
Abstract—Datapath merging is an efficient high level synthesis
method to merge Data Flow Graphs (DFGs), corresponding to
two or more computational intensive loops. This process creates
a general purpose datapaths (merged datapaths) instead of
multiple datapaths that results in shorter bit-stream length and
therefore reduces the configuration time in reconfigurable
systems. The merged datapath, however has worse loop
execution time. This paper represents two datapath merging
algorithms to address this problem. These algorithms consider
the impact of adding multiplexer's latency to the critical path
delay of the merged datapath. The former algorithm merges
DFGs from the biggest DFG to the smallest one to make high
speed merged datapath. The latter merges DFGs in steps, and in
the final step, it combines the resources inside the merged
datapath to achieve additional reduction in configuration time.
The proposed techniques are evaluated using several
Mediabench applications. The experimental results show a
significant reduction, up to 35% in loops execution time for the
first algorithm and up to 27% reduction for the second
algorithm in comparison to previous datapath merging
algorithm.

I. INTRODUCTION

Many applications contain computational intensive loops,
which in some cases can be accelerated by reconfigurable
devices such as FPGAs. On the other hand, the FPGA
resources are limited. In order to share FPGA resources
among different applications, run-time reconfiguration is
employed when the hardware is needed [1]. However, the
run-time reconfiguration imposes a considerable overhead to
the performance of the system. Therefore, the configuration
should be done as efficient as possible.

The bit-stream length and the configuration time of the
hardware are directly proportional. In fact, the time of
transmitting bit-stream into FPGA corresponds to the
configuration time [2] and therefore, reducing the bit-stream
length amortizes the configuration time. Previous research has
been carried out to reduce the configuration time by using
compression and caching techniques. For instance, the authors
in [3,4] and [5] used compression and caching techniques to
reduce the bit-stream length, respectively. Although these

techniques reduce the configuration time, they are costly. In
order to prevent the additional cost, the configuration time
reduction can be addressed during High Level Synthesis
(HLS). Mostly HLS is used to create the Data Flow Graphs
(DFG) with a number of iterations for the computational
intensive loops [6, 7]. The HLS shares resources of the DFGs
to make a more generic datapath. Therefore, it reduces the
hardware cost of the datapath. The synthesis process
comprises the major tasks of scheduling, resource allocation,
resource binding, and interconnection binding [8].

Making a multimode datapath instead of multiple datapaths
can reduce the hardware cost [9]. Datapath merging is an
efficient HLS approach that makes a multimode datapath for
partially reconfigurable systems [10,11]. We showed in [12]
that datapath merging is a suitable method to reduce the
datapath configuration time. The method in [12] heuristically
chooses a sequence of DFGs to merge together, consequently,
it cannot optimize the configuration time of the merged
datapath. On the other hand, datapath merging algorithms add
multiplexers in the input port of the functional units in the
merged datapath, and as such, increase the execution time of
the loops via the merged datapath. Merging more DFGs also
causes sharing more functional units in merged datapath. This
means that the final merged datapath employs larger
multiplexers. If the multiplexer is on the critical path of the
merged datapath, it will increase the loops execution time. In
case of loops with many iterations; this time-overhead will be
unacceptable.

In order to provide a high speed merged datapath, we
present two new datapath merging algorithms. The former
merges DFGs to reduce the configuration time while it avoids
large multiplexer on the critical path of the merged datapath.
The latter algorithm merges DFGs in steps in the same way,
and in the final step it combines the resources inside the
merged datapath to achieve the additional reduction in
configuration time. The rest of the paper is organized as
follows. In section II, trade-off between the conflicting
factors, configuration time reduction, and increase in loop

High Speed Merged-datapath Design for Run-Time
Reconfigurable Systems

Mahmood Fazlali#*1, Ali Zakerolhosseini#2, Asadollah Shahbahrami#†3 and Georgi Gaydadjiev*4

#Department of Computer Engineering, Shahid Beheshti University G.C, Tehran, Iran
1fazlali@cc.sbu.ac.ir

2a-zaker@sbu.ac.ir
*Computer Engineering Lab., Delft University of Technology, Delft, The Netherlands

† Department of Computer Engineering, University of Guilan, Rasht, Iran
{3a.shahbahrami, 4g.n.gaydadjiev}@tudelft.nl

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

execution time, in datapath merging is presented. The
proposed datapath merging algorithms are presented in
section III. We evaluate the proposed algorithms in section
IV. Ultimately, section V concludes the paper.

II. LOOP EXECUTION TIME VIA THE MERGED DATAPATH

Although datapath merging reduces the datapath
configuration time, it increases the loop execution time. Fig. 1
illustrates two DFGs (G1 and G2) and two merged datapaths
(MDP1 and MDP2) corresponding to merging G1 and G2. Due
to the reduced hardware usage in MDP1, it has shorter
configuration time in comparison to MDP2. On the other
hand, MDP1 has a multiplexer on the input port of node a5/b3.
The divider in a5/b3, has the longest hardware delay among
the functional units and a5/b3 is on the critical path delay of
the merged datapath. Therefore the clock rate of the merged
data path MDP1 is lower than MDP2 and consequently,
execution time of the loops via the MDP1 is longer than their
execution time via MDP2.

1a 2a 2b

4a

1G
1b3a

3b

5a

2G

��

�

�

&

1 1/a b 2 /a � 3 2/a b

5 3/a b
�

� /� �

MUX

1 1/a b 3 2/a b

4 /a �

5a

�

�
3b

4 /a �

�

��

�

�

%%

�

1MDP 2MDP

/� �

%

2/a �

Fig. 1. Merging G1 and G2 to create merged datapaths MDP1and MDP2.

Hence, datapath merging results in slowing down the
hardware. Although pipeline implementation of the merged
datapath can reduce this overhead, it can be unacceptable for
the loops with many iterations. So, to avoid prohibitive
increase in loop execution time, we should consider hardware
latency in datapath merging.

III. THE PROPOSED DATAPATH MERGING ALGORITHMS

Since merging DFGs all at once is an NP-complete problem
[10], DFGs should be merged in steps to reduce the
configuration time. In the proposed algorithms, we merge
DFGs in such a way multiplexers are not added to the critical
path of the merged datapath. The DFGs are merged together

starting from the biggest DFG to the smallest one. In the first
proposed algorithm (High speed-1), the merging is performed
in a number of steps. Each step corresponds to merging a
DFG onto the merged datapath that includes the three stages
below.

1- Making the compatibility graph between MDP and
DFGs;

2- Finding the bounded execution time-weighted clique;
3- Reconstructing the pipelined merged datapath.

In the first stage, we should find the similarity between the
functional units of the DFG and the functional units of the
merged datapath. To this end, we make the compatibility
graph in each stage of datapath merging.

A compatibility graph Gc= (N,A) is an undirected weighted
graph. Each node n�N shows the merging possibility between
a vertex from MDP and a vertex from G, or a merging
possibility between an edge from MDP and an edge from G.
Each arc a=(n,m)�A illustrates that having both nodes, n and
m, together in merging, do not merge two vertices from a
DFG Gi together. It means they are compatible. The weight
for each node, wi, represents the reduction in merged datapath
configuration time resulted from merging indicated by the
node. For example as illustrated in Fig. 2, two vertices a1� G1

and b1�G2 can be merged together. So, the node a1,b1 is
created in Gc for this merge that its weight indicates to the 360
ns reduction in configuration time resulted from merging the
vertices. This weight is the difference between the
configuration time of the obtained vertex in MDP and
configuration time of the original vertices before merging
[12]. In this way, the compatibility graph "Gc" for two DFGs
G1 and G2 is created by using the method was explained
above.

1G 2G

cG
1 40w �

3 2,a b 1 1,a b

3 5,a a 5 3,a b

2 2,a b

2 360w �

3 20w � 4 80w �

1 5

4

2

3 5 40w �

1a 2a 2b

4a

1b3a

3b

5a

��

�
�
�� �

%

2, 3b b

Fig. 2. Making the compatibility Gc graph in datapath merging [12].

2

In the second stage of the High speed-1 algorithm, we
should find a clique in the compatibility graph to make a high
speed merged datapath. By finding the maximum weighted
clique from the compatibility graph in this stage, the merged
datapath which has minimal configuration time is made [12].
Fig. 3 illustrates two cliques and their corresponding merged
datapath for the compatibility graph in Fig. 2. The first one is
the maximum weighted clique and its corresponding merged
datapath that are illustrated in Fig.3.a. The second one is
another clique and its corresponding merged datapath which
are illustrated in Fig.3.b. Although the merged datapath
configuration time in Fig.3.a is less than the merged datapath
configuration time in Fig.3.b, the execution time of loops in
Fig3.a is longer than their execution time in Fig.3.b. The
clique in Fig.3.b avoids adding multiplexer on the input ports
of the functional unit on the critical path delay of the merged
datapath.

To find the high speed merged datapath, we need a clique
as the one illustrated in Fig.3.b. By using this clique the
desired merged datapath is obtained. So, we need a similar
clique to solve the problem. Therefore:
Given a compatibility graph Gc for k number of DFGs, Gi
i=1…k, Bounded execution-time weighted clique, Mb, is a
maximal weighted clique in Gc that has bounded critical path
delay for the corresponding merged datapath.

The algorithm which finds the Bounded execution time-
weighted clique, Mb, in Gc should take into consideration
every increase of the execution time of the loops via the
merged datapath. Finding Mb in Gc is similar to finding the
maximum weighted clique. The maximum weighted clique
problem is known to be an NP-hard problem [13]. To find the
maximum weighted clique from a graph, [14] employs the
Branch&Bound algorithm and optimizes its execution time.
This method for searching the problem space and its
optimizations is suitable for solving our problem. This way,
we modified the Branch& Bound algorithm in [14] to find Mb.
Our algorithm to find bounded execution-time weighted
clique is a recursive Branch&Bound function that searches the
nodes in a compatibility graph to find the desired clique. It
considers all nodes and also decides which node is probable to
be in the bounded-execution time-weighted clique in each
branch of recalling the function. Our modifications are as
follows:

� Considering the loops execution in each step of
Branch& Bound algorithm by employing a bound for
the loops execution time via the merged datapath.

� Using configuration time bound and execution time
bound in Branch&Bound Algorithm to cut the
branches and limit problem search space.

The former modification chooses the clique among all
cliques in each branch that has the bounded execution time for
the loops. It prevents from adding big multiplexers on the

critical path of the merged datapath corresponding to this
clique. The latter reduces the search space of the algorithm by
cutting branches which are improbable to find the bounded
execution time-weighted clique.

In the last stage of High speed-1 algorithm, the bounded-
execution time-weighted clique, Mb, is used to reconstruct
MDP, and produce the next merged datapath. Each node from
Mb indicates a merging possibility between an edge (a vertex)
from MDP and an edge (a vertex) from Gj. Other vertices and
edges which cannot be merged are added to MDP without
merging. It should be notified MDP is pipelined to reduce the
overhead of loops. These processes are repeated for merging
all DFGs onto the merged datapath until the last merged
datapath resulted from algorithm High speed-1 is made.

1 40w �

3 2,a b 1 1,a b

3 5,a a
5 3,a b

2 2,a b

2 360w �

3 20w � 4 80w �

5 40w �

1
5

4

2

3

1 40w �

3 2,a b 1 1,a b

3 5,a a 5 3,a b

2 2,a b

2 360w �

3 20w � 4 80w �

1
5

4

2

3

5 40w �

(a)

(b)

bM

cM

&

1 1/a b 3 2/a b

5 3/a b�

� /� �

MUX

4 /a �

�
1MDP

1 1/a b 3 2/a b

4 /a �

5a

�

�
3b

�

�

2MDP

/� �

%

%
2, 3b b

2, 3b b

2/a �

2/a �

Fig. 3. Reconstructing the merged datapath MDP using the maximum
weighted clique, and the bounded execution-time weighted clique.

The second proposed datapath merging algorithm (High
speed-2), includes all steps of the High speed-1 merging
algorithm plus an extra step. In this step all merging
possibility among the resources inside the merged datapath is
considered as a compatibility graph (intra-merged datapath
resource sharing). To do this, we used the compatibility graph
in [11]. Then the bounded execution time-weighted clique in
this graph, Mb, is determined. By finding Mb in the
compatibility graph and reconstructing the MDP using this
clique, the merged datapath resulted from the High speed-2
merging algorithm is created.

3

IV. EXPERIMENTAL RESULTS

We have implemented the proposed merging algorithms
and the datapath merging algorithm in [12], as well. The
algorithm in [12] is based on the maximum weighted clique,
while our algorithms use the bounded-execution time-
weighted clique. All algorithms perform resource allocation,
resource binding, and interconnection binding simultaneously
with the aim of reducing the configuration time.

There are some computational intensive loops in each
application in Mediabench suite which have the largest share
of the execution time [15]. The entity of the loops makes them
suitable for the execution by reconfigurable computer. To
merge the DFGs correspond to the loops, initially benchmarks
should be converted to intermediate representation. This way,
each program was compiled using the GCC compiler and was
profiled to determine which loops contributed the most to the
program execution time. For each such loops, a DFG was
generated from the loop body RTL code.

The configuration time of a bit-stream in a FPGA can be
estimated as [(size of bit-stream) / (configuration clock
Frequency)] [3]. After obtaining the bit-stream of the
functional units and multiplexers from ISE 10.2, their
configuration time was calculated. In our experiments, we
used the configuration clock frequency for the FPGA which is
100 Mbps as in the case of Virtex5-xc5vlx.

TABLE I
THE LOOPS EXECUTION TIME IN EMPEG2-DECODER APPLICATION (MS)

WHERE LOOPS HAVE 20000 ITERATIONS

Datapath
Merging
Algorithms

Loops Execution Time (ms)
Loop1 Loop2 Loop3 Total

Algorithm in
[12] 0.845 1.689 2.252 4.786

High speed-1
algorithm 0.633 1.209 1.280 3.122

High speed-2
Algorithm 0.645 1.243 1.631 3.519

For the first experiment we applied our algorithms and
the algorithm proposed in [12] to three DFGs corresponding
to the loops of MPEG2-decoder. To apply each algorithm,
initially DFGs were scheduled using ASAP scheduling
algorithm. Then, the datapath merging algorithms was applied
to the DFGs to make the pipelined merged datapath.
Afterward, the loops execution time via the merged datapath
is calculated for each algorithm. Where the loops have 100
iterations, execution time of the loops for all datapath
merging algorithms are the same. That means all algorithms
make the merged datapath by using the maximum weighted
clique in this situation. We repeated the experiment where the
loops have 20000 iterations. Table II shows the execution
time of the loops. The results indicated that whenever loops
have 20000 iterations, High speed-2 algorithm has shorter
execution time than the algorithm in [12] and High speed-1
algorithm achieved the shortest execution time among three
algorithms.

We repeated the previous experiment for several
applications from Mediabench suite where loops have 20000
iterations. We applied the datapath merging algorithms to
three DFGs of the MPEG2-decoder, three DFGs of MPEG2-
encoder, three DFGs of EPIC-decoder, three DFGs of EPIC-
encoder and, two DFGs of G721 benchmark. After achieving
the merged datapaths from applying the algorithms, for each
application, the total increase in loops execution time
compared to the loops execution time in original DFGs was
calculated.

Fig. 4. Percentage increase in loops execution time in the proposed datapath
merging algorithms and the algorithm in [12] compare to loops execution time
in original DFGs

As illustrated in Fig. 4, the loops execution time in the
proposed algorithms is lower than the algorithm in [12] where
loops have 20000 iterations. This means that the proposed
datapath merging algorithms performs better than maximum
weighted clique algorithm. The minimum improvement in
loops execution time, compare to the algorithm in [12], is 5%
for High speed-2 algorithm in EPIC-encoder application. The
highest improvement is 35% for High speed-1 algorithm in
MPEG-2decoder. This shows that by increasing the number of
functional units in DFGs, there might be multiplexers that
increase the critical path delay of the merged datapath. the
proposed algorithms prevent from adding such multiplexers to
the critical path. Similar to High speed-1 algorithm, the
hardware resulted from High speed-2 algorithm has execution
time shorter than algorithm in [12]. Moreover except G721,
High speed-2 algorithm reduces configuration time more than
High speed-1 algorithm. This configuration time reduction
advantage is that of it has longer execution time for the loops
in comparison to High speed-1algorithm.

Fig. 5 shows the configuration time reduction percentage
after applying the above-mentioned algorithms to the DFGs. It
depicts that the maximum improvement in loops execution
time, in MPEG-2decoder application, was gained at the cost
of additional configuration time up to 5% in High speed-1
algorithm. The maximum improvement in loops execution
time in High speed-2 algorithm was gained besides 1% more
reduction in configuration time in comparison to the algorithm

4

in [12]. It shows the last stage of High speed-2 algorithm have
merged the functional units which are not on the critical path
delay of the merged datapath. In addition, High speed-2
algorithm performs better than the algorithm in [12] and High
speed-1 algorithm in reducing the configuration time for all
applications except the application G721. It is because, there
are just two DFGs in G721 and the previous algorithm could
heuristically find the best solution for configuration time
reduction. Overall, the proposed datapath merging algorithms
are suitable for reducing the configuration time and creating
high speed merged datapath.

Fig. 5. Percentage reduction in configuration time for the proposed datapath
merging algorithms and the algorithm in [12]

V. CONCLUSION

This paper has presented two datapath merging algorithms
for run-time reconfigurable systems. The ultimate purpose of
these algorithms is making high speed merged datapath in
addition to the reduction in configuration time for the
computational intensive loops. This way, the similarity
between DFGs was considered as a compatibility graph. Then
the High speed merged datapath was made by finding the
bounded-execution time-weighted clique from the
compatibility graph in each step of datapath merging
algorithm. We applied the proposed algorithms to merge the
DFGs corresponding to the loops of Mediabench applications.
The former algorithm reduced the loops execution time up to
35% in comparison to the previous datapath merging
algorithm at the cost of additional configuration time up to
5%. The latter, reduced loops execution time up to 27%
besides 1% reduction in configuration time. We conclude that
the proposed datapath merging algorithms can efficiently
lowered the loops execution time after creating merged
datapath for reconfigurable systems.

ACKNOWLEDGMENT

This research was supported by the Iran
Telecommunication Research Center (ITRC) in the context of
the project T/500/3462.

REFRENCES

[1] Z. Li, “Configuration Management Techniques for Reconfigurable
Computing”, Ph.D. Thesis, Northwestern University, June, 2002.

[2] M. Rollmann and R Merker, “A Cost Model for Partial Dynamic
Reconfiguration”, International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), pp.182-186,
Greece, July, 2008.

[3] P. J. Hwa, T. Mitra and W.F. Wong, “Configuration Bit-stream
Compression for Dynamically Reconfigurable FPGAs”, IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pp. 766–
773, CA, USA, November, 2004.

[4] F. Farshadjam, M. Dehghan, M. Fathy and M. Ahmadi, “ A New
Compression Based Approach for Reconfiguration Overhead Reduction
in Virtex-Based RTR Systems”, Elsevier journal on Computers &
Electrical Engineering, Vol. 32 , No. 4, pp 322–347, 2006.

[5] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software”, ACM Computing. Surveys, Vol. 34, No.2, pp.
171-210, 2002.

[6] Y. D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G. N. Gaydadjiev, Y.
Lu, S. Vassiliadis "DWARV: Delft Workbench Automated
Reconfigurable VHDL Generator" 17th International Conference on Field
Programmable Logic and Applications (FPL), pp. 697-701, Amsterdam,
The Netherlands, August, 2007.

[7] R. J. Meeuws, Y. D. Yankova, K.L.M. Bertels, G. N. Gaydadjiev, S.
Vassiliadis,“ A Quantitative Prediction Model for Hardware/Software
Partitioning”, 17th International Conference on Field Programmable
Logic and Applications (FPL), pp.735-739, Amsterdam, The Netherlands,
August, 2007.

[8] Ph. Coussy, A. Morawiec “High-Level Synthesis from Algorithm to
Digital Circuit”, Springer, 2008.

[9] L Chiou, S Bhunia, and K. Roy, “Synthesis of Application-Specific
Highly Efficient Multi-mode Cores for Embedded Systems”, ACM
Transaction on Embedded System Computing (TECS), vol.4, no.1, pp.
168-188, 2005.

[10]N. Moreano, Ed. Borin, C. D. Souza, and G. Araujo, “Efficient Datapath
Merging for Partially Reconfigurable Architectures”, IEEE Transactions
on Computer-Aided Design of Integrated Circuit And Systems, vol. 24,
no. 7 ,pp. 969-980, July 2005.

[11]M. Fazlali, M.K. Fallah, M. Zolghadr, A. Zakerolhosseini, “ A New
Datapath Merging Method for Reconfigurable System”, 5th International
Workshop on Applied Reconfigurable Computing (ARC) LNCS 5453,
Karlsrohe Germany, pp.157-168 , March, 2009.

[12]M. Fazlali, A. Zakerolhosseini, M. Sabeghi, K. Bertels, and G.
Gaydadjiev " Datapath Configuration Time Reduction for Run-time
Reconfigurable Systems " International Conference on Engineering of
Reconfigurable Systems and Algorithms, (ERSA), Las Vegas Nevada,
USA, July 2009.

[13]M. Garey and D. S.Johnson, “Computers and Intractability-A Guide to
the Theory of NP Completeness”, San Francisco, CA, Freeman, (1979).

[14]P. R. J Ostergard, “A New Algorithm for the Maximum-Weight Clique
Problem”, Nordic Journal of Computing, vol. 8, no. 4, pp. 424-436, 2002.

[15]C. Lee, M Potkonjak, W. S. Mangione, “Mediabench: a Tool for
Evaluating and Synthesizing Multimedia and Communication Systems”,
13th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), December, California the USA, pp.330-335, 1997.

5

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
