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Abstract—The Discrete Wavelet Transform (DWT) is an im-
portant operation in applications of digital signal processing. In
this paper, we review several traditional DWT implementation
approaches, e.g., application-specific integrated circuits, field-
programmable gate arrays, digital signal processors, general-
purpose processors, and graphic processors, and discuss their
limitations in terms of performance and flexibility. In order
to provide both high-performance and flexibility, we propose
a new approach, namely a parallel architecture exploiting
the collaboration of reconfigurable processing elements in
grid computing. Grid computing can exploit the task level
parallelism to execute the 2D DWT. In addition, reconfigurable
computing offers a flexible platform and can be used as
hardware accelerators. We mapped the DWT in a grid. Our
experimental results show that speedups of up to 4.1x can be
achieved.
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I. INTRODUCTION

The Discrete Wavelet Transform (DWT) is a highly ef-
fective operation in digital signal processing applications
such as image and video compression [1]. This is because
it achieves higher compression ratios, e.g. in the JPEG2000
and MPEG-4 standards, than other transforms such as the
Discrete Cosine Transform (DCT). In the other hand, the
DWT requires more memory than the DCT. The reason
is that it operates on an entire image or a large part
of it. However a potential problem, however, is the high
computational complexity of the DWT. We measured the
total execution time consumed by the DWT using the
JasPer software tool kit [2]. The results show that the DWT
consumes on average 46% of the total encoding time for
lossless compression and even 68% for lossy compression.
Additionally, results presented by other researchers [3] show
that the DWT consumes a significant fraction of the total
JPEG2000 encoding time. Considering DWT’s popularity,
significant research work has been performed on the efficient
implementation of the DWT on different platforms.

Different implementation approaches such as application-
specific integrated circuits (ASICs) [4], [5], field-
programmable gate arrays (FPGAs) [6], [7], Digital
Signal Processors (DSPs) [8], [9], and general-purpose

processors (GPPs) [10] have been proposed to process
the DWT. In addition, recently graphics processing units
(GPUs) have been used for parallel implementation of
DWT [11].

The aforementioned approaches cannot provide both suffi-
cient flexibility and high-performance at the same time. This
is because of the following reasons. The ASIC approaches
are a direct mapping of a certain the DWT algorithm to
hardware. An ASIC implementation is optimized to provide
high-performance for a specific the DWT algorithm with
a fixed filter bank length and fixed wavelet decomposition
levels and cannot be used for other filter bank lengths nor
other transform levels. Reconfigurable elements are more
flexible than ASIC designs, but their performance is less than
ASIC approaches. More importantly, it has not been focused
on exploiting available parallelism for high-performance.
DSP approaches do not offer sufficient flexibility and high-
performance for different filter bank lengths of the DWT.
These approaches have not been optimized to process dif-
ferent the DWT algorithms using floating-point numbers
and fixed-point numbers. Media-enhanced GPPs, are flexible
and programmable, but have limited performance due to
mismatch between storage and computational formats and
additional instructions for the conversion between different
packed data types and data alignment. The GPUs have been
designed as application-specific and have been optimized
for specific applications, for instance 3D scene rendering.
This means that implementing other applications such as
the DWT on the GPUs is a complicated task as mentioned
by researchers in [11].

In this paper, a new approach namely a parallel archi-
tecture using collaborating reconfigurable elements in grid
computing is proposed to support various DWT algorithms,
filter bank lengths, and transform levels. The main contri-
butions of our work are the following:

• An overview of different approaches to process the
DWT is performed.

• In order to benefit both advantages of grid computing
and reconfigurable computing, we propose a new ap-
proach to process the DWT, collaboration of reconfig-
urable elements in the grid environment.
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• We map the DWT using collaboration of 4 processing
elements in grid computing based on realistic assump-
tions. Our experimental results show that the speedups
of up to 4.1x is achieved over a GPP in a non-grid
environment.

This paper is organized as follows. In Section II, the
different DWT implementation approaches are discussed.
We propose our new approach in Section III. The simu-
lation environment and tools are discussed in Section IV
followed by evaluation results in Section V. Finally, overall
conclusions is drawn in Section VI.

II. PROCESSOR ARCHITECTURES

The DWT can be processed using GPPs, DSPs, FPGAs,
and ASICs. In addition, recently GPUs have been used
for parallel processing of the DWT. These approaches are
discussed in the following sections.

A. GPPs Enhanced with Multimedia Extensions

There are different implementations of the 2D DWT on
GPPs such as [10]. However, implementation of the 2D
DWT on GPPs is not efficient. The main reason for this
is the discrepancies between the memory access patterns of
the two main parts of the 2D DWT, horizontal and vertical
filtering. Especially when a large image is processed by
both horizontal and vertical filtering, one of them causes
to exhibit poor data locality [12]. on cache-aware DWT
implementations [12].

Some research work [13], [12] have mapped the 2D
DWT on GPPs enhanced with multimedia extensions such as
MMX and SSE. Although, Single-Instruction Multiple-Data
(SIMD)-enhanced GPPs are flexible and programmable, they
have limited performance. This is because of the following
reasons [12]. First, there is a mismatch between the com-
putational and the storage formats of the 2D DWT data.
This is because the intermediate coefficients are larger than
the original input data. In other words, implementing the
2D DWT on GPPs enhanced with SIMD extensions needs
many overhead instructions for converting between different
packed data types. Second, existing SIMD computational
instructions cannot efficiently exploit data-level parallelism
of 2D DWT. In order to employ SIMD instructions, data
rearrangement instructions are needed to transpose the input
matrix. This step takes a significant amount of time.

B. DSP-Based Approaches

Digital signal processors are specifically designed and op-
timized to process digital signal processing functions. DSPs
provide some special hardware units, such as Multiply-
ACcumulate (MAC) unit to improve performance. These
processors are used to process the DWT. For example,
Schelkens et al., [8] implemented an integer DWT on a
TMS320C40 platform. They focused on memory optimiza-
tion and code mapping of an integer lifting scheme. Cho

et al., [9] implemented the overlapped block-based lifting
scheme using a fixed-point DSP chip. The overlapped block-
based approach partitions entire image memory into blocks
to fit into the cache size and reorders the sequence of the
wavelet lifting. Gnavi et al., [14] presented a performance
comparison between traditional convolution-based and lift-
ing scheme approaches on a programmable DSP platform.
They observed that the lifting scheme transforms were
always faster than their convolution-based counterpart in the
context of the JPEG2000. The performance improvement of
lifting scheme techniques depended on the wavelet filters
length and the number of lifting scheme steps.

Most of the DSP implementations have been focused on
integer DWT to achieve high-performance, while floating-
point representation of DWT coefficients is usually required
in some applications. In addition, DSP architectures do not
offer sufficient flexibility and high-performance for different
filter bank lengths of the DWT. This is because those pro-
cessors do not have enough micro-architectures to support
memory intensive functions, such as the DWT. The 2D DWT
operates on a complete image, it needs many read write
operations in the memory system. As was mentioned in [15],
one of the biggest bottlenecks in executing digital signal
processing algorithms using DSPs is transferring data to and
from memory.

C. FPGA-Based Approaches

In order to provide a flexibility for the DWT implementa-
tion based on wavelet filter length and wavelet decomposi-
tion structure, some reconfigurable hardwares were proposed
in [6], [7]. Tseng et al., [6] proposed an architecture, which
consists of a reconfigurable processing element array and
a reconfigurable address generator. In addition, a reconfig-
urable architecture for an integer 8-point Haar wavelet trans-
form was proposed in [7]. Reconfigurable architectures are
more flexible than ASIC designs, while their performance
is less than ASIC approaches. Some of reconfigurable im-
plementations have focused on Fine-Grained Reconfigurable
Architectures (FGRA) such as FPGAs. Those FGRAs use
more logic blocks to implement the circuit. The resulting
interconnection delays hinder the performance.

On the other hand, a Coarse-Grained Reconfigurable
Architecture (CGRA) decreases the total number of logic
blocks and therefore, the interconnect complexity is reduced
by localizing the connections. MATRIX [16] is a CGRA
which has been proposed to overcome the drawbacks of
FGRAs. MATRIX consists of a 2D array of 8-bit Functional
Units (FUs) and each FU consists of an 8-bit ALU, memory,
and control logic. While fewer configuration bits are needed
for the PEs, fully utilizing the functionality of each PE is
difficult, leading to significant underutilization of CGRAs.
This can be avoided by either Medium-Grained Reconfig-
urable Architectures (MGRAs) or by adapting the reconfig-
urable architecture to the computational characteristics of the
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algorithm with application-specific grained processing ele-
ments. An application-specific coarse-grained reconfigurable
architecture can benefit from the high-performance of ASIC
designs as well as the flexibility of the reconfigurable devices
such as FPGAs.

D. ASIC-Based Approaches

ASIC approaches have been extensively used in order
to provide high-performance for the DWT. ASIC-based
architectures to support the DWT can be classified into
different categories depending on some metrics such as style
of the computation and topology of processing elements.
Based on the computational style, different architectures
can be categorized into serial and parallel computations.
In serial architectures, in each single time step, each MAC
unit performs one multiplication and one addition. Parallel
architectures have L multipliers, where L is the filter length.
The multiplications are performed in parallel. The DWT can
be implemented as 1D, 2D, or 3D, therefore, different ASIC
approaches were proposed. Each approach is often designed
for a specific application in mind. Some 1D architectures
have been discussed in [17] and some 2D and 3D archi-
tectures have also been explained in [4]. Liao [5] proposed
architectures for 1D and 2D lifting scheme wavelet trans-
form. Weeks [18] discussed different ASIC architectures to
support the DWT and compared them based on design type,
latency, area, memory, and number of multipliers and adders.
Most ASIC architectures are based on the integer wavelet
transform, especially on the lifting scheme. However, this
choice might has negative impact on precision.

ASIC approaches are a direct mapping of a certain the
DWT algorithm with a fixed filter bank length to hardware.
The implemented hardware is optimized to provide high
performance with low power for a fixed filter bank length
and a fixed wavelet decomposition level and it cannot be
used for various filter bank lengths and various transform
levels with different precisions which are used in the DWT
implementation. In other words, flexibility is a key require-
ment to implement the DWT within existing applications
and to adapt to new generations of multimedia applications
and standards.

E. GPUs-Based Approaches

GPUs were designed as application-specific units with
control and communication units that enable the use of many
ALUs. Several researchers have implemented the DWT on
the GPUs [11], [19]. Wang, et al., [19] have implemented the
DWT targeted on the Jasper software on the GPUs. However,
those implementations cannot efficiently exploit all the hard-
ware resources available in GPUs. Tenllado [11] mapped
the parallel implementation of the traditional convolution-
based and lifting scheme approaches of the DWT on GPUs.
The GPUs have been designed as application-specific and
have been optimized for some applications, for instance the

3D scene rendering. This means that implementing other
applications such as DWT on the GPUs is a complicated
task as mentioned by researchers in [11].

III. COLLABORATION OF RECONFIGURABLE ELEMENTS

IN GRID COMPUTING

A well-known method to increase the performance is to
execute as many as possible parts of the DWT in parallel.
Therefore, the architecture executing the DWT has to exploit
the potential parallelism. The DWT has a huge number
of calculations in parallel and in a regular manner. This
is because both low-pass and high-pass filters are applied
modularly and regularly to regions of each image. The
processing of each region of an image can be performed
independently from the other regions. This feature means
that the DWT has a large potential for parallelism in terms
of data computation. In addition, the exploitation of the
parallelism available in grid computing is a very attractive
solution for the execution of the DWT. This is the reason
to propose a grid computing to process the DWT efficiently.
In grid computing, a large pool of heterogeneous computing
resources is geographically dispersed over a large network,
e.g., the Internet.

The reconfigurable computing offers a flexible platform
to implement the DWT with various filter bank lengths
and various transform levels. Reconfigurable architectures
offer a compromise between the performance advantages
of ASIC and the flexibility of DSPs. In order to bene-
fit both advantages of grid computing and reconfigurable
computing we propose a parallel architecture, collaboration
of Reconfigurable Elements (REs) in grid computing, to
process the DWT efficiently. Collaboration of different archi-
tectures should be used in order to meet the computational
demand of DWT. A general overview of the Collaboration
of Reconfigurable elements in Grid Computing (CRGC) is
depicted in Figure 1.

WAN

Wired network

Wired network
RE

RE

GPP

GPP
RE RE

GPP

RE

GPP

Figure 1. A collaborative system in a grid environment with reconfigurable
elements and general-purpose processors.

In CRGC, processing elements communicate and collabo-
rate together based on the neighborhood concept [20]. Each
grid processing element requests assistance from neigh-
boring processing elements. The neighborhood concept is
implemented using some primitives. A primitive is defined
as a processing element with related communication link
and its equipments, e.g., routers and switches, to the main

346



processing element. A grid network can be seen as a
collection of primitives.

The following steps should be considered in order to exe-
cute an application on the CRGC. First, a network topology
based on the availability of neighbor processing elements is
defined and some parameters such as network bandwidth
and packet size are configured. Second, the processing
elements are defined and reconfigurable processing elements
are configured based on the application characteristics. For
example, an application may use the third level DWT
decomposition and another application may use the fifth
level DWT decomposition. Since some REs are configured
for the former one and some REs are also configured
for the latter one. Third, an application mapping policy
and number of subtasks (gridlets) for each application are
determined. Finally, the main processing element packetizes
the subtasks and send them to appropriate REs. Additionally,
the collaborator REs depacketizes the received packets and
process them and send back the calculated results to the
main processing element. Furthermore, the main processing
element receives the final results and send the remaining
other subtasks to the idle REs.

In the following sections, we present simulation environ-
ment and the experimental results which have been obtained
using the CRGridSim simulator.

IV. SIMULATION ENVIRONMENT AND TOOLS

The simulation environment is an extended version of
GridSim (a traditional Java-based discrete-event grid sim-
ulator) [21]. We configured and prepared GridSim simulator
based on the DWT properties to support the collaborative
processing between reconfigurable elements. This extension
of GridSim is called CRGridSim. In CRGridsim, the DWT
can be broken down to different subtasks called gridlets.
the DWT is packaged as gridlets whose contents include
the task length in Millions of Instructions (MIs). The task
length is expressed in terms of the time it takes to run on a
standard GPP. In this paper, we have used 30, 35, 40, and 50
MIPs for processing elements. To simplify the simulation,
the following assumptions have been made. First, REs do
not support partial reconfiguration. Second, reconfiguration
codes are stored in the target collaborator elements.

The DWT has been simulated on the CRGC with different
configurations using a star topology. In our case, one main
GPP works with 2 or 3 collaborator processing elements. In
other words, we assumed 3 and 4 processing elements in grid
computing. Reconfigurable elements and GPPs are used as
the collaborator processing elements. It should be noticed
that for star topology the Routing Information Protocol
(RIP) is executed by the simulator. The arbitrary number of
collaborators can be used that is depends on the application
requirements and available processing elements. However,
increasing the number of processing elements increases the
overhead, for example the communication time. In order

to map the DWT on reconfigurable elements, the possible
reconfigurable parameters should be identified. For example,
variable wavelet filter lengths and variable wavelet decom-
position levels are two reconfigurable parameters.

The specifications of the simulated environment are de-
picted in Table I. Performance of reconfigurable elements
for grey level co-occurrence matrix (GLCM) and Haralick
texture feature for image sizes 512 ∗ 512, 1024 ∗ 1024
and 2048 ∗ 2048 was presented in [22]. The speedups of
4.75 and 7.3 were obtained when compared with a general-
purpose processor for GCLM and Haralick co-occurrence
matrix, respectively. In addition, a co-occurrence matrix
media kernel has been implemented on the various FPGA
devices such as Virtex-2 and Spartan-3 and on a media-
enhanced GPPs using MMX technology in [23]. Speedups of
20 were obtained using FPGA implementations over media-
enhanced GPPs, for image size 512 ∗ 512. In the results
section, the speedups of 10 were used. The reason for

Parameter Value

Maximum packet size 32 and 65 KBytes
User-router bandwidth 100 Mb/sec
Router-router bandwidth 1000 Mb/sec
Number of images 40
Number of users 1
Size of images different sizes from 768 to 2848
Minimum speedup for RE 10 in compared to a GPP
Reconfiguration file size 3 Mb
Reconfiguration speed 3 Mb/sec
Reconfiguration time 1 sec
Number of bits per pixel 24 bit

Table I
SPECIFICATIONS OF THE SIMULATED ENVIRONMENT.

choosing the packet sizes of 32 KBytes and 65 KBytes
(the largest packet sizes in the networks) is based on our
observation. Our results show that using larger packet sizes
obtain more performance than smaller packet sizes. Larger
packer sizes decreases the communication overhead due to
sending less packets. In our case we have 40 images with
total size of 294 MBytes that concludes 4539 packets of 65
KBytes and 9219 packets of 32 KBytes.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results which
have been obtained using the CRGridSim simulator.

A. Mapping of the 2D DWT on CRGC

We map the 2D DWT on two different configurations
with packet size of 65 KBytes. The first configuration is
the collaboration of GPPs. The second configuration is the
collaboration of reconfigurable elements with a GPP. Table II
and Table III show the mapping of 2D DWT on the first and
second configurations, respectively. The GPP0 is the main
processing element, while other processors are the collabora-
tors processing elements. The second column shows the total
number of processed gridlets by each processing element.
The last column represents the total number of executed
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instructions by each processing element. For instance, in
Table II, GPP1 executes 807 MIs.

Resource Total # of assigned gridlets Total # of ins. (MIs)
GPP0 15 1704
GPP1 7 807
GPP2 8 1047
GPP3 10 762

Table II
APPLICATION MAPPING OF THE 2D DWT ON COLLABORATION OF

GPPS ON A GRID COMPUTING.

Resource Total # of assigned gridlets Total # of ins. (MIs)
GPP0 9 1131
RE1 10 762
RE2 10 1226
RE3 11 1201

Table III
APPLICATION MAPPING OF THE 2D DWT ON COLLABORATION OF

RECONFIGURABLE ELEMENTS ON A GRID COMPUTING.

Three collaborator processing elements in Table II process
7+8+10 = 25 gridlets, while the main processing element
processes 15 gridlets. In other words, the GPP0 processes
the most number of gridlets. On the other hand, three
collaboration reconfigurable elements in Table III process
10 + 10 + 11 = 31 gridlets, while the main processing
element processes 9 gridlets, which is the least number of
gridlets compared to other processing elements. As a result,
the collaboration of reconfigurable elements process more
gridlets than the collaboration of GPPs.

B. Performance Evaluation Results

Figure 2 depicts the speedups of the different configu-
rations of 3 and 4 collaborator processing elements over
a GPP in the first level DWT decomposition with packet
sizes of 32 and 65 KBytes. The configuration of 1 GPP
means that there is no any collaborator elements, while the
configuration of 1 GPP and 3 RE means that 3 REs are
collaborating with 1 GPP. The collaboration of 1 GPP and
REs increases the performance compared to other configu-
rations. This is because REs have been used as hardware
accelerators. In other words, the performance is increased
by using hardware accelerators. In addition, the results
show that the increasing the packet size from 32 KBytes
to 65 KBytes enhances the performances. This is because
it reduces the number of packets which should be sent
to the collaborators processing elements and therefore, the
communication time is decreased. Additionally, increasing
the number of collaborators improves the speedups. This
is because the submitted subtasks to each collaborators are
decreased that reduces the number of processed instructions
by each processing element.

In order to increase the computational time of each collab-
orator processing element, we have implemented the third
level DWT decomposition. Figure 3 depicts the speedups
of the different configurations of 3 and 4 collaborator
processing elements over 1 GPP in the third level DWT
decomposition with the packet sizes of 32 and 65 KBytes.
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Figure 2. Speedups of the different configurations of 3 and 4 collaborator
processing elements over 1 GPP in the first level DWT decomposition with
packet sizes of 32 and 65 KBytes.
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Figure 3. Speedups of the different configurations of 3 and 4 collaborator
processing elements over a GPP in the third level DWT decomposition with
packet sizes of 32 and 65 KBytes.

The speedups of up to 4.1x are obtained, while for the
first level DWT decomposition in Figure 2, the speedups
up to 3.4x are yielded. This is because the third level DWT
decomposition has much more computations than the first
level DWT decomposition.

In general, the communication time and managing the
synchronization of processing elements are the bottlenecks.
One way to reduce the impact of those bottlenecks is to
execute time consuming functions with larger packet sizes
as we have performed for second and the third level DWT
decomposition in Figure 4.
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Figure 4. Speedups of the different configurations of 4 collaborator
processing elements, over a GPP in different levels the DWT decomposition
with packet size of 65 KBytes.

This figure depicts the speedups of the different configura-
tions of 4 processing elements over 1 GPP in different levels
the DWT decomposition with the packet size of 65 KBytes.
The computational time is increased by processing the
higher levels of the DWT decomposition. As a consequence,
the speedups are improved by increasing the computational
time.

VI. CONCLUSIONS

The requirements of the DWT have been not matched
well with the ability of the existing approaches. This is
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because ASIC approaches are a direct mapping of a filter
bank length to hardware. DSP approaches do not offer
sufficient flexibility and high-performance for different filter
bank lengths of the DWT. SIMD-enhanced GPPs are flexible
and programmable, while they have some limitations. Re-
configurable elements are more flexible than ASIC designs,
while their performance is less than ASIC approaches. In
addition, implementing the DWT on graphics processing
units is still a complicated task. In order to provide both
high-performance and flexibility, we used both grid comput-
ing and reconfigurable elements. In other words, to benefit
from the advantages of grid computing and reconfigurable
computing we proposed a parallel architecture, collaboration
of reconfigurable elements in grid computing, to process the
DWT. We have simulated the collaboration of 4 processing
elements in the grid environment using CRGridSim simula-
tor based on realistic assumptions. We have also mapped the
DWT on the simulated environment. This approach provides
the speedups of up to 4.1x.
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