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Abstract—We propose a parallel implementation of the Cell 

Average Constant False Alarm Rate (CA-CFAR) algorithm in 
reconfigurable hardware. The design is based on a parallel 
processing scheme employing extensive data reuse and 
synchronized sliding windows over the input data sequence. A 
scalable parallel structure is designed and mapped on Xilinx 
Virtex II Pro technology. Synthesis and post place and route 
results from the Xilinx ISE toolset suggest a linear speedup and 
resource utilization. More specifically, a single CFAR 
implementation utilizes 1.4% of the VIRTEX II Pro XC2VP30 
chip, providing a throughput of 974 Mbps.  Regarding the 
parallel design, a structure of 32 CA-CFARs provides 37.5% 
utilization and 31Gbps for the same FPGA chip. Furthermore, 
the power consumption of the design is evaluated in terms of 
power vs. technology cost trade-offs.  
 

Index Terms— CFAR processor, Field programmable gate 
arrays, Parallel processing, Reconfigurable architectures, Signal 
processing.  

I. INTRODUCTION 

e address the problem for parallel hardware design of a 
CFAR algorithm for signal detection in a noisy 

environment. The conventional approach for detecting signal 
from noise use a fixed threshold, which separates the signal 
from the noise. It exploits the observation that the signal level 
is usually higher than the noise level. Therefore, a simple 
threshold is the simplest way to detect a signal in a noisy 
environment. Unfortunately, these methods cannot provide 
reliable signal detection in cases with interference.  If a 
random high-level interference appears, it will exceed the 
detector threshold and will be detected as a signal – referred as 
false alarm. In other words, the fixed threshold methods cannot 
keep the False Alarm Ratio (FAR) constant and make the false 
detection highly probable. One possible solution of this 
problem is to build a Constant False Alarm Ratio (CFAR) 
processor [1,2,3]. Such a processor uses adaptive threshold 
forming, based on preliminary noise assessment, and it can be 
employed in communications, radar, and GPS systems. 
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A substantial design challenge is that the CFAR algorithm 
requires significant computational power to perform the whole 
algorithm in real-time.  

Due to its inherent spatial parallelism, the reconfigurable 
technology has the potential to support design solutions that 
meet these high computational requirements. Hence, in this 
paper, we consider it as our targeted implementation 
technology. Our work considers a parallel Cell Average (CA) 
CFAR implementation in contrast to earlier sequential CA-
CFAR proposals. A sequential CA-CFAR algorithm is 
parallelized and a generalized k - parallel CA-CFAR 
computational structure is proposed. The design is developed 
in Xilinx ISE environment, and simulated through Modelsim, 
considering VIRTEX II Pro technology. The efficiency of the 
algorithm implementation, its scalability and the computational 
performance gains are studied.  

To our best knowledge, previous works on this topic (e.g. 
[4,5,6]) describe sequential implementations of the CFAR 
algorithms. In many cases, however, the input data flow is 
much faster than the processor throughput. Therefore, various 
methods must be applied in order to increase the real time 
performance, such as: parallel design, increased clock 
frequency, etc. In this paper, the possibilities of increasing the 
computational power of such algorithms through a parallel 
FPGA implementation are of a particular interest. 
Furthermore, we identify and quantify clear trade-offs between 
the processing speed, the hardware complexity and the power 
consumption. The main contributions of this work can be 
summarized as follows: 

- A high performance reconfigurable hardware 
implementation of a scalable CA CFAR is proposed. The 
design obtains a throughput of 974Mbps for a single CA-
CFAR and 31Gbps for 32 parallel CA-CFAR on Virtex II Pro 
technology for 60Mhz clock frequency. 

- A resource utilization analysis as a function of the k- 
parallel structure suggests between 1.4%, for single and 37.5% 
for a 32 parallel design considering a XC2VP30 chip. 

- A power analysis of the k- parallel structure and a 
discussion on the performance trade-offs is provided.  

The remainder of the paper is organized as follows. Section 
2 presents the algorithm in details. Section 3 describes the 
design implementation and gives analytical expressions of the 
recourse utilization estimation. Section 4 presents the obtained 
experimental results and provides related discussions. Finally, 
section 5 concludes this paper with some final remarks. 
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II. PROBLEM FORMULATION AND BACKGROUND DESCRIPTION  

Problem formulation. The contemporary radar and 
communication signal processing requirements pose very high 
computational performance demands for the real time signal 
processing. For example, a contemporary input signal 
frequency band of 500�Hz needs a sampling rate of at least 
1Gsps or, if we assume 16bit data samples, the system 
throughput reaches 16Gbis/s. Solving the hardware design 
problems for such high data rates is subject to buffering, which 
require not only fast computational units, but also cost efficient 
parallel structures. The purpose of this work is to propose a 
performance efficient reconfigurable hardware CFAR 
structure, to study the possibilities to parallelise the CFAR 
algorithm and to reveal the dependences between the algorithm 
parallelisation, power consumption and the speedup. We 
believe that these results will be valuable for future CFAR 
hardware algorithm designs. 

The General CA CFAR processing. A usual radar and 
communication environment encompasses signal, White 
Gaussian Noise and pulse interference [1,2].  The pulse 
interference has probability behaviour of appearance and its 
power is comparable to the signal strength. Fig. 1 illustrates 
such a typical input waveform. The waveform can be simply 
described as [1,2]: 

where n(t) is white Gaussian noise, which has power 
spectral density equal to 1; �(t) is the signal, it exists at certain 
time slot and its amplitude varies according to a Rayleigh 
probability law and certain signal-to-noise ratio,  i(t) is the 
pulse interference, which amplitude varies according to a 
Rayleigh probability law, certain interference-to-noise ratio 
and has Poisson probability of  appearance.  

A typical detection process of such a mixture is threshold 
separation of the signal from the interference and the noise. 
The simplest way is the constant thresholding. It can be clearly 
seen that constant threshoding (Fig.1 dashed line) results many 
false alarms in the detection process. The interference 
exceeding the fixed threshold is marked as “detected”, or false 
alarm occurs.  

One solution to reduce the detection of the interference 

signals is increasing the threshold level. On the other hand, 
considering the fact that the level of the interference compares 
to the signal level, the threshold incensement results in less 
signal detectability. Nowadays, the adaptive thresholding 
(Constant False Alarm Ratio processing) become widely 
applied [1-7]. An adaptive threshold is used to detect the 
signal from the interference (Fig.1 doted line).  The adaptive 
threshold varies due to preliminary interference and noise 
assessment and is applied to each time sample.  

CA CFAR computational scheme. Fig. 2 illustrates the 
mechanism of Constant False Alarm Ratio processing. It is a 
well-known sequential processing structure [1,2,3]. It consists 
of two sliding windows: a testing window and a learning 
window. The testing and learning windows slide continuously 
on the time samples. The information from the learning 
window is used for the noise and interference estimation. The 
noise and the interference assessment follow. A scalar factor – 
TA, providing a constant probability of false alarm [1,2,3], 
multiplies the output of the learning window. This factor is 
tabulated in advance according to the interference environment 
statistics. The obtained result is the specific detection 
threshold for the level in the testing window (xz). If this level 
exceeds the specific detection threshold, the output result is 
“true”. 

The noise and interference assessment is based on the sum 
value estimation 
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The threshold is formed according to  
)(* trTAHd =  (2a) 

where TA is the pre-tabulated scalar factor, keeping the 
probability of false alarm. The decision for target detection is 
made according to: 
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Fig. 1.  An example of a mixture of signal, noise and pulse interference 

distribution.  

 
Fig. 2.  The Constant False Alarm Ratio (CA-CFAR) computational scheme 
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III. DESIGN IMPLEMENTATION 

Algorithm parallelisation. Considering our goal, a parallel 
CA CFAR algorithm was developed. An example of the 
proposed parallel algorithm design is depicted in Figure 3, 
where two CFAR sliding windows work in parallel: the first 
one is positioned at input signal position n; the second one 
takes position n+1. Figure 4 illustrates the typical application 
of the two parallel CA-CFAR structures on real mixture of 
signal, white Gaussian noise and interference. Both windows 

process the signal in parallel and each cycle two outputs are 
obtained. It is obvious that the processing speed potentially 
doubles. Figure 5 suggests a k- generalization of the algorithm. 
k – identical CA-CFAR computational structures work in 
parallel. They slide along the signal sample dn+i. The input 
data sequence are processed in parallel and k simultaneous 
results are obtained at the output. Thus, k speed-up is feasible. 

Bus width determination. If we consider input data width 
of a bits, the sum of n numbers will have a maximum width of 

))12((log2 −= a
r nb  bits (consider Fig.2). Whereas, the 

maximum bus width after the multiplication is  
rTAc bbb +=  (4a) 

Hence, the bc width is: 
))12((log2 −+= a

TAc nbb  (4b) 

The total bus complexity, determined in bits Bcfar is the sum 
of bit widths of each bus depicted in Fig.4 and the final output 
bit: 

1++++= zrTAccfar bbbbB  (5a) 

The total bus width for a k- parallel CA-CFAR structure is:  

cfarkCFAR kBB =  (5b) 

If we consider learning CAFR length n=17 and 16bit data 
length, the corresponding data flow diagram is depicted in 
Fig.6. 

The generalized a k-CFAR structure bus complexity 
BkCFARout, including clock and reset signal for each block, is:  

ankBkCFARout 2)6( ++=    [bits] (6) 

where a is the data bit width; n - the CFAR length (the total 
length of the learning and testing window); k-the number of 
parallel structures. It is clear that the total bus complexity 

determined in bits will be kCFARB + kCFARoutB . Taking into 

consideration the above discussion on the bus design 
complexity, we can conclude that it grows linearly with the 
number of the parallel sliding windows. Therefore, the total 
bus complexity will increase enormously when the number of 
parallel CA-CFARS increases.  

IV. EXPERIMENTAL RESULTS 

The CA-CFAR design is implemented in Xilinx ISE 10.1 
environment, and simulated through Modelsim, considering the 
VIRTEX II Pro technology. The verification of the algorithm is 
made through comparison with MATLAB simulation results 
according to the chart flow provided in Fig. 7. The 
approximate power consumption is estimated through the 
XPower Analyzer tool.  

 
Fig. 5.  Parallel CA-CFAR computational k - structure 

  

 
Fig. 3.  Two parallel CA-CFAR computational structure 

  

Fig. 4.  An example of two parallel CA-CFAR sliding windows 

 
 

Fig. 6.  Hardware Data structure of two parallel CA-CFAR  
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Three devices are tested: XC2VP2-7fg256; XC2VP30-7ff1152 
and XC2VP70-7ff1517. The CAFR implementation has a 
learning window size  n= 16 and data bit width of 16.  

Assuming 16bit input data, we determine the potential 

design throughput as kfTrp **16= , where f is the maximal 

frequency according to the Xilinx ISE synthesis tool, k-the 
number of parallel CA-CFAR structures. Fig. 8 suggests the 
maximal throughput obtained through the tested devices 
considering 16bit input data width. As it was anticipated, the 
throughput grows linearly with the number of parallel CFAR 
units. For 32 parallel CFARs, the obtained throughput is 

31Gbps, which is sufficient to meet the requirements of a 
1GHz input signal bandwidth (see the problem formulation in 
section II). A slight slowdown has been observed in the 
XC2VP2 chip, in comparison to XC2VP30 and XC2VP70, 
due to the saturation of the dedicated chip resources for 
interconnections. 

Table I provides the device utilization summary as a 
function of the k-parallel CA-CFAR implementation on Virtex 
II Pro. Generally, as expected, the design utilization is linear 
as a function of the k- number parallel structures. 

The power consumption is estimated by the Xilinx XPower 
Analyzer tool. Fig. 9 depicts the total power consumption for 
the three estimated devices as a function of the k-way of 

parallelization. It has been observed that the estimated power 
consumption grows slightly and almost linearly before it 
enormously increases after the 18-way parallel design. This 
incense is above 750%. Table II reveals the total power 
consumption distribution between the signal and logic power 
consumption.  

Based on the results of XC2VP devices obtained from the 
previously mentioned Xilinx synthesis and power analyzer 
tool, a profound analysis has been made. Increasing the 
number of parallel structures leads to increased number of 
buffers and interconnects. The signals fanout dramatically 
increases after a certain point, which costs extra power. 
Because the design complexity is linear, these results are not 
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Fig. 8.  The maximal throughput for XC2VP30, XC2VP70 and 

XC2VP2, acc. to Xilinx ISE tool 

 
 

Fig. 7.  Algorithm verification procedures 
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862 2609 1781 2721 2609 112 
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10 1005 3215 2170 3355 3215 140 
12 1165 3779 2551 3947 3779 168 
16 1483 5011 3342 5235 5011 224 
18 1660 5618 3754 587 5618 252 
32 2778 9857 6498 10305 9857 448 

 

*  Xilinx Virtex II Pro XC2VP2 chip 
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due to the design specifics, but concern the particular 
implementation technology in general and the particular FPGA 
chip considered. For example, from the power consumption 
point of view, for this particular case, using two separate 

(smaller) FPGA chip for a 18th parallel CFAR implementation 
could be more efficient than a single one. Furthermore, the 
contemporary market price of a single XC2VP70 chip costs 
twice more than XC2VP30 and ten times more than XC2VP2. 
This might be another reason to consider smaller devices for 
the particular algorithm realizations.  

V. CONCLUSIONS 

This paper suggested some principles for Constant False 
Alarm Ratio algorithm implementations on hardware. A 
parallel k-stage CA CFAR algorithm realization on 
reconfigurable hardware has been presented. The algorithm 
has been fully parallelised. It has been shown that a k - full 
parallelisation is possible, hence a k - speedup is possible 
Three Virtex II Pro chips were studied through Xilinx ISE and 
the Xilinx Power Analyzer tool. Linear resource utilization as a 
function of k parallelisation has been demonstrated. After 
k=18 the power consumption increases dramatically. Taking 
into consideration the power consumption, resource utilization 
and market price, discussions about the most suitable Virtex II 
pro device for parallel CA-CFAR algorithm hardware 
realizations have been presented. As a future work we plan to 
investigate the influence of the design characteristics from 
different FPGA technologies and to study deeper the power 
saving potentials of the proposed design.  
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Fig. 9.  Total power consumption for XC2VP2, XC2VP70 and XC2VP30 as 

a function of k 


