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Abstract—We propose an ANSI/IEEE-754 double precision
floating-point matrix-vector multiplier. Its main feature is the
capability to process efficiently both Dense Matrix-Vector Mul-
tiplications (DMVM) and Sparse Matrix-Vector Multiplications
(SMVM). The design is composed of multiple processing elements
(PE) and is optimized for FPGAs. We investigate theoretically
the boundary conditions when the DMVM equals the SMVM
performance with respect to the matrix sparsity. Thus, we can
determine the most efficient processing mode configuration with
respect to the input data sparsity. Furthermore, we evaluate our
design both with simulations and on real hardware. We experi-
mented on an Altix 450 machine using the SGI Reconfigurable
Application Specific Computing (RASC) services, which couple
Dual-Core Itanium-2 processors with Virtex-4 LX200 FPGAs.
Our design has been routed and executed on the Altix 450
machine at 100 MHz. Experimental results suggest that only two
PEs suffice to outperform the pure software SMVM execution.
The performance improvement at the kernel level scales near
linearly to the number of configured PEs both for the SMVM
and DMVM. Compared to related work, the design does not
indicate any performance degradation and performs equally or
better than designs optimized either for SMVM or DMVM alone.

I. INTRODUCTION

Many scientific applications involve computations with huge
matrices of double precision floating-point data - both sparse
and dense. When the number of zero elements is dominant in a
matrix, the latter is considered sparse and it should be stored
and processed in a specific way to avoid the huge number
of trivial operations with zero elements. On the other hand,
dense matrix operations require different design approaches,
which are mainly focused on identifying and exploiting higher
data-level parallelism and target efficient utilization of the
memory bandwidth. Traditionally, in many complex scien-
tific applications, the typical way to perform the computa-
tionally intensive sparse/dense matrix operations efficiently
is to employ supercomputing power, achieved by numerous
interconnected general purpose processors (GPP). The main
drawback of this solution is its high hardware cost. An alter-
native approach to accelerate matrix computations relies on
reconfigurable hardware, exploiting the huge processing par-
allelism the contemporary FPGA devices allow. The different
design targets for sparse and dense matrix operations, however,
traditionally impose separate design solutions for each of the
two cases. Therefore, in literature, all reconfigurable proposals
support either sparse or dense matrix operations, assuming

that the target application data are always either sparse or
dense. In reality, however, data often change their sparsity
dynamically, resulting into performance degradation of the
specific hardware. Therefore, a matrix processor that can
easily switch between sparse and dense computational modes
preserving high performance efficiency, would alleviate this
data dependant speed degradation problem.

In this paper, we consider one of the most popular matrix
operations - matrix-vector multiplication and, contrary to the
tradition, we approach the design problem both from the dense
and the sparse data prospective. As a result, we propose
a design capable to process equally well both sparse and
dense matrices given particular resource limitations such as
bandwidth and silicon area. Our main contributions are:

• We merge an original sparse matrix-vector multi-
plier (SMVM) with dense matrix-vector multiplication
(DMVM) in an original design based on a common
double precision floating-point PE;

• We investigate theoretically the boundary conditions for
performance efficient processing between sparse and
dense matrix computational modes;

• The proposed design supports multiple operations,
namely: Sparse Matrix by Dense Vector multiplication,
Dense Matrix by Dense Vector multiplication, Dense
Matrix by Dense Matrix multiplication;

• Experimental results on a RASC augmented SGI Al-
tix 450 machine suggest no performance degradation
compared to related DMVM work and higher sustained
performance compared to pure software implementations.

• Our design achieves the highest sustained performance
among related reconfigurable proposals for SMVM rang-
ing between 70% and 99% of the peak performance.

The remainder of the paper is organized as follows: In
Section II, the computational schemes we utilize for both
DMVM and SMVM are introduced. Section III describes the
proposed microarchitecture for the SMVM design, followed
by the integrated design description that can compute both
SMVM and DMVM. Furthermore, the theoretical analysis
of the boundary condition for switching between sparse and
dense matrix multiplications are presented in Section IV.
Section V reports our experimental results and provides their
analysis. Finally, Section VI concludes the paper.
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II. COMPUTATIONAL SCHEME

Mathematically, the matrix vector product c = Ab, with
dimensions of A M ×N , b and c - N × 1, is presented as:

ci =
N−1∑
x=0

ai,x · bx (1)

where ai,x is the i-th element in column x of matrix A, bx

is the x-th element of the input vector b, and ci is the i-
th element of vector c. For the DMVM in our design, we
adopt the computational scheme from [1]. Equation (1) can
be defined for the sparse matrix vector product identically.
The difference is that the sparse matrix stores non-zeroes
only. Different sparse matrix formats have been proposed to
compress the storage space efficiently. We consider the most
widely referenced and used one - the general Compressed Row
Storage (CRS) format, illustrated in Figure 1.

Fig. 1. The Compressed Row sparse matrix storage format.

For SMVM, we propose a computational scheme derived
from the DMVM scheme. The proposed SMVM computa-
tional scheme is illustrated in Figure 2. Identically to DMVM,
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Fig. 2. Computational scheme of the SMVM product.

we assign several matrix rows to a PE. Ideally, we compute
new temporary row results each cycle, by adding the product
of the next non-zero value of the current row to the appropriate
value of b. Due to the different row lengths, each executable
row is processed immediately after a preceding row has been
completed. This way, higher computational density and better
resource utilization are achieved, leading to higher design

performance. Practically, the latency to complete a floating
point operation requires multiple cycles, which have to be
considered when the scheme from Figure 2 is implemented.

III. MICROARCHITECTURE

The main unit of the Processing Element is an improved
version of the multiply-add core component presented in [1].
An overview of the PE for the SMVM is depicted in Figure 3.
The total latency of the multiply-add core is 11 cycles. Since

Fig. 3. Organization of the SMVM Processing Element

the adder latency in the reference core [2] is 8 cycles, 8
different rows are simultaneously active during a computation.
To overlap the computations with the storage initialization of
the memory, we create 16 memory slots, organized in pairs.
We refer to a slot as to a memory space reserved for a
particular time period. From each pair of slots, one is used
for computations and the other - for communications. The
functionality of each component, residing inside the PE, is
briefly described below.

Input Control Unit: The Input Control Unit controls the
inputs of the PE, its main tasks are as follows:
• Accept rows. Each row is stored in a free slot.
• Forward row related information, such as size and row in-

dex, in the Info Table once the row is read in completely.
Validate the slot, so that the row can be computed.

• Write the values of A, b and c into the correct indexes.
When all elements of the row are read in, the valid signal

to the component Info Table is raised.
Info Table: The component Info Table stores all informa-

tion required to use the slots. For each slot, it stores: the
corresponding row size, the processed row index, current
element index, a valid data flag and a flag, that indicates
whether a slot is active (used for computation) or is used for
communication.

Load Control Unit: The load controller is based on one
bit up counter that generates the addresses for the Info Table
unit. If a non-valid row has access to the multiply add unit, the
Floating Point unit will be disabled. If a valid row is returned,
a row address for the Memories A, B and C will be generated,
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based on the switch value for the current block, its address,
and the value of current index. The multiply-add unit will be
enabled if the row stored in the slot that currently accesses the
floating point unit contains valid data. If current index equals
the row size of the slot, additional controls signal the final
row results. These control signals are passed together with
row index through the Floating Point unit to the output of the
PE. When a row has finished its computations, the controller
indicates that the slot has became free.

Memories A, B and C: Memory A is used to store the
active row elements of matrix A, memory B - the elements of
vector b, memory C - the initial values of vector c, temporary
and final row results. Individual rows of the matrix are as-
signed to empty memory slots. The address signals connected
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Fig. 4. Organization of memory A.

to memory A are depicted in Figure 4. The Input Controller
stores elements at the correct addresses by combining the
active signal, slot id and the row offset. The load controller
generates the address to read the data and the output of the
memory is forwarded directly to the Multiply-Add unit.

Memory A consist of 2 × row length × slots number
entries, where number 2 represents one memory for buffering
and another one for active computations for each slot and
slots number equals the latency of an adder, in our case it is 8.
Memory B is organized in exactly the same way as memory A.

Memory C is responsible for storing the initial, temporary
and final row results. The Multiply Add unit is reading
temporary results from the memory address generated by the
Load Control Unit and stores the new temporary result at the
same location. Only one entry is required per slot to store
initial or temporary row results. Two Dual Port memories,
both 8 entries long, store the values for all the slots.

Table I reports the total hardware cost for each component
of the PE. The total cost in the table is determined in terms
of Xilinx Virtex 4 slices (used logic + routing) for the PE.
It does not include 8 additional DSP48 blocks (18 x 18 bit
multipliers) and the Block RAMS for memories A, B and C.

TABLE I
POST PLACE-AND-ROUTE RESULTS FOR THE COMPONENTS OF THE PE

REPORTED BY THE ISE 10.1 TOOL SET FOR VIRTEX 4

Component slices frequency (MHZ)
Input Controller 95 265
Info Table 162 252
Load Controller 84 449
Multiply Add 1,414 159
Processing Element 2,140 156

All the memories inside the Info Table that store row related
information are generated using distributed reconfigurable
logic.

FPGA Virtex 4

Fig. 5. Organization of the memories for the SGI RASC implementation.

Memory controller: Currently, we implemented relatively
simple, unoptimized memory controllers that feed data from
the memories to the PE compliant with the interface of
the Input Control Unit. Figure 5 illustrates the mapping for
2 PEs of the arrays that store the matrix in the external
FPGA memory banks of the SGI RASC-core. One SGI Altix
450 RASC-core contains as many as 5 SRAM banks (Off-
Chip Memory) and 4 Input and Output DMA streams, which
directly connect the CPU main memory with the FPGA.

Combined PE for Sparse and Dense Matrix Multi-
plication: The combined processing element is the PE for
the SMVM, slightly modified with some control signals that
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multiplex addresses to the memories. The PE for the SMVM in
Figure 3 is similar to the Dense Matrix multiplication (DMM)
PE with the following differences:
• The DMM PE does not require the following compo-

nents: The Input Control Unit, the Info Table and the
Load Control Unit. When a DMVM is performed these
components stay idle. The area cost for these components
is very small compared to the total PE cost as can be
observed from Table I.

• Memory A is reused both by the DMVM and SMVM.
Multiplexors select, which addresses gain memory access.

• Memory B is not available for the DMM PE, a register
is used to store values of vector b instead.

• Similarly to memory A, a multiplexor is used to load the
values from the correct addresses of memory C into the
pipelines of the multiply-add core.

IV. THEORETICAL PERFORMANCE ANALYSIS

In this section, we analyze the proposed design theoretically
through several mathematical formulas. Our main target is
to identify the boundary conditions, which determine the
configuration with the highest performance efficiency with
respect to data sparsity. The performance is mainly limited
by the bandwidth and by the available hardware, i.e., by
the number of PEs. In the equations to follow, we denote
performance with P [FLOPS], and the number of PE - with
NPE ; the operation frequency is fop [Hz]. Each PE contains
one multiplier and one adder, i.e., it performs 2 floating-
point operations per cycle. Therefore, the performance for the
SMVM (Psparse) is limited by NPE :

Psparse = 2NPE
fop (2)

Let us denote the number of non-zero elements by Nz and the
common dimension of the matrix and the vector by N . Then
the total number of memory accesses can be approximated to
2.5Nz + 2.5N and thus the performance as a function of the
limited bandwidth B can be determined by:

Psparse =
2NzB

5
2Nz + 5

2N
=

4NzB

5 (Nz + N)
(3)

Furthermore, the number of floating point operations
for the sparse matrix are 2Nz and the execution time
texec = totaloperations

P ,⇒

texec,sparse =
5(Nz + N)

2B
(4)

The performance for the dense matrix vector product is limited
by 2B and the number of operations required are 2N2 ⇒

texec,dense =
N2

B
(5)

The sparsity of a matrix can be defined as:

γ =
Nz

N2
(6)

By equalizing the execution time for DMVM (4) and SMVM
(5) and solving for Nz , we can substitute in (6):

γ′ = 0.4− 1
N

(7)

The boundary condition separating the efficient DMVM
from SMVM processing is determined by (7). If the matrix
is sparser than γ′, it is faster to perform SMVM, otherwise
DMVM should perform better. Figure 6 depicts the above
considerations graphically.
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Fig. 6. Boundary condition to select between SMVM and DMVM.

V. EXPERIMENTAL RESULTS

Our design has been developed using the Xilinx ISE 10.1.3
toolset and simulated in Modelsim 6.0d. The SMVM and
DMVM VHDL codes have been targeted to RASC [3], in-
stalled in an Itanium-2 based SGI Altix 450 server. A number
of matrices from various real-life engineering and scientific
applications have been considered as benchmarks. The SMVM
design is evaluated for the matrices shown in Table II, obtained
from the University of Florida Sparse Matrix Collection [4].
For each matrix, Table II includes: the matrix/vector dimension
N , the number of non-zero elements Nz , the sparsity γ, the
minimal and the maximal non-zero entries per row.

Software and Hardware performance measurement:
Figure 7 provides the performance results of our hardware
design compared to software execution on Itanium-2 GPP.
As a reference software we used OSKI [5], which is an
optimized kernel for sparse matrix vector products. It includes
optimizations like cache and register blocking. The OSKI
tool has been compiled with the Intel 10.1.015 compiler
with optimization level -O3. The Itanium-2 9130M is used
for the software experiments and contains 16 kB L1 data
cache, 256 kB L2 data cache and 4 MB L3 data cache.
The machine operates at 1669 MHz, with the Front Side Bus
(FSB) operating at 667 MHz. Figure 7 provides performance
results for SMVM hardware with overdimensioned memory
bandwidth. For this case, the performance is limited by the
number of PEs and each array is stored in a separate memory.
The charts suggest that the performance scales well with the
number of PEs. The design is implemented in real hardware
and the performance is measured for Custom Computing Units
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TABLE II
PROPERTIES OF MATRICES USED TO EVALUATE OUR DESIGN

Number Kind of matrix Matrix N Nz γ[∗10−4] min/row max/row
1 Power Network problem gemat12 4929 33044 13.6 2 44
2 acoustics problem k3plates 11107 378927 30.7 15 58
3 semiconductor device problem wang3 26064 177168 2.6 4 7
4 optimization problem jnlbrng1 40000 199200 1.2 4 5
5 Thermal problem epb3 84617 463625 0.6 3 6
6 Optimization problem cont-300 180895 988195 0.3 2 6
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Fig. 7. Performance measured in software and hardware with overdimensioned bandwidth of 22.6 GB/s.

(CCUs) consisting of 1, 2, 4, and 8 PEs. Each PE is set to
operate at 100 MHz and the peak performance per PE is 200
MFLOPS. From Figure 7, it can be observed that the proposed
design is scalable and still reaches close to peak performance
when the bandwidth is not a speed limiting factor.

Related Work: To our best knowledge, no related work
exists on reconfigurable designs, capable to compute both
dense and sparse matrix products in double precision floating-
point arithmetic. In [1], [2], the starting point of our design,
the dense matrix multiplications, are compared and analyzed
to similar related works. In this section, we analyze and
compare the performance of our sparse matrix vector product
to the current available literature. Regarding related work
on SMVM, Table III summarizes the peak performance, the
actual performance in percentages of the peak performance,
the required bandwidth, the area in terms of Virtex 4 slices
and finally - the highest operating frequency.

In [6], the authors arrange PEs in a bidirectional ring to
compute y = Aib, with i being a natural number. The proposed
design significantly saves I/O bandwidth due to local storage
of the matrix and intermediate results. The local storage
used for the matrix and for intermediate results is limited
by the available On-Chip memory. In [7], a sparse matrix
vector multiplication is performed as data from the matrix
are converted to “pipelinable vertical nonzero stripes”. The
input vector is streamed in and the stripes are multiplied by

the corresponding vector elements. The design performs well
if the number of stripes is bounded, which is the case, for
example, in finite element method (FEM) matrices.

The design in [8] splits the input matrices vertically, and
computes for each vertical slice the temporary row results.
Their presented hardware unit does not include the cost of
these temporary results and the additions need to be performed
on the CPU. The design is based on a tree, which sums up
row results. Zeros need to be padded to this adder tree when
the number of non-zeros within a row is not a multiple of the
number of adders in the first stage. A special technique, called
merging, is used to reduce this overhead. As the number of PE
increases, the tree-based design requires complicated logic to
reduce the hardware overhead and to increase performance. In
Table IV, we selected randomly four matrices with different
sizes from the 11 benchmarks in [8]. For each matrix, Table IV
contains: its dimension N ; the number of non-zeroes Nz;
the sparsity γ; the sustained performance as a percentage of
the peak performance for the real bandwidth of 22.6 GB/s;
predicted performance for a limited bandwidth of 8 GB/s; and
the performance of [8] for 8 GB/s. Both designs, ours and
from [8], achieve equal maximal peak performance of 1600
MFLOPS at 8 GB/s, which is therefore assumed for the last
two columns of Table IV. The figures suggest that our design
achieves a better sustained performance, as percentage of the
same peak performance, than [8] for all matrices considered.
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TABLE III
PERFORMANCE RESULTS FOR THE SMVM OF RELATED WORK

Ref Peak [MFLOPS] Sustained [MLOPS] % Sustained [MLOPS] B [GB/s] Area [slices] fop [MHz]
[6] 2240 33%-66% 739-148 N.A N.A 140
[7] 1760 17%-86% 312-1520 8.0 ** 110
[8] 2880 30%-75% 864-2160 14.4 *23856 165
[8] 1600 20%-79% 320-1264 8.0 *16613 165

This 1600 69%-98% 1104-1571 8.0 22700 100
* denotes area cost for reduction tree only.

** Area cost for this design equals 30% of logic resources and 40% internal RAM of Altera Stratix S80

TABLE IV
DESIGN COMPARISON TO [8]

matrix name Application Area N Nz γ % Ppeak [this] % of Ppeak [this] % of Ppeak [8]
[∗10−4] (B=22.6 GB/s) (PPEAK = 1.6 GFLOPS; B=8 GB/s)

raefsky3 Fluid/structure 21200 148878 3 99 97 79
memplus Circuit simulation 17758 99147 7 79 68 18
rdist1 Chemical processes 4134 94408 55 85 79 60
mcfe Astrophysics 765 24382 417 78 74 59

The design in [9] does not assume any restrictions on the
input format. The authors implement a reduction tree without
the zero padding overhead which is easily scalable. In our
design, we created slots which access the floating point core
performance efficiently. With this approach, we obtain nearly
peak performance for reasonably large matrices, without the
need of a reduction tree. In [9], the autors compare their design
to an Intel Pentium 4 machine and obtain relative speedups
between 6 and 18.

All the related works, cited above, are based on simulations
and analytical performance estimations. For our design, we
provide actual results, measured from real hardware imple-
mentations and experiments. Moreover, we considered a high
latency Off-Chip memory. The weakest point of our current
design is the memory controller that feeds data into the PEs.
In the future, we plan to design an efficient memory controller,
similar to the one proposed in [9].

VI. CONCLUSION AND FUTURE WORK

We proposed a reconfigurable hardware design that
computes both sparse and dense matrix vector multiplications
performance efficiently. The design was based on multiple
processing elements array, it was ANSI/IEEE-754 compliant
and used double precision floating point arithmetic. The
scalability and high performance efficiency of our proposal
was evaluated experimentally on an Itanium-2 based SGI
Altix 450 server, augmented with RASC blades. Experimental
results suggested that our matrix-vector multiplier could
provide higher sustained performance than related works.
Moreover, we can safely conclude that the proposed approach,
grounded on FPGA accelerated matrix vector multiplication,
severely outperforms traditional GPP-based approaches. In
the future, the design can be improved with more efficient
memory controllers optimized towards higher bandwidth and
performance.
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