
Runtime memory allocation
in a heterogeneous reconfigurable platform

Vlad-Mihai Sima, Koen Bertels
Computer Engineering

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract—In this paper, we present a runtime memory
allocation algorithm, that aims to substantially reduce the
overhead caused by shared-memory accesses by allocating
memory directly in the local scratch pad memories. We target
a heterogeneous platform, with a complex memory hierarchy.
Using special instrumentation, we determine what memory areas
are used in functions that could run on different processing
elements, like, for example a reconfigurable logic array. Based on
profile information, the programmer annotates some functions
as candidates for accelerated execution. Then, an algorithm
decides the best allocation, taking into account the various
processing elements and special scratch pad memories of the the
heterogeneous platform. Tests are performed on our prototype
platform, a Virtex ML410 with Linux operating system, con-
taining a PowerPC processor and a Xilinx FPGA, implementing
the MOLEN programming paradigm. We test the algorithm
using both state of the art H.264 video encoder as well as other
synthetic applications. The performance improvement for the
H.264 application is 14% compared to the software only version
while the overhead is less than 1% of the application execution
time. This improvement is the optimal improvement that can be
obtained by optimizing the memory allocation. For the synthetic
applications the results are within 5% of the optimum. 1

I. Introduction
As the complexity of applications increases, hardware

and software engineers have to develop new approaches to
provide the best possible performance. One solution is to use
heterogeneous systems, which can include various processing
elements like reconfigurable processing elements and DSP
processor. In this way the flexibility of a GPP (general
purpose processor) is combined with the speed of the other
processing elements, while avoiding the costs and resources
involved in developing custom ASIC-s. But with greater
flexibility comes the problem of mapping the application
efficiently, especially when the system is a dynamic system
with multiple applications and an operating system.

We analysed a complex application, the H.264 video
encoder, and determined that one important problem is the
memory access overheads. The solution is to allocate the
memory directly in the scratch pad memory (SPM) of each
processing element. In this paper, we propose an on-line
algorithm that manages the memory allocation called AMMA
(adaptive memory mapping algorithm). The algorithm uses
instrumentation to track memory allocations and annotated
function execution, without any need for manual application
modification. The programmer’s only responsibility is to
annotate the functions for which there are available implemen-
tations for other processing elements. Using this information
the algorithm can decide which is the best memory allocation.

The paper is organized as follows: in Section II we briefly

1This research has been funded by the hArtes project EU-IST-035143, the
Morpheus project EU-IST-027342 and the Rcosy Progress project DES-6392

present the MOLEN programming paradigm for reconfig-
urable architectures and related work. Next, we give a motiva-
tional example and the problem definition. Our proposed so-
lution to the problems exposed are presented in Section V. An
extension of the AMMA algorithm is in Section VI. The results
of the algorithm are shown in Section VII. In Section VIII,
we present conclusions and outline new research directions.

II. Background and related work
The MOLEN programming paradigm [1] is a paradigm

that offers a model of interaction between the components of
a heterogeneous multi-core system. Using a ’one time’ archi-
tectural instruction set extension the MOLEN programming
paradigm allows for a virtually infinite number of new hard-
ware operations to be executed on the reconfigurable hardware
or any other processing element that supports this paradigm.

Previous work related to SPM-s, considers usually just one
processing element, like [2] which gives an ILP formulation
to the distributed stack allocation problem, using a complete
trace of memory accesses. In [3] is presented a static method
to determine the memory bank where a variable should
be placed, based on the number of accesses and conflicts
with others variables. Both approaches rely on detailed
information, which can be hard to obtain.

In [4] an algorithm is presented that determines the
program points where local (stack) variables have to be
transferred to/from RAM to the SPM. In contrast to previous
work, [5] instruments just the dynamic memory management
primitives along with all the accesses to memory. A data
identification algorithm is proposed and based on the results,
DMA optimizations are implemented. In contrast with those
two approaches, we target both local and dynamic variables
and do not rely on static information.

At the boundary between static and dynamic allocation,
[6] performs a load time optimization that places the stack
data in one of the memories using information computed at
compile time, but taking into account the size of the memory
at runtime. Compared to this approach, we manage both heap
and stack data.

In [7] a dynamic SPM stack manager is presented. The
main advantages are that it doesn’t need profile information,
and the size of the SPM only needs be known at runtime.
The manager optimizes the transfers between main memory
and SPM in order to reduce power consumption. Providing
both heap and stack management, [8] describes an iterative
algorithm that determines the allocation of stack, global and
heap variables and introduces transfer code when necessary.
Our approach tries to allocate memory directly where it is
more efficient, without the need of transfers.

In [9] a scratch pad memory management is presented which

GPP
FPGA

SPM (BRAM)
DDR

BUS

DSP

SPM

Fig. 1: Hartes platform architecture
#pragma call_hw FPGA
int satd(char *p1,char *p2,

int s1, int s2);

Fig. 2: Annotated function
memcpy(spm_buf1,buf1,size_buf1);
memcpy(spm_buf2,buf2,size_buf2);
r = satd(spm_buf1,spm_buf2,4,4);

Fig. 3: Code with transfer added to move data between main
memory and SPM

relies on compile time information to decide how to divide the
scratch pad memory between multiple applications. The algo-
rithm can extract at compile time information about a specific
loop type and then, at runtime, give each application memory,
based on the amount requested, but compared to our approach
it does not take into account the possible performance im-
provement obtained by the allocation of each memory block.

There are also hardware solutions, like those proposed in
[10] and [11], which modify the MMU of the processor in
order to manage the scratch pad memory. These solutions
are complex as they require extensive hardware changes, and
usually can’t be applied to existing platforms.

III. Motivation - H.264 application
We started by trying to map the open source implementation

of the H.264 video codec on a heterogeneous platform. The
H.264 video codec is a state of the art codec in video compres-
sion. The heterogeneous platform is the HARTES [12] plat-
form which contains an ARM as general purpose processor, a
Xilinx Virtex4 FPGA and an Atmel Magic DSP. The general
architecture is described in Figure 1. We focus our analysis on
the encoder part of the codec. By profiling the application two
kernels (computationally intensive functions) were identified:
satd (around 20% of the execution time) and sad (around 10%
of the execution time). FPGA implementations were generated
for those functions and MOLEN pragma annotations where in-
troduced in the application source code. An example of such an
annotation is given in Figure 2. One problem is that the FPGA
kernels can access just the BRAM from the FPGA, which
in fact constitutes the local SPM. To take advantage of the
acceleration of the FPGA kernels, we had to modify the code
and insert a memory transfer before each annotated function
invocation, as in Figure 3. As the access to the memory was not
linear, the memory accesses introduced unnecessary transfers,
which resulted in an application slowdown of more than 2x.

Our proposed solution is to allocate the data directly in the
SPM thereby reducing substantially the need for DDR based
memory accesses. This implies detecting all the places where
memory is allocated, and most important, as the size of the
SPM is small, determine which of the allocations are worth

buf1 = malloc_spm(size_buf1);
buf2 = malloc_spm(size_buf2);
...........................
r = satd(buf1,buf2,4,4);

Fig. 4: Code modified so that buf1 and buf2 are allocated
directly in the SPM

to allocate in the SPM. For example in Figure 4 both buffers
are allocated using a special allocation function, so they will
always reside in the SPM. Also the SPM can be used by
multiple applications, so the available size can vary from one
execution to another.

In summary, any algorithm that wants to solve those issues
need to address the following:

• Problem 1: identify which allocations are candidates for
allocation in SPM.

• Problem 2: determine the total needed memory size (which
is especially challenging for dynamic memory allocation).

• Problem 3: prioritize between various allocations in multiple
applications based on the speedup.

We propose a dynamic allocation algorithm, that can track
the memory allocations at application run time and then
allocate the memory efficiently, by inserting code similar
with the one in Figure 4. This is done for the allocations that
will bring the highest overall improvement in performance.
This improvement will be determined based on the function
speedup and on the execution count.

IV. Problem definition

The problem can be split in two parts: the allocation
tracking and the mapping algorithm.

A. Allocation tracking

Given the application source code, and the annotated func-
tions, a list will be maintained with all the memory allocations
that are used in those functions. For each combination of
allocations used in a kernel we have an associated gain which
represents how much time would be saved if that kernel would
be executed accelerated. This gain can be obtained either at
compile time, by profiling the software and the FPGA imple-
mentation, or can be computed at runtime by profiling the soft-
ware and the FPGA implementations. We assume in the rest
of the paper that we have this information provided at compile
time. The gain is computed by multiplying the time saved by
using the accelerated implementation with the execution count.

B. Memory mapping

The second part of the problem is to find which set of
memory allocations have to be placed in the SPM to obtain
the best performance. We assume that all the kernels execute
sequentially. If parallel execution would be considered, the
general idea of the algorithm holds, but some of the equation
should be modified. Graphically, this is depicted in Figure
5 where the circles represent one kernel call, the rectangles
represent the memory blocks and the big squares represent the
memory. The gain for a kernel invocation can be obtained just
if all the memory blocks are allocated to the SPM. In our ex-
ample just K1 and K2 will run in hardware, while K3 will run
on the GPP. With this mapping the gain would be of 400ms.

A
(size 2kb)

B
(size 1kb)

C
(size 1kb)

D
(size 3kb)

Kernels
Memory blocks

K1
Gain 200ms

K2
Gain 200ms

K3
Gain 310ms

Mapping

DDR
(main memory)

SPM
(FPGA BRAM)

Fig. 5: Motivational example

V. AMMA framework

To solve the problems described, we present a dynamic
framework, composed of three modules: the allocation
tracking module, the execution module and the mapping
algorithm. The application is instrumented with these
modules by special optimization passes from the compiler.
The allocation module tracks at run time all the allocations
by managing a list with the starting and ending address of
the currently allocated blocks (stack, global and heap). It also
allocates the memory based on the decision of the allocation
algorithm (scratch pad or main memory). The execution
module, determines at runtime, for each of the annotated
functions, if the data is allocated in SPM, and in that case
uses the accelerated implementation. It also updates the gains
associated with each combination of memory allocations,
based on the known speedup of the current annotated function
invocation. We call the lists of memory allocations, together
with the associated gains the memory allocation lists or in
short MAL. The MAL will be created at the first application
execution, and the allocation module will update it, save it
and restore it across multiple application runs.

The algorithm that computes the best allocation will be
executed just at specific points in the program execution. It
will be executed first after the MAL was generated for (at
least) one application execution. Then, the algorithm must be
called again in at least two cases. The first case is when the
size of the available scratch pad memory changes because the
operating system needs more memory for other applications.
The second case is when an allocation is no longer optimal
because of a change in the input data.

Using this approach, the only application modification
needed is the annotation of the functions that can be run
accelerated. Our approach is semi automatic and does
not involve a manual analysis to determine exactly what
allocations are needed by which kernels (and thus solves
Problem 1). The size of the allocated memory will be
determined just at runtime, giving more flexibility to the
system (and thus solves Problem 2). If multiple applications
are present the allocation can be done in such a way that the
overall system performance is improved (solves Problem 3).

function:
sp = cm_stack_allocate(id,size);
cm_stack_add(id,sp,sp+size);
...
sp = cm_stack_deallocate(id);
return;

Fig. 6: Code added for functions for stack instrumentation
(architecture dependent)

A. Allocation tracking module
The allocation module has two tasks: to manage the

allocated memory blocks and, for new allocations, place them
into the memory the allocation algorithm determined it would
be best for the overall performance. Depending on the type
of memory object, different mechanisms are used.

Global variables
All the global arrays are transformed to pointers and are

initialized in a special initialization function cm global init.
This is done so that the array addresses are not fixed at link
time, but rather initialized at the application loading. This
mechanism is one of the mechanisms used by the compiler
when generating position independent code. In this function,
there are two steps: the ranges of the arrays are added to
the MAL for further checking and based on the allocation
decided by the algorithm, each of the arrays is allocated
either in main memory or in the scratch pad memory.

Stack variables
As the stack management is architecture dependent, so is

the allocation module that treats stack variables. It has to be
designed for each GPP the AMMA has to support.

Tracking the stacks for all functions would introduce unnec-
essary overhead. Instead, we performed an optimization by
instrumenting just those functions which are found on a path
from the root of the call graph (main function) to one of the an-
notated functions. If function pointers are used, we will always
consider that such a pointer can point to an annotated func-
tion and instrument the function using the function pointers.
Another optimization is to detect if any of the local variables
in a function are used as parameters for other calls. If this is
not the case, it means the local variables will never be used by
annotated functions, so the instrumentation would be useless.

For each instrumented function a special header is added to
the assembly code. First cm allocate returns the address for
the stack of the function, based on the decision that was taken
by the algorithm. Then cm stack add is called which, based
on an identifier, will add the starting and ending address to
a list in the MAL. A pseudo-code of the wrapper is given in
Figure 6, where sp is the stack pointer for local variables.

Heap memory allocations
To track the dynamic memory allocations, a wrapper around

standard allocation functions is provided. The wrapper has
two functions: add the allocations to the MAL and allocate
the memory according to the decision of the allocation
algorithm. One allocation is identified in this case by the
address from which malloc was called.

B. Execution module
The execution module is used only for the functions

annotated with a pragma by the programmer. It’s role is
to update internal data structures that track what memory

a[m] array of memory allocations
m[n] array of combinations of allocations

compute_scores(a,m);
sort(a,descending)

alloc = 0
for i = 0 to n
if(alloc + a[i].size < memory size)
mark a[i] to be placed in spm
alloc + = a[i].size

Fig. 7: AMMA algorithm

areas are used by accelerated functions. Then, if all the
data is placed in the appropriate memory, it will invoke the
accelerated implementation.

C. Mapping Algorithm
The data available to the algorithms can be formally

represented by:
• the set of memory allocations, A = {aj , j = 1..m}, where

m is the number of allocations tracked, and aj is one
allocated block.

• the combinations in which the allocations are used by each
kernel. There can be multiple combinations used by each
kernel, and one allocation can be in multiple combinations.
Let the set of all combinations be S = {Ci, i = 1..n/Ci =
({aj}, kigain

)}. We denote by Ci a combination of memory
allocations used in at least one kernel invocation and by aj

a specific memory allocation. The time gained by allocating
all the memory in set Ci to scratch pad memory and running
the associated kernel accelerated is denoted by kigain .

• the size of the available scratch pad memory.
The idea of the algorithm is to order the memory allocations

based on the memory score then allocate them to scratch pad
memory, until the memory is full. The score is computed
as the sum of the gains of the kernels that use that specific
allocation. This is represented for memory location aj as
ajscore

and we compute it using Equation 1. This is a very
low overhead algorithm, as it needs just one sort operation
on the memory objects and one pass to fill the memory. The
pseudo-code is given in Figure 7.

ajscore
=
∑

aj∈Ci

kigain
(1)

The main drawback of AMMA is that it does not take into
account the fact that in order to obtain the gain, a complete
group of memory allocations must be in SPM. For example,
if we consider Figure 5, K2 can’t execute in HW unless both
memory block A and B are allocated to SPM.

VI. AMMA extension
We now describe an extended version of the same

algorithm, which we call AMMAe, which is more complex
but provides better solutions than AMMA. We also give
the ILP formulation of the problem, which will be used as
benchmark as it guarantees to compute an optimal solution.

AMMAe algorithm
We now discuss an extension to the proposed AMMA

algorithm where 2 new elements are introduced. We first
present the new equations and then discuss their meaning.
We introduce the following modified equations to compute
the scores for each memory object:

a[m] array of memory allocations
m[n] array of combinations of allocations

alloc = 0
do
changed = false
compute_scores_extended(a,m)
sort(a,descending)
for i = 0 to n
if(alloc + a[i].size < memory size)
mark a[i] to be placed in spm
alloc + = a[i].size
remove a[i] from a
changed = true
break

while (not changed)

Fig. 8: AMMAe algorithm

si =
∑

aj∈Ci,aj is not allocated

ajsize
(2)

aj,iscore
=

{
0 , if si < f or aj /∈ Ci

kigain
· ajsize

si
, otherwise

(3)

ajscore =
n∑
i

aj,iscore (4)

where, si represents, at the current iteration, the memory
that kernel i needs so that it will run in hardware.

The first element is that, the gain of a kernel is only
added to the score of a memory allocation when it can fit the
available remaining SPM memory. This is represented by the
if statement in Equation 3. In our example, and considering
an SPM of size 3k, the gain of kernel K3 will not be added
to the score of either memory block B or C, because its
required memory does not fit the SPM.

The second change to the AMMA algorithm is represented
by the equation kigain

· ajsize

si
. This equation multiplies the

kernel gain by the proportion the current block represents of
the total memory needed for kernel ki. This way we take into
account how much the current memory block consumes of the
total required memory the kernel needs. This is represented
by the ajsize

si
. The larger this factor is, the more the kernel

gain is taken into account.
The modified algorithm, that recomputes the scores after

each allocation, is shown in Figure 8. Assuming f is the free
memory at the current step, the new gain formula is given by
Equation 4. The outline of the algorithm is given in Figure 8.

Assuming we have the kernels and memory allocations in
Figure 5 and an available memory of 5 kbytes, the steps of
AMMA and AMMAe are shown in Table I and Table II.

TABLE I: AMMA algorithm example
Iteration Memory allocations scores Allocated Free

A B C D to SPM SPM
1 200 400 510 310 5
2 200 400 - 310 C 4
3 200 - - 310 C, B 3
4 - - - 310 C, B, A 1

Kernels executed accelerated: K1,K2 - gain 400ms

For AMMA the memory allocation’s scores are computed
only once using Equation 1.

The gain for memory block A is the one generated by kernel
K1, A while the gain for memory block D is the one generated
by kernel K1. For memory blocks C and D, 2 kernels
contribute to their gains. In each step, the memory block with
the highest score is chosen to be allocated to the SPM. The

allocate_to_DDR(A,B,C,D) allocate_to_SPM(A,B,C)
allocate_to_DDR(D)

........................
call K1(A,B) call accelerated K1(A,B)
call K2(B,C) call accelerated K2(B,C)
call K3(C,D) call K3(C,D)

Gain:0 Gain : 400 ms

Fig. 9: Code before and after AMMA algorithm

instructions that would be executed with and without AMMA
applied are shown in Figure 9. We can see memory blocks A,
B, C are allocated to SPM and K1 and K2 are accelerated.

TABLE II: AMMAe algorithm example
Iteration Memory allocations scores gains Allocated Free

A B C D to SPM SPM
1 133 166 177 232 5
2 133 166 410 - D 2
3 0 200 - - D, C 1
4 0 - - - D, C, B 1

Kernels executed accelerated: K2,K3 - gain 510ms

allocate_to_DDR(A,B,C,D) allocate_to_SPM(B,C,D)
allocate_to_DDR(A)

........................
call K1(A,B) call K1(A,B)
call K2(B,C) call accelerated K2(B,C)
call K3(C,D) call accelerated K3(C,D)

Gain:0 Gain : 510ms

Fig. 10: Code before and after AMMAe algorithm

AMMAe uses Equation 4 to compute the gain for each
memory allocation. We give examples for sK1 and aBscore as
the rest are computed similarly. The memory needed to run
K2 accelerated is:

sK1 = aAsize
+ aBsize

= 3
We compute now the score associated with block B. B is used
by two kernels, K1 (K1gain = 200) and K2 (K2gain = 200).
But kernel K1 needs both blocks A (aAsize

= 2k) and B
(aAsize = 1k) to run, so, we add to the score of B just a part
of gain of kernel K1 proportional to block size of B from
the total size needed (sK1 = 3). The same applies for K2.
The entire equation is:

aBscore
= kK1gain

· aBsize

sK1
+ kK2gain

· aBsize

sK2
= 166

After each allocation iteration, all the scores have to be
recomputed as the total sizes needed by one kernel will
change (we consider just the additional size needed, without
taking into account the already allocated blocks). After the
first iteration, the total size needed by kernel K3 will be just
the size of C, as block D is already allocated. Hence the
score for C will change. The algorithm is applied until no
further allocation is possible.

The instructions that would be executed without and with
AMMAe applied are shown in Figure 10. We can see B,
C, D are allocated to SPM and K2 and K3 are executed
accelerated, resulting in a bigger gain than for AMMA.

ILP formulation
For each of the memory allocation we associate a 0 -

1 variable (xj) which will be 1 in case that the memory
allocation will be made in a SPM. For each combination
of memory allocations (so, for each kernel invocation) we

associate a 0 - 1 variable (yi) which will be 1 in case all
the memory allocations in it are allocated in SPM. Let n be
the number of memory allocations combinations. Using this
notation our objective function is:

max(
n∑

i=1

yi · kigain
) (5)

We need a constraint linking the combinations of memory
allocations with each allocation. Let ci be the number of
allocations in Ci. The idea is that yi is 1 just if all the corre-
sponding xj are also 1. We can e express this for each i, as:

yi ≤
∑

aj∈Ci
xj

ci
(6)

Let m be the total number of memory allocations. Ensuring
that all the allocation fit in SPM will be imposed by the
following constraint (where MEM is the total size of SPM):

m∑
j

xj · ajsize
< MEM (7)

VII. Empirical validation
Although the analysis was done for the HARTES platform,

we did the empirical validation of our approach on different
but similar platform namely a Xilinx Virtex-4 ML410 which
is based on the Xilinx XC4VFX60 FPGA. The main reason
for this was that the development of the operating system
for HARTES was not finished at the time of the tests. The
memories used in our design are: a Flash memory used as
external memory, an internal 256 MB DDR2 memory as main
memory and a 128 kbytes BRAM used as scratch pad memory.
The kernels were implemented using the DWARV tool [13].
The system runs at 200 MHz and the hardware designs are
clocked at 100 MHz. The compiler used to instrument the
application was a modified GCC 4.3 Power-PC compiler.

As this is a runtime algorithm, overheads are important
in measuring its performance. We present separately the
overheads involved in constructing the MAL in Table III. The
videos used are the videos available at [14]. Compared to
the speedups that can be obtained by applying AMMA, the
overhead incurred by it is negligible.

TABLE III: Execution time overhead of constructing memory
allocation table for stack and dynamically allocated variables

Instrumen 1 2 3 4 5 6-tation
Dynamic 0.38% 0.37% <0.1% <0.1% <0.1% 0.24%
Stack 0.36% 0.58% 0.33% 1.07% <0.1% 0.52%

Another, similar, but less important issue is the execution
time of the AMMA and AMMAe algorithms. Even if this
algorithm will execute rarely, we present in Table IV the
results obtained when testing with the synthetic applications.
For the ILP algorithm, we ran just one subset of problems,
because of the long execution times. The three cases are
increasingly complex synthetic applications. Their generation
is explained in Section VII-B.

A. H.264 video encoder
We used the instrumentation and algorithm presented to

compile and run the H.264 video codec. The execution pattern
in the encoder is dependent on the input data. Around 35%
of the execution time is spent in two kernels: satd wxh and

TABLE IV: Average algorithm execution times tested on the
hardware platform (outside of the context of the applications)

Algorithm Average execution times (ms)
Case 1 Case 2 Case 3

ILP 9980 30990 37780
AMMA 21 97 239
AMMAe 52 234 522

 94

 95

 96

 97

 98

 99

 100

 200 400 600 800 1000 1200 1400 1600 1800

P
er

ce
nt

s
fro

m
 IL

P

Memory size (kb)

Performance compared to ILP

AMMAe
AMMA

Fig. 11: Algorithm performance for different memory sizes

sad. The kernel hardware implementations offer a speedup of
2 and 1.8. The total memory used by both functions is 603
kbytes. The smallest block is 256 bytes, while the largest
is 49 kbytes. The total available scratch pad memory is 128
kb. With this setup, by applying the AMMA algorithm we
obtained a performance improvement of 14% compared
to the GPP only execution. For this application and size of
BRAM both AMMA and AMMAe gave the optimal solution.
Assuming an infinite amount of BRAM the speedup that
could be obtained is of 18%. The application contained 17
memory allocations that were used by the two kernels, and
29 memory allocation combinations.
B. Synthetic applications

Besides the test on the H.264 application we used
benchmarks on synthetic applications, to test how far is our
algorithm from the optimal solution. We considered in the
synthetic applications that each memory allocation has a size
between 128 bytes and 256 kilobytes. We use as reference
the DWARV [13] hardware compiler which automatically
generates the hardware kernels. The speedup obtained is up
to 10X . We chose between 5 and 10 memory blocks and
a large number of kernel (between 10 and 30) to test the
algorithms in more complex situations than the one found in
the motivational example. The results are seen in Figure 11.

The number of synthetic applications generated was 300.
We compare against the ILP solution, which is optimal. The
speedup obtained for each application depends on the amount
of memory available and was in our tests between 2 and 6.

From the graph, we can see that in case there is little mem-
ory available, both algorithms perform as well as ILP. As the
available memory increases, we can see that AMMAe is better
than AMMA, within 4% of the ILP solution. Both algorithms
converge to ILP when the available SPM-s are large enough to
fit all the memory objects and all the kernels will be executed
in hardware. These trends were also seen when varying the
number of kernels and memory blocks (graphs omitted here
for brevity), with AMMA being always within 14% of the ILP,
and AMMAe being within 5% of the ILP solution.
VIII. Conclusions

In this paper, we presented the compiler driven AMMA
algorithm that decides at runtime which is the best allocation

for memory, taking into account the kernels that use the
memory and as well as the gain that could be obtained by
running those kernels on a dedicated hardware components.
We showed how such a framework can simplify the
development of applications while allowing a high flexibility
by adapting to changing conditions. Our algorithm stays within
5% of the optimal solution given by an ILP formulation.

As future work, we will study the effect of parallel execution
on the allocations and also the improvements that could be ob-
tained by having various implementations for the same kernel.

References
[1] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,

and E. M. Panainte, “The molen polymorphic processor,” IEEE
Trans. Comput., vol. 53, no. 11, pp. 1363–1375, 2004.

[2] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allo-
cation scheme for scratch-pad-based embedded systems,” Trans.
on Embedded Computing Sys., vol. 1, no. 1, pp. 6–26, 2002.

[3] J. D. Hiser and J. W. Davidson, “Embarc: an efficient memory
bank assignment algorithm for retargetable compilers,” SIGPLAN
Not., vol. 39, no. 7, pp. 182–191, 2004.

[4] S. Udayakumaran and R. Barua, “Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems,” in
CASES ’03: Proceedings of the 2003 international conference
on Compilers, architecture and synthesis for embedded systems.
New York, NY, USA: ACM, 2003, pp. 276–286.

[5] A. Bartzas, M. Peon-Quiros, S. Mamagkakis, F. Catthoor,
D. Soudris, and J. M. Mendias, “Enabling run-time memory
data transfer optimizations at the system level with automated
extraction of embedded software metadata information,” in
ASP-DAC ’08: Proceedings of the 2008 conference on Asia and
South Pacific design automation. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2008, pp. 434–439.

[6] N. Nguyen, A. Dominguez, and R. Barua, “Memory allocation
for embedded systems with a compile-time-unknown scratch-pad
size,” in CASES ’05: Proceedings of the 2005 international con-
ference on Compilers, architectures and synthesis for embedded
systems. New York, NY, USA: ACM, 2005, pp. 115–125.

[7] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee, “A
software solution for dynamic stack management on scratch pad
memory,” in ASP-DAC ’09: Proceedings of the 2009 Conference
on Asia and South Pacific Design Automation. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 612–617.

[8] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data
allocation to scratch-pad memory in embedded systems,” J.
Embedded Comput., vol. 1, no. 4, pp. 521–540, 2005.

[9] O. Ozturk, M. Kandemir, and I. Kolcu, “Shared scratch-pad mem-
ory space management,” in ISQED ’06: Proceedings of the 7th
International Symposium on Quality Electronic Design. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 576–584.

[10] S. Park, H.-w. Park, and S. Ha, “A novel technique to use
scratch-pad memory for stack management,” in DATE ’07:
Proceedings of the conference on Design, automation and test
in Europe. San Jose, CA, USA: EDA Consortium, 2007, pp.
1478–1483.

[11] H. Cho, B. Egger, J. Lee, and H. Shin, “Dynamic data scratch-
pad memory management for a memory subsystem with an mmu,”
in LCTES ’07: Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded
systems. New York, NY, USA: ACM, 2007, pp. 195–206.

[12] [Online]. Available: http://www.hartes.org
[13] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev,

J. Lu, and S. Vassiliadis, “Dwarv: Delftworkbench automated
reconfigurable vhdl generator,” in In Proceedings of the 17th
International Conference on Field Programmable Logic and
Applications (FPL07), August 2007, pp. 697–701.

[14] “Xiph.org test media,” 2009. [Online]. Available:
http://media.xiph.org/video/derf/

