + TK(hw)(rv(t)) (19)

The hardware execution time for unroll factor u when part of
the kernels execute in software is:

Th/s(u) = 2 ·
u∑

t=1

Tit(t) +

M+N−u∑
t=u+1

Tit(t, v(t)) (20)

Th/s(u) = 2 ·
u∑

t=1

Tit(t) + 2 ·
M−1∑

t=u+1

Tit(t, v(t)) +

N∑
t=M

Tit(M, v(M))

(21)

Then, by expanding each Tit and grouping all the similar
terms, Th/s(u) becomes:

Th/s(u) = 2 ·
u−1∑
i=1

TK(hw)(i) +

+

(
2 + 2 ·

M−1∑
i=u+1

qv(i) + (N −M + 1) · qv(M)

)
· TK(hw)(u)+

+

(
2 ·

M−1∑
i=u+1

TK(hw)(rv(i))

)
+ (N −M + 1) · TK(hw)(rv(M))

(22)

Similarly to (12), the speedup at loop level when balancing
the kernel execution in software and hardware will be:

Sh/s(u) =
Tloop(sw)

Th/s(u) + Tsw ·M ·N . (23)

Note that (12) and (23) are valid under the assumption that

the software code (do_SW) and the hardware-mapped kernel

execute sequentially. In [13] it is proved that it is always

beneficial to apply loop shifting for breaking a specific kind of

dependencies (task-chain dependencies) between the do_SW
function and the kernel, in order to enable the software-

hardware parallelism. The same technique can be applied

also in conjunction with the loop skewing and thus the

final execution time and the speedup could be improved by

concurrently executing the software and the hardware code.
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Area considerations: When multiple kernels are mapped

on the reconfigurable hardware, the goal is to determine the

optimal unroll factor for each kernel, which would lead to

the maximum performance improvement for the application.

For this purpose, the model needs one more parameter: the

calibration factor – denoted here by F . The calibration factor

has been previously introduced in [14] and a more detailed

explanation and an example of how it influences the choice

of the unroll factor is presented in [13]. It is a positive

number decided by the application designer, which determines

a limitation of the unroll factor according to the targeted trade-

off. (One may not want to increase the unrolling if the gain

in speedup would be only by a factor of 0.1%, but the area

usage would increase by 15%.)
Denoting by ΔS(u + 1, u) the relative speedup increase

between unroll factors u and u + 1 and by ΔA(u + 1, u)
the relative area increase (which is constant since all kernel
instances are identical), the simplest relation to be satisfied
between the speedup and necessary area is:

ΔS(u + 1, u) > ΔA(u + 1, u) · F, where: (24)

ΔA(u + 1, u) = A(u + 1)−A(u) = Area(K) ∈ (0, 1) (25)

ΔS(u + 1, u) =
Sloop(u + 1)− Sloop(u)

Sloop(u)
. (26)

Only in the ideal case
Sloop(u + 1)

Sloop(u)
=

u + 1
u

, meaning that

Sloop(u + 1) < 2 · Sloop(u), ∀u ∈ N, u > 1 (27)

and the relative speedup satisfies the relation:

ΔS(u + 1, u) ∈ [0, 1), ∀u ∈ N, u > 1. (28)

Thus, F is a threshold value which sets the speedup bound
for the unroll factor. How to choose a good value for F is
not within the scope of this research. However, it should be
mentioned that a greater value of F would lead to a lower
bound, which translates to ‘the price we are willing to pay in
terms of area compared to the speedup gain is small’. Also,

the value of F should be limited by
ΔS(2, 1)
Area(K))

, which is the

value that would allow the unroll factor of 2 — a larger value
would lead to the unroll factor 1 (i.e., no unroll):

F ∈
[
0,

ΔS(2, 1)

Area(K))

]
. (29)

Based on these formulas, the optimal unroll factor and the

estimated achieved speedup can be computed in linear time.

VI. RESULTS

In this section, we illustrate the methods presented in

Section V. The performance of our method depends on the

kernel implementation, and the order of magnitude of the

achieved speedup is not relevant for the algorithm.

The analysis was performed on one of the most time

consuming parts of the H.264 video codec, Deblocking Filter

(DF)[15], which is a part of both encoder and decoder. The

code presented in Fig. 7 represents the main loop of the DF.

In the H.264 standard, the image is divided in blocks of 4× 4
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Fig. 7. Deblocking Filter main loop.
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Fig. 8. Deblocking Filter applied at MB level.

pixels. The color format is YCbCr 4:2:0, meaning that the

chrominance (chroma) components are sub-sampled to half

the sample rate of the luminance (luma) - in both directions.

The blocks are grouped in macroblocks (MB), each MB being

a 4× 4 block matrix for the luma and 2× 2 block matrix for

the chroma components. Each block edge has to be filtered,

the DF being applied to each decoded block of a given MB

for luma and chroma samples. The pseudocode for the DF is

shown in Fig. 8. For the processed MB, first vertical filtering

is applied (luma and chroma), followed by horizontal filtering.

The vertical and horizontal filtering cannot be interchanged or

executed in parallel because of data dependencies, however

the luma and chroma filtering can be performed in parallel.

The VHDL code for the filter was automatically generated

with the DWARV [4] tool. The synthesis results using Xilinx

XST tool of ISE 8.1 for different Xilinx boards are presented

in Table III. The code was executed on the Virtex II Pro–

XC2VP30 board. The execution times were measured using

the PowerPC timer registers. For the considered implementa-

TABLE III
SYNTHESIS RESULTS

Platform Slices [%] Freq[MHz]

XC2VP30 2561 18.70 178.296

XC2VP70 2552 7.72 177.953

XC2VP100 2606 5.91 151.400
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TABLE IV
EXECUTION TIMES FOR THE DF (CYCLES)

Software Hardware

average 87119 106802

maximum 103905 119166

tion, the shared memory has an access time of 3 cycles for

reading and storing the value into a register and 1 cycle for

writing a value to memory;

In the profiling stage, the execution times for the DF

running in both software and hardware for 80 different MBs

were measured. The average and the maximum values that

were measured are presented in Table IV. Also, the profiling

indicates the (maximum) number of memory transfers per

kernel – 2424 memory reads and 2400 memory writes. The

execution time for the software function that computes the

parameters is 2002 cycles.
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Fig. 9. DF speedup for different picture sizes (average MB exec time).
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Fig. 10. DF speedup for different picture sizes (maximum MB exec time).

Figures 9 and 10 illustrate the results when the first of

the presented methods is considered, with all kernel instances

running on the FPGA. Equations (5), (11) and (12) were

used for computing the different speedups for the skewed and

unrolled DF loop for various image sizes and unroll factors.

The speedup considering the average execution times for the

kernel are illustrated in Fig. 9, while the speedups for the

maximum execution times are presented in Fig. 10.

The results are heavily influenced by the performance of the

kernel implementation in hardware. As shown in Table IV,

the hardware implementation is slower than the software

one, which results in a performance decrease (0.85 and 0.89

speedup) when no unrolling is performed. However, unrolling

even with a factor of 2 already compensates the slow hardware

implementation, giving a speedup of 1.5 – 1.6. The perfor-

mance does not increase linearly with the unroll factor because

of the variable number of iterations of the skewed loop, being

influenced also by the relation between the unroll factor and

M (M is the maximum degree of parallelism for most of the

iterations of the skewed loop).

The results show that better performance is obtained when

parallelizing larger loops. The reason is that the bigger the loop

size, the larger the number of iterations that have a higher

available degree of parallelism (M ). Note that for the CIF

picture format (320×240 pixels), the speedup saturates at the

unroll factor 15. This happens because the DF loop size is

equal to the picture size divided by 16, meaning that in this

case N = 20 and M = 15.
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Fig. 11. DF speedup for FHD format for different unroll factors.

Figure 11 presents the speedup for the FHD picture format

for unroll factors between 6 and 16, considering both types of

execution presented in Section V. The first type of execution

consists of running all kernel instances in hardware, while

the second places part of the kernel instances in software. A

performance increase between 4% and 15% is noted for the

second type. The performance would increase more for a larger

number of iterations or if the memory I/O (Tmax(r,w)) would

represent more of the execution time.
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Fig. 12. How the number of kernels in software varies with the unroll factor.

Figure 12 shows how the number of kernel instances that

execute in software varies with the unroll factor for the FHD

picture format. The depicted numbers represent the sum of

software executed kernels across all loop iterations, approx.

2–2.45% of the total number of kernels for the FHD format.

The general trend is that a larger unroll factor means fewer

kernels to execute in software, because more kernels will
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TABLE V
SPEEDUPS FOR THE UNROLL FACTOR U=8

CIF SD HD FHD

average (hw only) 3.47 3.83 3.96 4.04

average (hw + sw) 3.65 4.11 4.20 4.40

maximum (hw only) 3.77 4.18 4.32 4.42

maximum (hw + sw) 3.93 4.47 4.55 4.78

execute in hardware in each group. See Fig. 6 for the kernels’

execution pattern, where one line of kernels represents a group.

On the same figure it can be seen that the total number of

kernel instances that execute in software is larger for FHD-

avg than for FHD-max. This happens because the memory I/O

represents a larger percentage from the total execution time

for FHD-avg, compared to FHD-max. The reason is that the

weight of the I/O time from the total execution time directly

influences the number of software scheduled kernels, as seen

from equation (17).
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Fig. 13. The software scheduled kernels vs. the total number of kernels.

On the basis of one iteration which has a variable number of

kernels over time (see Fig. 5), Fig. 13 presents how the number

of kernel instances that execute in software varies with the total

number of kernels in that iteration. When the total number

of kernels in one iteration increases, the total execution time

increases and therefore more kernel instances can be scheduled

for software execution.

Taking into account also area requirements, the optimum

unroll factor depends on the desired trade-off between area

consumption and performance. If for instance the metric cho-

sen for the optimum unroll factor is to have a speedup increase

of at least 0.3 comparing to the previous unroll factor, then the

optimum unroll factor for most picture sizes in our example

is 8. The estimated speedups achieved for the unroll factor

u = 8 for all pictures sizes and using the average/maximum

kernel execution times are depicted in Table V.

VII. CONCLUSION

In this paper, we address parallelizing K-loops with

wavefront-like dependencies, thus relaxing the constraints im-

posed by using only loop unrolling and/or shifting for loop

parallelization. Two methods were presented, the first one

considering that all instances of a kernel K will run on the

reconfigurable hardware. The second method considers that

part of the kernel instances run in hardware and part in soft-

ware. Both methods are based on loop skewing and unrolling

for computing the optimal number of kernel instances that will

run in parallel on the reconfigurable hardware.

The second method is more suitable for a large number of

iterations and/or when the I/O represents a significant part of

the kernel, limiting the degree of parallelism.

The input data for the algorithms consist of profiling infor-

mation about memory transfers, execution times in software

and hardware, and information about area usage for one kernel

instance and area availability.

The presented methods can be used to improve performance

for any VHDL implementation of the kernel, if there are

enough resources available (for instance, when moved to a

different platform). Moreover, their implementation in the

compiler decreases the time for design-space exploration and

makes use efficiently of the hardware resources.

In the experimental part, we analyzed the case of the

Deblocking Filter loop of the H.264 encoder/decoder. Using

an automatically generated VHDL code for the edge filtering

part of the DF, we showed that a speedup between 3.4 and

4.8 can be achieved with the unroll factor 8, depending on the

input picture size.

In our future work, we consider extending the model by

supporting loops with an arbitrary number of hardware kernels

and with pieces of software code also occurring in between

the kernels.
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