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Abstract—In this paper, we propose a new 4-moduli set
{2n + 3, 2n + 2, 2n + 1, 2n} that increases the dynamic range
and the processing parallelism enabling efficient reverse con-
version. First, we assume a general 4-moduli set {mi}i=1,4,
m1 > m2 > m3 > m4, with the dynamic range M =

∏4

i=1
mi

and introduce a modified Chinese Remainder Theorem (CRT)
that requires mod-m4 instead of mod-M calculations. Sub-
sequently, we further simplify the conversion process by fo-
cussing on the {2n + 3, 2n + 2, 2n + 1, 2n} moduli set, which
has a common factor of 2. Given that for such a moduli set,
CRT cannot be directly applied, we introduce a CRT based
approach for this case, which first requires the conversion
of {2n + 3, 2n + 2, 2n + 1, 2n} set into the moduli set with
relatively prime moduli, i.e.,

{
m1,

m2
2

, m3, m4

}
, valid for n even,

which are not multiples of 3. We demonstrate that such a con-
version can be easily done and doesn’t require the computation
of any multiplicative inverses. For this case, the proposed CRT
utilizes the same or slightly larger area when compared to other
existing techniques but all the operations are mod-m4. This
outperforms state of the art CRTs in terms of the magnitude
of the numbers involved in the calculation and due to this fact,
our proposal results in less complex adders and multipliers.

Index Terms—Residue Number System, 4-Moduli Set with
Common factor, RNS-Decimal Converter, Chinese Remainder
Theorem.

I. INTRODUCTION

Residue Number Systems (RNS) offer great potential for
high-speed computer arithmetic due to their inherent properties
such as parallelism, modularity, fault tolerance, and carry-
free operations. These properties make them highly useful
in Digital Signal Processing (DSP) applications where re-
peated additions and multiplications are required [1], [2],
[11]. The major obstacle to the utilization of RNS is the
overhead incurred in the conversions into and out of RNS.
Relatively speaking, the forward conversion is a simpler and
straightforward task whereas the reverse conversion involves
considerable degree of complexity [11], [12]. Several convert-
ers have been proposed in the past [3], [4], [6]-[13] based
on either the Chinese Remainder Theorem (CRT) or Mixed
Radix Conversion (MRC). Extensively, different forms of three
moduli sets have been studied with {2n + 1, 2n, 2n − 1} being
the most popular one [3], [4], [5], [9].

The special moduli of the form {2n + 2, 2n + 1, 2n} has
been studied in [4], [5], [14]. This set is an extension of
well studied {2n + 1, 2n, 2n − 1} set. When compared with
{2n + 1, 2n, 2n − 1}, the set {2n + 2, 2n + 1, 2n} is partic-
ularly useful for decimal numbers which fall beyond the

range specified by the {2n + 1, 2n, 2n − 1} set, resulting in
the use of the next higher index for n [4]. Another at-
tractive property of the {2n + 2, 2n + 1, 2n} set is that the
numbers are consecutive enabling equal width multipliers
to be used in the hardware implementation [5]. However,
the dynamic range provided by the three moduli sets are
insufficient in supporting high performance DSP applications
requiring a large dynamic range and increased parallelism
[11]. In this line of reasoning, we extend the moduli set
{2n + 2, 2n + 1, 2n} by adding 2n + 3 in order to obtain
the 4-moduli superset {2n + 3, 2n + 2, 2n + 1, 2n}. The new
moduli set {2n + 3, 2n + 2, 2n + 1, 2n} can be seen like an
extension of the 4-moduli sets

{
2n − 1, 2n, 2n + 1, 2n+1 + 1

}
and {2n − 3, 2n + 1, 2n − 1, 2n + 3} proposed in [11] and
[13], respectively. For decimal numbers which fall beyond
the range specified by these two 4-moduli sets, the moduli
set {2n + 3, 2n + 2, 2n + 1, 2n} is of interest resulting in the
utilization of the next higher index for n. Another attractive
feature of the moduli set {2n + 3, 2n + 2, 2n + 1, 2n} is that
two of the numbers share a common factor and also the
numbers are consecutive enabling equal width multipliers to
be used in the hardware implementation.

In this paper, we propose a new 4-moduli set
{2n + 3, 2n + 2, 2n + 1, 2n} that increases the dynamic
range and the processing parallelism enabling efficient
reverse conversion. First, we assume a general 4-moduli set
{mi}i=1,4, m1 > m2 > m3 > m4, with the dynamic range
M =

∏4
i=1 mi and introduce a modified CRT that requires

mod-m4 instead of mod-M calculations. Subsequently, we
further simplify the conversion process by focussing on the
new four superset {2n + 3, 2n + 2, 2n + 1, 2n}, which has
a common factor of 2. Given that for such a moduli set,
CRT cannot be directly applied, we introduce a CRT based
approach for this case, which first requires the conversion
of {2n + 3, 2n + 2, 2n + 1, 2n} set into the moduli set with
relatively prime moduli, i.e.,

{
m1,

m2
2 ,m3,m4

}
, valid for

n even which are not multiples of 3. We demonstrate that
such a conversion can be easily done and doesn’t require the
computation of any multiplicative inverses. For this case, the
proposed CRT utilizes the same or slightly larger area when
compared to other existing techniques but all the operations
are mod-m4. This outperforms state of the art CRTs in terms
of the magnitude of the numbers involved in the calculation
and due to this fact, our proposal results in less complex
adders and multipliers.
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The rest of the article is organized as follows. In Section II,
we introduce the necessary background. Section III presents
the proposed algorithm. In Section IV, we evaluate the perfor-
mance of the proposed scheme while the paper is concluded
in Section V.

II. BACKGROUND

RNS is defined in terms of a set of relatively prime moduli
{mi}i=1,n such that gcd (mi, mj) = 1 for i 6= j, where
gcd means the greatest common divisor of mi and mj , while
M =

∏n
i=1 mi, is the dynamic range. The residues of a

decimal number X can be obtained as xi = |X|mi
thus,

it can be represented in RNS as X = (x1, x2, x3, ..., xn),
0 ≤ xi < mi . This representation is unique for any
integer X ∈ [0,M − 1]. We note here that in this paper,
we use |X|mi

to denote the X mod mi operation and the
operator Θ to represent the operation of addition, subtraction,
or multiplication. Given any two integer numbers K and
L RNS represented by K = (k1, k2, k3, ..., kn) and L =
(l1, l2, l3, ..., ln), respectively, W = KΘL, can be calculated
as W = (w1, w2, w3, ..., wn), where wi = |kiΘli|mi

, for
i = 1, n. This means that the complexity of the calculation of
the Θ operation is determined by the number of bits required to
represent the residues and not by the one required to represent
the input operands.

For a moduli set {mi}i=1,n with the dynamic range M =∏n
i=1 mi, the residue number (x1, x2, x3, ..., xn) can be con-

verted into the decimal number X, according to the CRT, as
follows [1]:

X =

∣∣∣∣∣
n∑

i=1

Mi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
M

, (1)

where M =
∏n

i=1 mi, Mi = M
mi

, and M−1
i is the

multiplicative inverse of Mi with respect to mi. The
New CRT [7] is formulated as follows:

X = x1 + m1

∣∣∣∣∣w1x1 +
n∑

i=2

wi

∣∣M−1
i xi

∣∣
mi

∣∣∣∣∣
m2...mn

, (2)

where n > 1, wi = Mi

m1
and M−1

i is the multiplicative inverse
of Mi with respect to mi and M =

∏n
i=1 mi.

We note here that the moduli set {mi}i=1,n must be
pairwise relatively prime for Equation (1) to be directly used.
For the {2n + 3, 2n + 2, 2n + 1, 2n} moduli set 2n+2 and 2n
share a common factor. This implies that to utilize Equation
(1) in the conversion process this moduli set must be first
mapped to a set of relatively prime moduli. If a moduli set
is not pairwise relatively prime, then not every residue set
(x1, x2, x3, ..., xn) corresponds to a number and this results
into inconsistency. As given in [1], a set of residues is
consistent if and only if |xi|k = |xj |k where k = gcd(mi,mj)
for all i and j. If this holds true the decimal equivalent
of (x1, x2, x3, ..., xn) for moduli set which are not pairwise
relatively prime can be computed as follows [1]:

|X|ML
=

∣∣∣∣∣
n∑

i=1

αixi

∣∣∣∣∣
ML

, (3)

where ML is the Lowest Common Multiple (LCM) of
{mi}i=1,n, the set of moduli sharing a common factor, X is
the decimal equivalent of {xi}i=1,n, αi is an integer such that
|αi|ML

µi

= 0 and |αi|µi
= 1, and {µi}i=1,n is a set of integers

such that ML =
n∏

i=1

µi and µi divides mi. It should be noted

that αi may not exist for some i.

III. PROPOSED ALGORITHM

The main idea behind our approach is to simplify Equa-
tion (1) by eliminating the large modulo M and by removing
the cost of computing M−1

i . In this section, we demonstrate
that the first one is possible for any 4-moduli RNS, while the
second one can be achieved only for 4-moduli sets, which are
not pairwise relatively prime.

We first introduce a modified CRT for any moduli set of
length four, which doesn’t require mod-M computations.

Theorem 1: For a moduli set {mi}i=1,4, m1 > m2 >
m3 > m4, the decimal equivalent X of the residues
(x1, x2, x3, x4) can be computed by using mod-m4 (the small-
est modulus) instead of the large mod-M operations as:

X = (x1 + x2 + x3) + m1m2m3|k1x1 + k2x2

+k3x3 +
∣∣M−1

4

∣∣
m4

x4|m4 , (4)

where M−1
4 is the multiplicative inverse of M4,

k1 =

(
M1|M−1

1 |
m1

−1

)
m1m2m3

, k2 =

(
M2|M−1

2 |
m2

−1

)
m1m2m3

and

k3 =

(
M3|M−1

3 |
m3

−1

)
m1m2m3

.
Proof: We utilize the lemmas presented in [7]:

Lemma 1: |am1|m1m2
= m1 |a|m2

Lemma 2: M1

∣∣M−1
1

∣∣
m1

= 1 + k1m1m2m3

Lemma 3: M2

∣∣M−1
2

∣∣
m2

= 1 + k2m1m2m3

Lemma 4: M3

∣∣M−1
3

∣∣
m3

= 1 + k3m1m2m3

Expanding Equation (1) for n = 4 we obtain:
X = |M1

∣∣M−1
1

∣∣
m1

x1 + M2

∣∣M−1
2

∣∣
m2

x2

+M3

∣∣M−1
3

∣∣
m3

x3 + M4

∣∣M−1
4

∣∣
m4

x4|m1m2m3m4 (5)

Using Lemma 2 and 3 in the above equation, we obtain:
X = |(1 + k1m1m2m3)x1 + (1 + k2m1m2m3)x2

+(1 + k3m1m2m3)x3 + M4

∣∣M−1
4

∣∣
m4

x4|m1m2m3m4 (6)

Further simplification gives:
X = (x1 + x2 + x3) + |k1m1m2m3x1 + k2m1m2m3x2

+k3m1m2m3x3 + M4

∣∣M−1
4

∣∣
m4

x4|m1m2m3m4 (7)

Applying Lemma 1, we get:
X = (x1 + x2 + x3) + m1m2m3|k1x1 + k2x2

+k3x3 + M∗
4

∣∣M−1
4

∣∣
m4

x4|m4 (8)

Here, M∗
4 = M4

m1m2m3
= 1, the equation then reduces to:

X = (x1 + x2 + x3) + m1m2m3|k1x1 + k2x2

114



+k3x3 +
∣∣M−1

4

∣∣
m4

x4|m4 (9)

It can be observed that Equation (9) makes use of mod-m4

(the smallest modulus) instead of mod-M operations thus the
magnitude of the involved values is smaller than in both the
traditional CRT and the new CRT [7], given that k1, k2 and
k3 can be precomputed.

The next simplification step is the elimination of the
M−1

i . To achieve that, we restrict to the new superset
{2n + 3, 2n + 2, 2n + 1, 2n}. Let this set be represented by
{m1,m2,m3,m4} where m2 and m4 have a common factor
of 2. Suppose that the set {m1,m2,m3,m4} is mapped into
a set of pairwise relatively prime moduli set {µ1, µ2, µ3, µ4},
the new dynamic range will be given by:

ML =
4∏

i=1

µi, (10)

where µi is any chosen set of integers within the given
moduli. It should be noted that µi may have several sets.
As discuss earlier, for moduli set with a common factor, not
every residue set corresponds to a number. Particularly, with
the moduli set {2n + 3, n + 1, 2n + 1, 2n}, even numbers n
that are multiple of 3 result into inconsistency. Thus, we
choose a set of µi that is pairwise relatively prime for any
even integer n that is not a multiple of 3. The valid set is
represented by {2n + 3, n + 1, 2n + 1, 2n}. Next, we show
that the computation of multiplicative inverses for this set can
be eliminated for any even integer n, which is not a multiple
of 3 using the following theorem:

Theorem 2: Given the moduli set {2n + 3, 2n + 2, 2n +
1, 2n} with m1 = 2n + 3,m2 = 2n + 2,m3 = 2n + 1, m4 =
2n, the following hold true:∣∣M−1

2

∣∣
m2

=
n

2
+ 1, (11)∣∣M−1

3

∣∣
m3

= 2n. (12)

Proof:
If it can be demonstrated that

∣∣(n
2 + 1) × (m1m3m4)

∣∣
m2

=
1, then n

2 + 1 is the multiplicative inverse of m1m3m4 with
respect to m2. |(n

2 + 1)× (m1m3m4)|m2 is given by: |(2n +
3)(2n+1)(2n)(n

2 +1)|n+1 = |(n+1)(4n3+12n2+5n)+2n2+
n|n+1 = ||(n+1)(4n3+12n2+5n)|n+1+|2n2+n|n+1|n+1 =
|0 + 1|n+1 = 1, thus Equation (11) holds true.

In the same way if |(2n) × (m1m2m4)|m3 = 1, then 2n
is the multiplicative inverse of (m1m2m4) with respect to
m3. |(2n) × (m1m2m4)|m3 = 1 is given by: |(2n + 3)(n +
1)(2n)(2n)|2n+1 = |(2n + 3)(n + 1)(4n2)|2n+1 = |(4n3 +
8n2)(2n + 1) + (4n2)|2n+1 = ||(4n3 + 8n2)(2n + 1)|2n+1 +
|(4n2)|2n+1|2n+1 = |0+1|2n+1 = 1, thus Equation (12) holds
true.

Next, it can be shown that the multiplicative inverses of
M1 and M4 also exist and is demonstrated by the following
theorems:

Theorem 3: For even numbers of the form
{2, 8, 14, 20, 26, 32, ...}, represented by n = {6k−4}k=1,2,3,...∣∣M−1

1

∣∣
m1

= 4k − 2, (13)∣∣M−1
4

∣∣
m4

= 2k − 1, (14)

Proof: From the Theorem, |M−1
1 |m1 = 4k− 2 = 2(2k−

1). Thus, |M−1
1 |m1 = 2|M−1

4 |m4 , then we shall show the
proof of |M−1

1 |m1 only. M1 = m2
2 m3m4, meaning that M1 =

(n + 1)(2n + 1)(2n), for different values of n, |M1M
−1
1 |m1

will be given by: n = 2, when |M−1
1 |m1 = 2, and also |2(n+

1)(2n+1)(2n)|2n+3 = |4n(2n2 +3n+1)|2n+3 = |4n2(2n+
3) + 4n|2n+3 = ||4n2(2n + 3)|2n+3 + |4n|2n+3|2n+3 = |0 +
1|2n+3 = 1.

Similarly, when n = 8, |M−1
1 |m1 = 6, and |6(n + 1)(2n +

1)(2n)|2n+3 = ||12n2(2n+3)|2n+3 + |12n|2n+3|2n+3 = |0+
1|2n+3 = 1.

Again, when n = 14, |M−1
1 |m1 = 10, and |10(n+1)(2n+

1)(2n)|2n+3 = ||20n2(2n+3)|2n+3 + |20n|2n+3|2n+3 = |0+
1|2n+3 = 1. Hence, if it is true for n = 2, 8, 14, then it will
be true for any integer n in this category.

Theorem 4: For even numbers of the form
{4, 10, 16, 22, 28, 34, ...} , represented by
n = {6k − 2}k=1,2,3,...∣∣M−1

1

∣∣
m1

= 8k − 2, (15)∣∣M−1
4

∣∣
m4

= 10k − 3, (16)

Proof: It can be proved in a similar manner to Theorem 3.

It should be noted that for any n-even that are not
multiples of 3, the following expressions can be deduced
from Theorem 2:∣∣M−1

2

∣∣
m2

=
m2 + 2

4
,
∣∣M−1

3

∣∣
m3

= m4. (17)

Using Equation (17) and by proper substitutions in Theorem
1, we can particularize it for 4-moduli RNS sharing a common
factor as follows:

Corollary 1: For the moduli set
{2n + 3, 2n + 2, 2n + 1, 2n}, the decimal equivalent X of the
residues (x1,x2, x3, x4) can be computed as follows:

1) (Using Theorem 3):
X = (x1 + x2 + x3) + m1m2m3|k1x1 + k2x2

+k3x3 + (2k − 1)x4|m4 , (18)

where k1 = (m2m3m4(4k−2)−1)
m1m2m3

,

k2 = (m1m3m4(m2+2
4 )−1)

m1m2m3
, and

k3 = (m1m2m4(m4)−1)
m1m2m3

2) ( Using Theorem 4):
X = (x1 + x2 + x3) + m1m2m3|k1x1 + k2x2

+k3x3 + (10k − 3)x4|m4 , (19)

where k1 = (m2m3m4(8k−1)−1)
m1m2m3

,

k2 = (m1m3m4(m2+2
4 )−1)

m1m2m3
and

k3 = (m1m2m4(m4)−1)
m1m2m3

115



Metrics CRT [1] New CRT [7] Our proposal
Area 1 adder 1 adder 1 adder

4 multipliers 5 multipliers 5 multipliers
Dely 1 addition 1 addition 1 addition

1 multiplication 2 multiplications 2 multiplications
Mod Optns m1m2m3m4 m2m3m4 m4

Table I
PERFORMANCE COMPARISON

Proof: Trivial with proper substitutions for the values
of

∣∣M−1
2

∣∣
m2

and
∣∣M−1

3

∣∣
m3

together with
∣∣M−1

1

∣∣
m1

and∣∣M−1
4

∣∣
m4

, which are obtained from Theorems 3 and 4.

IV. PERFORMANCE EVALUATION

Clearly, it can be seen that the numbers involved in the
multiplication are very small when compared to the numbers
involved in both the direct traditional CRT and the New
CRT [7] implementations. Additionally, the large modulo M
calculations are replaced by modulo calculations with the
smallest modulus in the moduli set under consideration.

We take note here that in Table I, mod Optns stands for
Modulo Operations. As indicated in Table I, In terms of area,
our proposal requires the same area with the New CRT [7]
whereas the traditional CRT [1] utilizes lesser area when
compared to both the New CRT [7] and our approach. On the
other hand, in terms of critical path delay, the CRT [1] requires
1 multiplication lesser than both the New CRT [7] and our
technique but more important for the hardware complexity, the
operands magnitude is significantly reduced by our proposal.
More specifically, the modulo operation has been reduced from
modulo M = m1m2m3m4 in [1] or M = m2m3m4 in [7]
to modulo M = m4 in our scheme. This implies that our
technique is manipulating smaller numbers when compared
to the other techniques. The smaller the involved numbers in
the calculation, the faster the arithmetic operations. Thus, our
proposal is faster than the other techniques.

Finally, when compared to the existing similar 3-moduli set
[4], [5], [14], the newly introduced four moduli set offers a
larger dynamic range and a higher parallelism, which makes
it more attractive for high performance computing.

V. CONCLUSIONS

In this paper, we proposed a new 4-moduli set
{2n + 3, 2n + 2, 2n + 1, 2n} that increases the dynamic
range and the processing parallelism enabling efficient re-
verse conversion. First we assume a general 4-moduli set
{mi}i=1,4, m1 > m2 > m3 > m4, with the dy-
namic range M =

∏4
i=1 mi and introduced a modi-

fied CRT that requires mod-m4 instead of mod-M cal-
culations. This scheme can be utilized in conjunction
with other well established 4−moduli sets, e.g, {2n −
1, 2n, 2n + 1, 2n+1 − 1},

{
2n − 1, 2n, 2n + 1, 2n+1 + 1

}
,

{2n − 3, 2n + 1, 2n − 1, 2n + 3} proposed in [10], [11], [12],
respectively, and makes the CRT based conversion more
effective as it reduces the magnitude of the values involved
in the conversion thus the associated costs in area and delay.
Subsequently, we further simplified the conversion process by

focussing on {2n + 3, 2n + 2, 2n + 1, 2n} moduli set, which
has a common factor of 2. Given that for such a moduli set,
CRT cannot be directly applied, we introduced in a formal
way a CRT based approach for this case, which requires the
conversion of {2n + 3, 2n + 2, 2n + 1, 2n} set into moduli set
with relatively prime moduli, i.e.,

{
m1,

m2
2 ,m3, m4

}
, when

n is even, which are not multiple of 3. We demonstrated that
the moduli set transformation can be easily done and doesn’t
require the computation of any multiplicative inverses. For
this case, the proposed CRT requires the same or slightly
larger area when compared to other existing techniques but
all the operations are mod-m4. This outperforms state of the
art CRTs in terms of the magnitude of the numbers involved
in the calculation and due to this fact, our proposal results in
less complex adders and multipliers. Finally, when compared
to the existing similar 3-moduli set [4], [5], [14], this newly
introduced four moduli set offers a larger dynamic range and
a higher parallelism, which makes it more attractive for high
performance computing.
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