
The TU Delft Sudoku Solver on FPGA
Kees van der Bok#1, Mottaqiallah Taouil#2, Panagiotis Afratis#3 , Ioannis Sourdis#4

Computer Engineering
Delft University of Technology

The Netherlands
1 C.vanderBok@student.tudelft.nl,

2 M.Taouil@tudelft.nl,
3 P.Afratis@student.tudelft.nl,

4 I.Sourdis@tudelft.nl

Abstract—Solving Sudoku puzzles is a mind-bending activity
that many people enjoy during their spare time. As such, for
those being acquainted with computers, it becomes an irresistible
challenge to build a computing engine for sudoku solving. Many
sudoku solvers have been developed recently, using advanced
techniques and algorithms to speed-up the computation. In this
paper, we describe a hardware design for an FPGA implementa-
tion of a sudoku solver. Furthermore, we show the performance
of the above design for solving puzzles of orderN 3 to 15.

I. I NTRODUCTION

Using an FPGA to solve a sudoku puzzle is an inter-
esting challenge and valuable test case for general purpose
algorithm execution on FPGA. Recently, executing general
purpose applications on FPGA has grown in popularity and
has proven to be more efficient in many cases. Although
FPGAs are much slower then GPPs, regarding the operating
frequency, better performance can be achieved exploiting high
degree of parallelism and customization, as well as the ability
to keep data local. Before designing our sudoku solver we
considered the available algorithms and how they could be
mapped to an FPGA. Most algorithms turned out to have
excessive resource requirements, either in memory size or
in logic. Our design choice is a brute-force algorithm, the
only design possibility that fitted in the target FPGA device
(Virtex2P-30). We expected the brute-force algorithm to be
faster than a software version, because of the more efficient
way in which the valid symbols for a cell can be determined.
Although we have improved the basic step of algorithm, the
symbol selection, we have not solved the exhaustive nature of
the brute-force solver (i.e. the solver may have to go through
all the valid symbol assignments). The previously described
issue causes the solver to become intractable for hard or large
sudoku problems. Therefore, we conclude that the brute-force
solver needs to be enriched with techniques that prune the
search space. We explored the benefits of filling empty cells
in a particular order. Although the former reduces the solving
time, it would not make the hard and large problems tractable.

The following sections describe our brute-force sudoku
solver implemented on an FPGA. The algorithm and design
are explained and the performance is analyzed.

II. SUDOKU SOLVING

Automatic solving of sudoku puzzles can be done in various
ways. There are a few well-known problems, for which
algorithms exist, showing similarity to the sudoku problem.
Solving a sudoku is, foremost, a constraint satisfaction prob-
lem, but could also be regarded as an exact-cover problem,
graph-coloring problem or binary-satisfaction problem.

Besides converting the sudoku problem to a known problem,
sudoku solvers that mimic the human solving scheme have
been developed. This solving method is usually referred to
as the elimination or solving-by-logic method. In essence the
method is very closely related to the graph-coloring problem.
The elimination method uses logic reasoning based on the
constraints of the sudoku puzzle to exclude the symbols
that can not be placed in a certain cell. The crux of the
method is that if one candidate remains, when all others have
been proven infeasible, that symbol can be filled in. Usually
these solvers implement rules derived from the pen-and-paper
methods. The algorithm requires the possible candidates to
be kept in memory. This can be done by assigning to each
cell of the puzzle a bitmap in which each bit represents
a certain symbol (e.g. bit 0 represents symbol 1 etc.). A
set bit identifies that the symbol represented by that bit is
a candidate for the cell the bitmap relates to. Elimination
rules must be applied until one candidate remains (i.e. one
and only one bit remains set in the bitmap). The cell can
then be filled with the symbol represented by this bit. An
advantage of this algorithm is that it is suitable for parallel
execution. Unfortunately the elimination algorithm requires
more memory than available on the FPGA. Storing the bitmaps
requiresN

4
∗ 225 bits, for each cell a 225-bit bitmap. For

N = 15 we need15
4
∗225 = 11390625 ≈ 12Mb This exceeds

the available memory of the V2P30 FPGA, which offers only
1.4Mb of Block RAM.

There are other, less memory demanding, methods of storing
the sudoku information. However, these methods decrease
the amount of information available and therefore weaken
the strength of the elimination method considerably. Another
issue we discovered when analyzing this method is that the
algorithm is not complete. Therefore, the algorithm is not

capable of solving hard sudoku instances.
Another algorithm we considered is the dancing-links algo-

rithm, which is an elegant algorithm solving the exact cover
problem. Despite the elegance of the algorithm, it turned out to
be unfeasible to implement this approach on the FPGA. The
latter because the algorithm’s memory requirements exceed
the memory available on the FPGA.

A method for converting the sudoku problem to a binary-
satisfiability problem has been proposed in [1]. Using such
a description the sudoku could be solved using an FPGA
based binary-satisfiability solver as for example described in
[2]. An FPGA based binary-satisfiability solver requires an
excessive amount of logic and is therefore only practical for
small problems. The solver required to solve a sudoku puzzle
following the above approach requires more than the available
FPGA logic resources.

The most straightforward method of solving a sudoku is
by brute force. Brute-force sudoku solvers fill-in cells spec-
ulatively taking into account the constraints that apply to
a sudoku. Cells are filled in until a conflict is discovered.
On conflict the solver clears the filled-in cells until it has
returned to a cell that has untried candidates. The brute-force
method performs an exhaustive search which will always find
the solution, if one exists. However, finding a solution might
require unacceptable time for large puzzles. Heuristics can be
used to minimize the search space. The brute-force method
could be efficient when combined with an elimination method.

III. T HE ALGORITHM

The algorithm used in our design is similar to the brute-
force method described in the previous section. In this section,
we elaborate in more detail the algorithm and its FPGA
implementations.

We use bitmaps to check valid symbols for a certain cell.
These bitmaps represent symbols present in a unit. A unit
is a row, column or block. Bitmaps are maintained per row,
column and block. Table II shows the row bitmaps of the
sudoku depicted in Table I. Using the bitmaps we determine
a valid symbol in constant time. The algorithm chooses the
symbol with the lowest numerical value among the candidates.
The puzzle is traversed in row-major order until a cell is
encountered that has now valid candidate symbols. In case,
during the solving process a cell is encountered that can
not be assigned a symbol (i.e. every possible symbol for
that cell conflicts with the sudoku constraints), the solver
needs to backtrack to a cell that has at least one possible
alternative assignment. The initial bitmaps are constructed
when the sudoku puzzle is received from the RS-232 unit
and stored in memory. While solving the puzzle the bitmaps
are continuously updated. This is achieved by using bitwise
operations, which set the appropriate bits while writing, while
they clear the bits while backtracking.

IV. D ESIGN

The design is composed of four main parts (Figure 1):
control, communication, storage and processing. Each of these
modules are described in the following subsections.

TABLE I
AN EXAMPLE SUDOKU

6 0 0 0 0 0 0 0 3
8 0 0 4 5 6 1 0 0
0 5 0 0 0 0 0 0 0
0 1 5 9 0 0 3 0 0
0 0 0 0 1 0 0 0 0
0 6 0 0 8 0 5 0 7
0 0 2 0 0 0 0 0 0
9 0 0 0 0 1 7 4 0
4 7 0 0 9 0 0 0 6

TABLE II
ROW BITMAPS

row Symbol
1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 1 0 0 0
1 1 0 0 1 1 1 0 1 0
2 0 0 0 0 1 0 0 0 0
3 1 0 1 0 1 0 0 0 1
4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 1 1 1 1 0
6 0 1 0 0 0 0 0 0 0
7 1 0 0 1 0 0 1 0 1
8 0 0 0 1 0 1 1 0 1

A. Main Controller

The overall orchestration of the sudoku solver is done
by the main controller which is a simple state machine.
This state machine resembles the overall state of the sudoku
solver. Based on this state access to the storage module is
either granted to the communication interface module or the
processing module.

B. Communication

Communication between the board and the host PC uses
the well known RS-232 protocol. RS-232 sends the data bit
by bit. The nature of RS-232 is asynchronous. Each, serially
transmitted, byte will start with a start bit and end with a stop
bit. The receiver uses the start and stop bits to synchronize.
Two simple state machines perform the communication, one
for transmitting and one for receiving. A third state machine
is used to orchestrate the higher-level procedure of receiving
the puzzle and transmitting the solution after the puzzle has
been solved.

C. Storage

All the information regarding the sudoku is maintained
within the storage module. Besides storing the sudoku and
the bitmaps, the storage module calculates the checksum and
updates the bitmaps. Writing or reading from or to the storage
module is kept simple. All necessary processing and calcu-
lations are hidden from other modules. Two control signals
are used to select one of the four operating modes in which
the storage module can operate. The operation modes are
described in Table III. Neutral reads are used by the processing
module to read the symbol and bitmaps that are related to the
addressed cell. The clear mode is used for backtracking. In
this mode the symbol in the addressed cell will be cleared

��� ������	
��
	

��
����

������	��������
�

����	�
���

����

����� �����

������	������

������	���	�����

�� �����

���� �

������	

�������

Fig. 1. Top-level View of the Design

as well as the related bits in the bitmaps. The write mode is
used to write symbols to the storage module and is used when
the initial puzzle is stored or when cells are filled-in. The
destructive read is applied when the solved puzzle is read out.
In addition, the destructive read clears the bitmaps related to
each cell. That is because the bitmaps need to be cleared before
the next puzzle is read in. Performing the bitmap clearing
while reading out the solution saves valuable time. Whenever
the global reset signal is asserted the communication interface
will get to a state in which the bitmaps will be cleared as well.
In this state every memory location is read once in destructive
mode.

TABLE III
STORAGE OF THEORIGINAL SUDOKU

Mode Description
Neutral Read Reads symbol and bitmaps

related to the address cell
Destructive Read Same as neutral read but

clears the bitmaps
Write Write symbol and updates bitmaps
Clear Clears symbol and updates bitmaps

The storage module contains five memories, one for the
sudoku and four for the bitmaps (rows, columns, blocks,
and occupied cells). The bitmaps are stored in four separate
memories allowing them to be read in parallel. Updating
a bitmap requires three steps, namely reading the bitmap,
modifying it and writing it back.

Two others modules worth mentioning are the checksum
calculator and the block calculator. The former module com-
putes the checksum of the puzzle while the latter determines,
based on the row, column and order of the puzzle, which block
is addressed. The block calculator is used to address the proper
block bitmap.

Sudoku_Processing

Idle

Next_empty_cell

Guess Back_track

start

All cells filled
next cell found

error

restored last valid fill

State_Machine: next_empty_cell

Symbol

check

Bitmap

check

Guess

Priority

encoder

control

logic

Back_track (stack)

Row

Stack

Column

stack

valid

Solve

Fig. 2. The Sudoku Processing Unit

D. Processing

Figure 2 is a simplified representation of the processing unit.
Although the low-level details are kept out in this figure, it
clearly shows which steps are involved in the solving process
as well as the flow of it. After being enabled, the processing
unit will go to the next-empty-cell state. In this state, the
next empty cell is determined; this is performed by checking
the bitmaps representing the occupied cells. Each bit of the
bitmap represents a cell, only the bits representing occupied
cells are set. Finding the first not-set bit in a bitmap is done
using a priority encoder. After having selected the cell, the
state machine proceeds to theguess state in which a valid
symbol for the selected cell is determined. Based on the puzzle
depicted in Table I a valid symbol is determined as follows.
The first empty cell in this sudoku is (1,2) (i.e. first row, second
column). Table IV shows the bitmaps of the row, column and
block of the corresponding cell. Performing a bitwiseOR of
these three bitmaps will give the candidate symbols that could
go in the cell (i.e. these symbols are represented by the ’0’ in
the result vector). From the result vector we conclude that 2, 4
and 9 are valid symbols for cell (1,2). We select the first option
which is 2. Choosing the first candidate, instead of randomly
selecting one, saves logic and memory since we do not have
to keep track of which symbols have been tried. Furthermore
for choosing the first option we only need a priority encoder.
When filling in a2 in cell (1,2) we need to update the bitmaps;
this, however, is done by the storage module and is of no
concern to the processing module. Whenever a cell is filled
the address of the cell is pushed on stack to memorize the
backtracking path. The process of finding an empty cell and
filling it repeats until we solve the entire puzzle or until we
reach an empty cell that can not be filled due to a conflict. In
the latter case, the partially filled sudoku is not valid forcing a
backtrack operation. In thebacktrack state the last visited cell
is popped from the stack, the symbol in that cell is read and
cleared simultaneously. That read symbol is stored, in doing
so the guess process will re-fill the cell only with symbols
greater than the one causing the conflict. From thebacktrack
state the processing unit returns to theguess state from which

it will backtrack one more cell (in case there is still a conflict)
or start filling in empty cells again. Eventually the algorithm
fills-in the last empty cell after which the puzzle is solved.

TABLE IV
CANDIDATE SELECTION

Symbol
1 2 3 4 5 6 7 8 9

Row 0 0 1 0 0 1 0 0 0
Column 1 0 0 0 1 1 1 0 0
Block 0 0 0 0 1 1 0 1 0
Result 1 0 1 0 1 1 1 1 0

V. RESULTS

We synthesized and prototyped the design on a Xilinx
Virtex2P-30 FPGA. The design occupied 110 BlockRAMs
(80% of the available ones), 2,436 Slices (17%), while the op-
erating frequency was 50 MHz limited by long wires required
to interconnect our logic with the distributed BlockRAMs. We
used the benchmarks provided in [3] to evaluate the efficiency
of our design. Our sudoku solver seems to work well for order
N = 3 sudokus. However, the solver requires significantly
more effort solving hard puzzles of orderN = 4 and higher.
The solver is able to solve orderN = 3 puzzles which are
classified as hard. For higher-order puzzles the solver can
only solve easy instances. Harder instances take an excessive
amount of time to be solved (not completed at least within
an hour). Therefore we have not been able to measure the
execution time for most of the benchmark puzzles. We tried
to solve benchmark puzzle10a which the solver was not able
to solve within 24 hours. A ten-run benchmark of our solver
is depicted in Table V. This table shows the results for the
puzzles our solver can solve within reasonable time only.

VI. PROPOSEDIMPROVEMENTS

We have thought of various optimizations to accelerate the
exhaustive search that our solver is performing. Initially, we
planned to use a hybrid algorithm composed of an elimina-
tion algorithm and the brute-force algorithm. Starting with
the elimination algorithm some blank cells might be found.
Whenever the elimination algorithm gets stuck, the brute-
force algorithm could be used to advance. The elimination
algorithm can be used after every guess by the brute-force
algorithm, reducing the search space considerable. However,
strong elimination algorithms require a significant amount
of information to be kept available. The memory usage of
the elimination algorithms exceeds the memory offered by
the target FPGA by far. We have been experimenting with
elimination techniques that only required the bitmaps we have
available. We concluded that such algorithm can only deduce
the value of a cell in very trivial situations and would therefore
be of no use. Another improvement we considered is having
multiple brute-force processing units to operate on the puzzle
in parallel. This would, however, have a negative impact on the
performance because the processing units will interfere with
each other which will in most cases not lead to a solution since

TABLE V
BENCHMARK RESULTS

Benchmark Puzzles (puzzle dimension - type of benchmark)
run 3-a 3-b 4-a 6-a 7-a 8-a
0 0.021153 s 0.012237 s 0.221498 s 0.114990 s 0.211481 s 0.096214 s
1 0.020691 s 0.012235 s 0.220870 s 0.115048 s 0.211223 s 0.096670 s
2 0.020642 s 0.012228 s 0.221676 s 0.115143 s 0.211264 s 0.096429 s
3 0.020732 s 0.012932 s 0.221710 s 0.115157 s 0.211662 s 0.096686 s
4 0.020885 s 0.012348 s 0.221437 s 0.115206 s 0.211501 s 0.096408 s
5 0.020728 s 0.012930 s 0.221729 s 0.115650 s 0.210956 s 0.096666 s
6 0.020788 s 0.012243 s 0.221397 s 0.115777 s 0.210929 s 0.096475 s
7 0.020715 s 0.012249 s 0.221544 s 0.115817 s 0.211370 s 0.096178 s
8 0.020952 s 0.012255 s 0.220798 s 0.115617 s 0.211575 s 0.096357 s
9 0.020926 s 0.012943 s 0.221133 s 0.115062 s 0.211468 s 0.096156 s

Avarage 0.020821s 0.012460 s 0.221379 s 0.115347 s 0.211343 s 0.096424 s
std. dev. 0.000156 0.000330 0.000337 0.000328 0.000249 0.000203

branches, that might contain the solution, in the search tree
could remain unexplored. An optimization we have actually
implemented is to traverse the the rows based on the number
of filled cells they contain. By visiting the rows in this order
the probability of choosing the right path increases. Although,
the technique showed promising results (i.e. speed-ups up to
30 times) for orderN = 3 puzzles it did not help us in solving
the hard instances within the time limit. We have ran this
technique in simulation only, we failed to have it working on
the FPGA before the Sudoku design competition deadline.

VII. C ONCLUSION

The Brute-force technique seems to be a feasible method
for solving sudoku puzzles. However, the technique is not
applicable to hard instances or high-order sudokus. In order
to improve the brute-force algorithm the search needs to be
directed. A hybrid solver using both the brute-force and an
elimination algorithm could lead to a significant decrease in
the possibilities that need to be explored. However, we could
not find an elimination method fitting the available resources.
The brute-force algorithm we have implemented can find the
next empty cell and determine a valid symbol in constant time.
The former, is the prime improvement over a software version
of this algorithm. However, it does not solve the exhaustive
nature of the algorithm.

ACKNOWLEDGMENT

We would like to acknowledge the hosts of the design
competition since we enjoyed this challenging exercise. Fur-
thermore, we would like to thank all those who inspired us
and gave us advice.

REFERENCES

[1] I. Lynce and J. Ouaknine, “Sudoku as a sat problem.”
[2] I. Skliarova and A. de Brito Ferrari, “Reconfigurable hardware sat solvers:

A survey of systems,”IEEE Trans. Comput., vol. 53, no. 11, pp. 1449–
1461, 2004.

[3] Sudoku Benchmarks, “http://fpt09.cse.unsw.edu.au/comp/benchmarks.html.”

