
Scalability of Macroblock-level Parallelism for H.264 Decoding

Mauricio Alvarez Mesa∗, Alex Ramı́rez∗†, Arnaldo Azevedo‡, Cor Meenderinck‡, Ben Juurlink‡, and Mateo Valero∗†
∗Universitat Politècnica de Catalunya. Barcelona. Spain

Email: alvarez@ac.upc.edu
†Barcelona Supercomputing Center. Barcelona. Spain.

Email: alex.ramirez@bsc.es, mateo.valero@bsc.es
‡Delft University of Technology. Delft. The Netherlands.

Email: azevedo@ce.et.tudelft.nl, cor@ce.et.tudelft.nl, B.H.H.Juurlink@tudelft.nl

Abstract—This paper investigates the scalability of Mac-
roBlock (MB) level parallelization of the H.264 decoder for
High Definition (HD) applications. The study includes three
parts. First, a formal model for predicting the maximum per-
formance that can be obtained taking into account variable pro-
cessing time of tasks and thread synchronization overhead. Sec-
ond, an implementation on a real multiprocessor architecture
including a comparison of different scheduling strategies and a
profiling analysis for identifying the performance bottlenecks.
Finally, a trace-driven simulation methodology has been used
for identifying the opportunities of acceleration for removing
the main bottlenecks. It includes the acceleration potential
for the entropy decoding stage and thread synchronization
and scheduling. Our study presents a quantitative analysis
of the main bottlenecks of the application and estimates the
acceleration levels that are required to make the MB-level
parallel decoder scalable.

Keywords-Video CODEC Parallelization, H.264/AVC, Multi-
cores, Chip-multiprocessors, parallel scalability.

I. INTRODUCTION

The trends in the video coding application domain are
toward systems with higher levels of quality and at the
same time with a high compression efficiency [1]. The
trend towards high quality systems has pushed the adoption
of High Definition (HD) digital video and even higher
definitions are being proposed. To provide higher compres-
sion efficiency without sacrificing quality advanced video
codecs like H.264 and VC-1 have been developed [2]. The
combination of the complexity of these video codecs and the
higher quality of HD systems has resulted in an important
increase in the computational requirements of the emerging
video applications [3].

At the same time, there is a paradigm shift in computer
architecture towards chip multiprocessors (CMPs) due to
the scalability limits of single core processors. As a con-
sequence, it is expected that the number of cores on a
CMP will double every processor generation, resulting in
hundreds of cores per die in the near future [4]. An important
question is whether video coding applications can benefit
from the performance offered by CMP architectures. As a
result, an important research effort has been made in the
last years for developing techniques for parallelization of

codecs like H.264. One of the most promising techniques is
the parallelization at the level of MacroBlocks (MBs) [5],
[6], [7]. This type of parallelization has been presented as
scalable and efficient, but most of the analysis have been
made using simplified theoretical or simulation models, or
have been based on real executions with low definition
videos and a small number of cores. The primary aim of
this paper is to provide a deeper understanding of the scal-
ability of MB-level parallelism on multicore architectures
for HD applications. Our objective is to identify the main
bottlenecks and to evaluate the impact of acceleration for
removing them.

Scalability has been analysed from different perspectives.
First, we have enhanced a formal model that take into
account the variable processing time of the inner kernels
and the overhead of thread synchronization for estimating
the upper limits of the parallelization. Second, we have
compared this model with an implementation on a cache
coherent Non-Uniform Memory Access (cc-NUMA) Shared
Memory Multiprocessor (SMP). The implementation study
includes the analysis of different scheduling algorithms and
the identification of bottlenecks and sources of overhead.
And, finally, we have used a trace-driven simulation ap-
proach for analysing the potential of acceleration for remov-
ing the bottlenecks that inhibit to obtain the full potential
performance. As new bottlenecks become exposed larger
fractions of the original code requires optimization and
become candidates for acceleration [8].

The paper is organized as follows. First, in section II
we present an introduction to H.264 and the parallelization
strategy. Second, in section III we present the formal model
and abstract simulation results. Third, in section IV we
present the analysis of the implementation on the cc-NUMA
machine. Fourth, in section V we present the results for the
acceleration study. Fifth, in section VI we discuss the related
work on the field. And finally, in section VII we present the
conclusions and future work.

II. PARALLELIZATION OF H.264 DECODER

H.264 is based on the same block-based motion com-
pensation and transform-based coding framework of prior

Figure 1. MacroBlock-level parallelism inside a frame.

MPEG video coding standards, but it provides higher coding
efficiency through added features and functionality that,
in turn, entail additional complexity. The higher coding
efficiency and quality come from the new coding tools in-
cluded, like: variable block-size motion compensation, mul-
tiple reference frames with weighted prediction, fractional
(1/2, 1/4) motion compensation, integer and adaptive DCT-
like transform, adaptive deblocking filter, context adaptive
arithmetic coding (CABAC), and others [2].

In H.264/AVC (as in other hybrid video codecs) a video
sequence consist of multiples video pictures called frames.
Each frame can consist of several slices, which are self
contained partitions of a frame, that, in turn, contain some
number of MacroBlocks (MBs). MBs, which are blocks of
16×16 pixels, are the basic data unit for coding and decod-
ing. The main computing kernels are applied at the MB level,
although the standard allows some kernels to operate on
smaller blocks. Main kernels are Prediction (intra prediction
or motion estimation), Discrete Cosine Transform (DCT),
Quantization, Deblocking filter, and Entropy Decoding.

As a result of the of the increased computational require-
ments current high performance uniprocessor architectures
are not capable of providing the performance required for
real-time HD processing [3] and, therefore, it is necessary to
exploit thread level parallelism. Among different approaches
MB-level parallelization has been proposed as a scalable
technique for the H.264 decoder [5], [9], [7], [10], [11]. It
can scale to a large number of processors without depending
on coding options of the input videos and without affecting
the latency of the decoding process. (Only Macroblock-level
parallelism is described in this work; a discussion of the
other levels can be found in [7]).

In H.264, usually MBs in a frame are processed in scan
order, which means starting from the top left corner of the
frame and moving to the right, row after row. To exploit
parallelism between MBs inside a frame it is necessary
to take into account the dependencies between them. In
H.264, motion vector prediction, intra prediction, and the
deblocking filter use data from neighbouring MBs defining a
structured set of dependencies. Processing MBs in a diagonal

wavefront manner satisfies all the dependencies and, at the
same time, allows to exploit parallelism between MBs (as
shown in Figure 1). We refer to this parallelization technique
as 2D-Wave [5].

It’s important to note that due to the sequential behaviour
of the entropy decoding kernel it should be decoupled from
the MB reconstruction process.

III. THEORETICAL ANALYSIS

We can represent the processing of MBs in H.264 decod-
ing as a Directed Acyclic Graph (DAG). Each node in the
DAG represents the decoding of one MB by one processor.
The decoding of each MB consists of a sequential ordering
of kernels applied to some input data. Edges in the graph
represent the data dependencies between MBs. Figure 2
shows the DAG for a 5x5 MBs sample frame. Each frame
in a video sequence can be represented with a finite DAG.
The first MB in the frame is the source node which has no
incoming edges and the last MB in the frame is the sink
node which has not outgoing edges. We define the depth as
the length of the longest path from the source node to the
sink node. For a finite DAG G representing a frame F we
define the computational work Ts as the number of nodes
in G, and T∞ as the depth of G. Although the structure of
the dependencies is known the actual shape of the DAG is
input dependent and cannot be known before the processing
of all nodes.

A. Theoretical Maximum Speed-up

Assuming that the time to process each node in the
DAG is constant and that there is no overhead for thread
synchronization then we can estimate the theoretical maxi-
mum speedup. Let mb width and mb height be the width
and height of the frame in macroblocks respectively. Then,
Ts = mb width ∗ mb height and T∞ = mb width +
(mb height − 1) ∗ 2). The maximum speedup (MSU) is
defined as:

MSU =
mb width ∗mb height

mb width + (mb height− 1) ∗ 2
(1)

Taken that into account, we can calculate the maximum
number of processors (MP) as:

MP = round

(
mb width + 1

2

)
(2)

In Table I, these values are shown for different video
resolutions. For FHD resolution the theoretical maximum
speedup is 32.13 when using 60 processors.

B. Abstract Trace-driven Simulation

The theoretical maximum speedup is based on the as-
sumption that MB processing time is constant and there is
not thread synchronization overhead. Both assumptions are
not true in real applications. On one hand, although the same

Figure 2. Directed Acyclic Graph (DAG) of MacroBlocks.

Video Resolution Pixel MB Ts T∞ Max. Max.
Resolution Resolution Speedup processors

Standard (SD) 720x576 45x36 1620 115 14.09 23
High (HD) 1280x720 80x45 3600 168 21.43 40
Full High (FHD) 1920x1080 120x80 8160 254 32.13 60
Quad Full High (QFHD) 3840x2160 240x160 32400 508 63.78 120
Ultra High (UHD) 7680x4320 480x320 129600 1018 127.31 240

Table I
THEORETICAL MAXIMUM SPEEDUP FOR DIFFERENT VIDEO RESOLUTIONS.

set of filters are applied to each MB, the processing time is
input dependent because the exact operations that are applied
to the image samples depend on conditions of those samples.
On the other hand, thread synchronization overhead is not
negligible. Every time a MB is processed a table of depen-
dencies should be updated and some scheduling decision
has to be taken. Those steps require the synchronization of
parallel threads.

In order to analyse the effects of those conditions we
have build an abstract MB trace-driven simulator which
creates the DAG for each frame and then calculates the Task
Processing Time (TPT) of every node as:

TPT (n) = wn + sn + MAX (TFT (prn)) (3)

Where, wn is the time required to process the task,
sn is the time required for thread synchronization; and
MAX(TFT (prn) is the maximum task finish time (TFT)
of the immediate predecessors tasks of that task. When the
DAG has been fully processed we take the data from the
end node and its finish time represents the best time that
we can achieve from the parallel execution of that DAG.
Because this is input dependent we have analysed the DAGs
for different frames and different input videos at FHD.

C. Effects of variable decoding time

Table II shows the speedup of the parallel execution for
different input videos. It includes the maximum theoretical
speedup and the maximum speedup taking into account
the variable processing time. In average for all the input
videos the speedup is reduced a 33 percent compared to the
theoretical maximum. The values presented in this table are
average per frame, because the actual performance changes
from frame to frame due to the differences in input content
and type of MBs.

Input Video speedup speedup slow-down
const. time var. time

Blue sky 32.13 19.22 0.40
Pedestrian area 32.13 21.92 0.31
Riverbed 32.13 24.01 0.25
Rush hour 32.13 22.22 0.30

Table II
MAXIMUM SPEEDUP TAKING INTO ACCOUNT VARIABLE DECODING

TIME.

D. Effects of Thread Synchronization Overhead

We have modelled the synchronization overhead as an
extra time for MB decoding. The base value for the overhead
is the average processing time of each MB in a frame.
Figure 3 shows the average speedup for each video sequence.
A zero value represents the maximum speedup taking into
account the variable processing time. As the value of over-
head increases the speedup decreases correspondingly. For
example, consider the 1088p25 blue sky video sequence:
with zero synchronization overhead the maximum speedup
is 19.23. Adding a synchronization overhead of 1 the
speedup reduces to 11.93 (38%). By using these data a
system designer can decide when thread synchronization
optimizations are useful in terms of the cost to design
and implement them compared to the benefit in speedup.
Although synchronization overhead values bigger than the
processing time may seem unreasonable we have found in
our experiments values up to 12 times the average MB
decoding time.

IV. PERFORMANCE ANALYSIS ON THE CC-NUMA
ARCHITECTURE

Our implementation is based on a dynamic task model
using task pools. In this model, a set of threads is activated
when a parallel region is encountered. In our case a parallel

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

s
p

e
e

d
-u

p

Overhead as a factor of MB decoding time

blue_sky
pedestrian

riverbed
rush_hour

Figure 3. Effect of thread synchronization on final performance

region is the decoding of all MBs in a frame. Each parallel
region is controlled by a frame manager, which consist of a
thread pool, a task queue, a dependence table and a control
thread.

The thread pool consists of a group of worker threads that
wait for work on the task queue [12]. The dependencies
of each MB are expressed in a dependence table. When
all the dependencies for a MB are resolved a new task is
inserted on the task queue. The control thread is responsi-
ble for handling all the initialization and finalization tasks
that are not parallelizable. Synchronization between threads
and the access to the task pool were implemented using
POSIX threads (Pthreads) and real-time semaphores. Both
synchronization objects are blocking, which means that the
operating system is responsible for the activation of threads.
The access to the table of dependencies was implemented
with atomic instructions like dec and fetch.

A. Evaluation Platform

For these experiments we have used a modified version
of the FFmpeg H.264 decoder with FHD video inputs taken
from HD-VideoBench [13]. The application was tested on
a SGI Altix which is a shared memory machine, with a
cc-NUMA architecture with 64 dual core IA-64 processors.
Each one of the 128 cores works at 1,6 GHz, with a 8MB L3
cache and 533 MHz Bus, and the system has a total 512 GB
RAM. The compiler used was gcc 4.1.0 and the operating
system was Linux kernel version 2.6.16.27.

B. Scheduling Strategies

One of the main factors that affects the scalability of
the 2D-wave parallelization is the allocation (or scheduling)
of MBs to processors. We have evaluated three different
scheduling algorithms: static scheduling, dynamic schedul-
ing and dynamic scheduling with tail submit optimization.
In Figure 4 the average speedup for the different scheduling
approaches is presented. Speedup is calculated against the

original sequential version and corresponds to the section of
MB decoding (without CABAC).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e

ra
g

e
 S

p
e

e
d

u
p

Number of threads

tail submit right-first
tail submit down-left-first

static scheduling
dynamic scheduling

Figure 4. Speedup of MB decoding using different scheduling approaches.

C. Static scheduling
Static scheduling means that the decoding order of MBs

is fixed and a master thread is responsible for sending MBs
to the decoder threads. The predefined order is a zigzag
scan order which can lead to an optimal schedule if MB
processing time is constant. When the dependencies of an
MB are not ready the master thread waits for them. Figure 4
shows the speedup of static scheduling. The maximum
speedup reached is 2.51 when using 8 processors (efficiency
of 31%). The low scalability is due to the fact that MB
processing time is variable, and static scheduling results
in load unbalance: most of the time the master thread is
waiting for other threads to finish. This shows that MB-
level parallelization requires a dynamic allocation of MBs
to processors in order to be scalable.

D. Dynamic scheduling
In this scheme, worker threads take MBs from the task

queue, process them, update the dependence table and, if that
is the case, submit new MBs to the task queue. Production
and consumption of MBs is made through the centralized
task queue. Figure 4 shows the speedup for the dynamic
scheduling. A maximum speedup of 2.42 is found when 10
processors are used (efficiency of 24%). This is lower than
the maximum speedup for the static scheduling. Although
the dynamic scheduling is able to discover more parallelism
than static scheduling, the overhead for submitting MBs to
(and getting MBs from) the task queue is so big that it
jeopardizes the parallelization gains. Most of this overhead
comes from the intervention of the OS in the scheduling
process and for contention in the access to the queue.

In order to analyze the performance of worker threads
we divided the execution of each one into the following six
phases:

Threads decode mb copy mb get mb update mb ready mb submit mb overhead-ratio
1t 22.65 1.62 4.89 1.01 2.38 5.03 0.67
4t 33.09 2.95 9.71 1.36 2.86 12.44 1.30
8t 41.88 3.90 16.67 1.61 3.02 20.84 2.05
16t 61.78 5.94 55.95 2.25 3.55 80.28 6.57
24t 58.08 5.15 105.03 2.09 3.49 120.37 10.49
32t 78.75 7.25 209.37 2.70 4.36 201.01 18.88

Table III
AVERAGE EXECUTION TIME FOR WORKER THREADS WITH DYNAMIC SCHEDULING (TIME IN US.)

- get mb: Take one element from the task queue.
- copy mb: Copy of entropy decoded parameters to the

local thread structures.
- decode mb: Actual work of MB decoding.
- update mb: Update the table of MB dependencies.
- ready mb: Analysis of new ready to process MB.
- submit mb: Put one element into the task queue.

Table III shows the execution time of the different phases.
It can be noted that the MB decoding time increases with
the number of processors. This is mainly due to the fact
that the dynamic scheduling algorithm does not consider
data locality when assigning tasks to processors. When
a processor takes a MB which has its data dependencies
in a remote node, then all the memory accesses should
cross the NUMA interconnection network. Other phases that
exhibit a major increase in execution time are: get mb and
submit mb. This reveals a contention problem because in
dynamic scheduling all the worker threads get MBs from
(and submit MBs to) a centralized task queue creating an
important pressure on it. The last column of the table shows
the ratio of actual computation and overhead. The overhead
increases significantly when the number of processors goes
beyond 8. From this, we can conclude that the centralized
task queue becomes the bottleneck. A more distributed
algorithm like tail submit [14] or work stealing [15] could
help to reduce this contention.

E. Dynamic scheduling with Tail submit

As a way to reduce the contention on the task queue,
the dynamic scheduling approach was enhanced with a tail
submit optimization. With tail submit when a thread founds
a ready to process MB it can process that MB directly
without any further synchronization. If more than one MB
is discovered, one is submitted to the task queue and the
other one is processed directly [14]. There are two ordering
options for doing the tail submit process: execute directly the
right neighbor of the current MB and submit the other, or
execute directly the down-left neighbor and submit the other.
Figure 4 shows the speedup of tail-submit implementations.
The down-left-first version achieves a maximum speedup of
6.85 with 26 processors (efficiency of 26%). The right-first
version achieves a maximum speedup of is 9.53 with 24
processors (efficiency of 39.7%). The better scalability of
the right-first order is due to the fact that it exploits the data

locality between MBs. Data from the left block is required
by the deblocking filter and by using the right-first order the
values of the previous MB remain in the cache.

Table IV shows the profiling results for tail submit version
with right-first order. In this case, MB decoding time remains
almost constant with the number of threads due to the
exploitation of the data locality between neighbor MBs.
Another effect of the tail submit optimization is the reduction
in the time spent in submit mb. This time still increases
with the number of processors but the absolute value is
less than the dynamic scheduling version. With tail submit
there is less contention because there are less submissions
to the task queue as shown in the last column of Table IV.
The most significant contributor to the execution time is
get mb indicating a lack of parallel MBs, meaning that the
scalability limit of the tail submit version has been reached.

F. Impact of the Serial Part of the Application: The CABAC
Bottleneck

In order to allow a parallel decode of MBs CABAC
entropy decoding is decoupled from the MB decoding loop.
The decoupling is done by using an intermediate buffer in
which the CABAC decoder stores the decoded information
for every MB. After finishing the CABAC decoding of a
frame the decoder threads start to decode MBs in parallel.
Because CABAC decoding cannot be parallelized at MB-
level it should be executed sequentially in one processor.
Then, according to the Amdahl’s law it can become the
limiting factor. Figure 5 shows the execution time of the
application including CABAC time. The execution time of
MB decoding (hl decode mb) reduces with the number
of processors as a result of the parallel execution. But,
the execution time associated with CABAC (decode cabac)
augments with the number of processors. This is a side effect
of the shared-memory model and the coherence protocol.
When a new frame is being processed the CABAC decoder
should overwrite the values in the intermediate buffer and
this generates cache invalidations that go out of the chip
and cross all the interconnection network to reach the local
caches that have these values.

V. REMOVING THE BOTTLENECKS WITH MULTICORE
ACCELERATION

Without significant CABAC acceleration MB-level paral-
lelization is useless, and without very fast synchronization

Threads decode mb copy mb get mb update dep ready mb submit mb overhead % of tail
ratio submit

1t 21.7 1.5 6.1 1.0 1.0 7.5 0.17 90.8
4t 24.2 1.9 55.9 1.1 1.1 7.8 0.22 79.8
8t 24.9 2.1 132.4 1.3 1.1 8.6 0.30 75.2
16t 27.5 2.4 265.3 1.6 1.1 10.1 0.68 58.5
24t 30.6 2.9 683.7 1.9 1.2 24.6 1.00 51.4
32t 30.1 2.8 853.1 2.1 1.1 24.8 1.85 48.4

Table IV
AVERAGE EXECUTION TIME FOR WORKER THREADS WITH TAIL SUBMIT OPTIMIZATION (TIME IN US.)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

E
x
e

c
u

ti
o

n
 T

im
e

 [
u

s
/f

ra
m

e
]

Number of threads

control_thread
hl_decode_mb
decode_cabac

Figure 5. Execution time per frame including CABAC entropy decoding.

and scheduling operations MB-level parallelization will not
scale to a manycore system. Those limiting factors offer a
potential for acceleration, being this in the form of special
purpose units added to the base processor, computational
offload units or separate special purpose processors [8]. In
the next sections we are going to evaluate the effect of
acceleration on the MB-level parallel H.264 decoder.

A. Fast multicore simulation using Tasksim

For this study we have collected traces from the parallel
execution of the H.264 decoder on the Altix multiprocessor
machine. Those traces contain CPU phases, synchronization
events and memory operations. CPU phases are collections
of instructions related to a portion of the program. The
analysed phases of the H.264 decoder are the same that are
mentioned in section IV-D. The simulation is done using a
fast trace-driven simulator called Tasksim. It simulates CPU
phases not instructions, which means that the duration of
the CPU phases has to be taken from an execution trace.
Apart, it simulates a synchronization network that supports
the two basic operations of the semaphore semantics: wait
and signal. Additionally, it simulates a memory hierarchy
composed of local memories, shared on-chip L2 caches and
an external DRAM memory.

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
-u

p

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

Number of processors (+1 master)

cabac- 1.0X
cabac- 1.5X
cabac- 2.0X
cabac- 3.0X

cabac- 4.0X
cabac- 5.0X

cabac-10.0X
linear-speedup

real-time 25 fps
real-time 50 fps

real-time 100fps

Figure 6. CABAC acceleration

B. Accelerating Entropy Decoding

There are some proposals in the literature with different
approaches for CABAC acceleration [16], [17] that can be
integrated in a multicore architecture. The question that
remains open is what is the acceleration required on the
CABAC engine in order to provide the required perfor-
mance for a MB-level parallel decoder. In order to solve
that question we made an experiment in which the time
required to perform the CABAC decoding was accelerated
by different ratios. The baseline is the execution of the
CABAC decoding on the Itanium-II processor assuming no
overhead for thread synchronization. Figure 6 shows the
effect of CABAC acceleration. The curves for 25, 50 and
100 frames per second (fps) are included as a reference.
When no acceleration is applied to CABAC a maximum
speedup of 4.6 is reached using 16 processors. A maximum
speedup of 23.5 (which is close to the theoretical maximum)
is reached when CABAC is accelerated by a factor of 10.
These results can help to choose the appropriate CABAC ac-
celerator depending on the required performance of the final
application. For example, the required CABAC acceleration
for meeting different real-time requirements are: for 25fps
1X (no cabac acceleration) and 6 worker processors; for
50fps 1.5X acceleration and 14 worker processors; and for
100fps the 2Dwave parallelization is not enough independent
of the CABAC acceleration. As a further step, acceleration

level can be dynamically adjusted by combining accelerators
and frame-level parallelism for CABAC decoding.

C. Accelerating Synchronization and Scheduling

For showing the effects of accelerating the synchroniza-
tion we have conducted an experiment in which we assign
different durations to the synchronization operations (sync-
ops) of the task pool ranging from 1ns to 100000 ns. Figure 7
shows the speedup for various durations of the sync-ops. As
a reference, the figure also includes the speedup for sync-
altix-sw version which corresponds to the implementation
on the real machine with tail submit. Additionally, the
figure includes results for software synchronization using
the duration of the sync-ops of the parallel decoder with
only one worker thread. This value can be seen as the
maximum speedup that can be achieved with a software
implementation of the task pool. According to the figure,
at 16 processors, the real system achieves a speedup of
8.6, close to the 1000ns sync-ops, which corresponds to
40 fps. The best software approach obtains a speedup of
10.0 that corresponds to 46.5fps. In order to meet the real-
time operation at 50fps, and using 16 worker processors,
the sync-ops should be in the range of 100 to 500ns. This
is consistent with published results of hardware supported
schedulers [18], [19].

The results in Figure 7 show the trade-off between syn-
chronization acceleration and number or processors (area).
Using this information a system designer can decide if
implementing highly sophisticated and low-latency hardware
schedulers pays the cost of the reduction in the number of
cores required to meet certain real-time performance target.

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64 128
 0

 20

 40

 60

 80

 100

S
p

e
e

d
-u

p

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

Number of processors (+1 master)

sync- 1ns
sync- 10ns
sync- 100ns
sync- 500ns

sync- 1000ns

sync- 5000ns
sync-10000ns

sync-altix-1p
sync-altix-sw

linear-speedup

real-time 25 fps
real-time 50 fps

real-time 100fps

Figure 7. Acceleration of thread synchronization

VI. RELATED WORK

Several papers deal with H.264 parallelization. Some
works have presented results for functional paralleliza-
tion [20]. Others present GOP, frame and slice-level paral-

lelism [21], [6], [22]. This kind of coarse grain paralleliza-
tion techniques are not scalable for multicore architectures.

MB-level parallelization for H.264 has been discussed in
several works. Van der Tol et al. [5] proposed the technique
but they did not present a scalability analysis. Chen et al. [9]
evaluated an implementation on Pentium machines with a
reduced number of processors and for low resolution videos.
Hoogerbrugge et al. [14] have evaluated this scheme using
a simulated embedded multicore architecture composed of
VLIW media processors with a cache coherent memory
organization. They do not take into account the effects of
CABAC decoding and use an application specific hardware
unit for thread synchronization. In our paper we presents
an evaluation that includes an analysis of the scalability
effects of CABAC and different levels of synchronization
acceleration.

Other works have proposed techniques for combining
temporal and spatial MB-level parallelism. Zhao et al. [10]
studied an scheme for low resolution video encoding using a
static scheduling scheme that results in poor load balancing
and does not scale for multicores. Azevedo et al. [23]
have evaluated a dynamic technique called 3D-wave and
compared it with the 2D-wave and showed that the former is
more scalable than the later. The analysis has been made on
a simulation platform of embedded media processors. Those
results are complementary to the presented in this paper
because their architecture include sophisticated hardware
support for thread synchronization and then then overhead of
thread synchronization is minimal. This confirms the results
from our paper in which we show the necessity of special
support for thread synchronization.

VII. CONCLUSIONS

In this paper we have investigated the scalability of the
macroblock-level parallelization of the H.264 decoder. A
formal model and an abstract trace driven simulation were
used to estimate the impact of variable decoding time and
thread synchronization overhead on the maximum perfor-
mance. Variability in processing time of tasks demand the
use of dynamic load balancing techniques. And, the analysis
of the thread synchronization allows to estimate the impact
of optimizations in the synchronization infrastructure.

The implementation of the 2D-wave parallelization on the
cc-NUMA machine shows that the best scheduling strategy
is the combination of dynamic scheduling with tail submit.
Dynamic scheduling deals with the unbalance that results
from variable decoding time and tail-submit reduces the
synchronization overhead and, at the same time, exploits
data locality reducing the external memory pressure.

The study of acceleration impact shows on one hand
the required performance of the CABAC accelerator. These
demands of the CABAC accelerator depends on the resolu-
tion of the image and the input content. In order to cover
these variations in run-time the performance of the CABAC

accelerator should be adjusted dynamically. This is an area
of future work. On the other hand, the presented study
shows the limits of software synchronization and presents
the opportunities for hardware based schedulers. A com-
parison with current schemes shows that there is room for
improvement in hardware acceleration of synchronization.
This is part of our current work on the field.

ACKNOWLEDGMENT

This work has been supported by the European Com-
mission in the context of the SARC project (contract no.
27648), and the Spanish Ministry of Education (contract no.
TIN2007-60625).

REFERENCES

[1] T. Sikora, “Trends and Perspectives in Image and Video
Coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 6–17,
Jan 2005.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.Luthra,
“Overview of the H.264/AVC Video Coding Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, July 2003.

[3] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “A Per-
formance Characterization of High Definition Digital Video
Decoding Using H.264/AVC,” in IEEE International Sympo-
sium on Workload Characterization, Oct 2005, pp. 24–33.

[4] S. Borkar, “Thousand core chips: a technology perspective,”
in DAC ’07: Proceedings of the 44th annual conference on
Design automation. ACM, 2007, pp. 746–749.

[5] E. B. van der Tol, E. G. T. Jaspers, and R. H. Gelderblom,
“Mapping of H.264 Decoding on a Multiprocessor Architec-
ture,” in Proceedings of SPIE, 2003.

[6] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards Efficient
Multi-level Threading of H.264 Encoder on Intel Hyper-
threading Architectures,” in Proceedings International Par-
allel and Distributed Processing Symposium, Apr 2004.

[7] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink, and
A. Ramirez, “Parallel Scalability of Video Decoders,” Journal
Journal of Signal Processing Systems, August 2008.

[8] S. Patel and W. mei Hwu, “Accelerator Architectures,” IEEE
Micro, vol. 28, no. 4, pp. 4–12, 2008.

[9] Y. Chen, E. Li, X. Zhou, and S. Ge, “Implementation of H.
264 Encoder and Decoder on Personal Computers,” Journal
of Visual Communications and Image Representation, vol. 17,
2006.

[10] Z. Zhao and P. Liang, “Data partition for wavefront paral-
lelization of H.264 video encoder,” in IEEE International
Symposium on Circuits and Systems., 2006.

[11] J. Chong, N. R. Satish, B. Catanzaro, K. Ravindran, and
K. Keutzer, “Efficient parallelization of h.264 decoding with
macro block level scheduling,” in IEEE International Confer-
ence on Multimedia and Expo, July 2007, pp. 1874–1877.

[12] M. Korch and T. Rauber, “A comparison of task pools for
dynamic load balancing of irregular algorithms,” Concurr.
Comput. : Pract. Exper., vol. 16, no. 1, pp. 1–47, 2003.

[13] M. Alvarez, E. Salami, A. Ramirez, and M. Valero,
“HD-VideoBench: A Benchmark for Evaluating High
Definition Digital Video Applications,” in IEEE Int. Symp.
on Workload Characterization, 2007. [Online]. Available:
http://people.ac.upc.edu/alvarez/hdvideobench

[14] J. Hoogerbrugge and A. Terechko, “A Multithreaded Multi-
core System for Embedded Media Processing,” Transactions
on High-Performance Embedded Architectures and Compil-
ers, vol. 3, no. 2, pp. 168–187, June 2008.

[15] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implemen-
tation of the cilk-5 multithreaded language,” in Proceedings
of the ACM Conference on Programming Language Design
and Implementation, 1998, pp. 212–223.

[16] R. Osorio and J. Bruguera, “An FPGA architecture for
CABAC decoding in manycore systems,” in International
Conference on Application-Specific Systems, Architectures
and Processors, 2008. ASAP 2008, July 2008, pp. 293–298.

[17] J.-W. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen,
B. Zhong, C. Basto, J.-P. van Itegem, D. Amirtharaj, K. Kalra,
P. Rodriguez, and H. van Antwerpen, “The TM3270 Media-
Processor,” in MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture,
Nov 2005, pp. 331–342.

[18] G. Al-Kadi and A. S. Terechko, “A hardware task sched-
uler for embedded video processing,” in Proceedings of the
International Conference on High Performance Embedded
Architectures and Compilers, 2009, pp. 140–152.

[19] K. Sanjeev, H. C. J., and N. Anthony, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,”
in Proceedings of the 34th annual international symposium
on Computer architecture, 2007, pp. 162–173.

[20] O. L. Klaus Schoffmann, Markus Fauster and L. Böszörmeny,
“An Evaluation of Parallelization Concepts for Baseline-
Profile Compliant H.264/AVC Decoders,” in Lecture Notes
in Computer Science. Euro-Par 2007 Parallel Processing,
August 2007.

[21] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hierar-
chical parallelization of an h.264/avc video encoder,” in Proc.
Int. Symp. on Parallel Computing in Electrical Engineering,
2006, pp. 363–368.

[22] T. Jacobs, V. Chouliaras, and D. Mulvaney, “Thread-parallel
mpeg-2, mpeg-4 and h.264 video encoders for soc multi-
processor architectures,” IEEE Transactions on Consumer
Electronics, vol. 52, no. 1, pp. 269–275, Feb. 2006.

[23] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko,
J. Hoogerbrugge, M. Alvarez, and A. Rammirez, “Parallel
H.264 Decoding on an Embedded Multicore Processor,” in
Proceedings of the 4th International Conference on High
Performance and Embedded Architectures and Compilers -
HIPEAC, Jan 2009.

