
 1

Abstract—We propose a parallel implementation of the Cell

Average Constant False Alarm Rate (CA-CFAR) algorithm in
reconfigurable hardware. The design is based on a parallel
processing scheme employing extensive data reuse and
synchronized sliding windows over the input data sequence. A
scalable parallel structure is designed and mapped on Xilinx
Virtex II Pro technology. Synthesis and post place and route
results from the Xilinx ISE toolset suggest a linear speedup and
resource utilization. More specifically, a single CFAR
implementation utilizes 1.4% of the VIRTEX II Pro XC2VP30
chip, providing a throughput of 974 Mbps. Regarding the
parallel design, a structure of 32 CA-CFARs provides 37.5%
utilization and 31Gbps for the same FPGA chip. Furthermore,
the power consumption of the design is evaluated in terms of
power vs. technology cost trade-offs.

Index Terms— CFAR processor, Field programmable gate
arrays, Parallel processing, Reconfigurable architectures, Signal
processing.

I. INTRODUCTION

e address the problem for parallel hardware design of a
CFAR algorithm for signal detection in a noisy

environment. The conventional approach for detecting signal
from noise use a fixed threshold, which separates the signal
from the noise. It exploits the observation that the signal level
is usually higher than the noise level. Therefore, a simple
threshold is the simplest way to detect a signal in a noisy
environment. Unfortunately, these methods cannot provide
reliable signal detection in cases with interference. If a
random high-level interference appears, it will exceed the
detector threshold and will be detected as a signal – referred as
false alarm. In other words, the fixed threshold methods cannot
keep the False Alarm Ratio (FAR) constant and make the false
detection highly probable. One possible solution of this
problem is to build a Constant False Alarm Ratio (CFAR)
processor [1,2,3]. Such a processor uses adaptive threshold
forming, based on preliminary noise assessment, and it can be
employed in communications, radar, and GPS systems.

Manuscript received October 15, 2009. This work was supported by the
Bulgarian National Science Fund under Grant DO-02-344/2008.
V. Kyovtorov, is with the Computer Engineering Lab, TU-Delft, Mekelweg 4,
2628 CD Delft, and IIT-BAS, 1113 Sofia (e-mail: vladimir.kyovtorov �
gmail.com)
G. Kuzmanov, is with the Computer Engineering Lab, TU-Delft, Mekelweg 4,
2628 CD Delft, (e-mail: g.k.kuzmanov � tudelft.nl).
H. Kabakchiev, is with the Faculty of Mathematics & Informatics, 1164,
Sofia, Bulgaria, (e-mail: ckabakchiev�fmi.uni-sofia.bg).
G. Gaydadjiev, is with the Computer Engineering Lab, TU-Delft, Mekelweg
4, 2628 CD Delft, (e-mail: g.n.gaydadjiev � tudelft.nl).

A substantial design challenge is that the CFAR algorithm
requires significant computational power to perform the whole
algorithm in real-time.

Due to its inherent spatial parallelism, the reconfigurable
technology has the potential to support design solutions that
meet these high computational requirements. Hence, in this
paper, we consider it as our targeted implementation
technology. Our work considers a parallel Cell Average (CA)
CFAR implementation in contrast to earlier sequential CA-
CFAR proposals. A sequential CA-CFAR algorithm is
parallelized and a generalized k - parallel CA-CFAR
computational structure is proposed. The design is developed
in Xilinx ISE environment, and simulated through Modelsim,
considering VIRTEX II Pro technology. The efficiency of the
algorithm implementation, its scalability and the computational
performance gains are studied.

To our best knowledge, previous works on this topic (e.g.
[4,5,6]) describe sequential implementations of the CFAR
algorithms. In many cases, however, the input data flow is
much faster than the processor throughput. Therefore, various
methods must be applied in order to increase the real time
performance, such as: parallel design, increased clock
frequency, etc. In this paper, the possibilities of increasing the
computational power of such algorithms through a parallel
FPGA implementation are of a particular interest.
Furthermore, we identify and quantify clear trade-offs between
the processing speed, the hardware complexity and the power
consumption. The main contributions of this work can be
summarized as follows:

- A high performance reconfigurable hardware
implementation of a scalable CA CFAR is proposed. The
design obtains a throughput of 974Mbps for a single CA-
CFAR and 31Gbps for 32 parallel CA-CFAR on Virtex II Pro
technology for 60Mhz clock frequency.

- A resource utilization analysis as a function of the k-
parallel structure suggests between 1.4%, for single and 37.5%
for a 32 parallel design considering a XC2VP30 chip.

- A power analysis of the k- parallel structure and a
discussion on the performance trade-offs is provided.

The remainder of the paper is organized as follows. Section
2 presents the algorithm in details. Section 3 describes the
design implementation and gives analytical expressions of the
recourse utilization estimation. Section 4 presents the obtained
experimental results and provides related discussions. Finally,
section 5 concludes this paper with some final remarks.

Parallel FPGA Design of CA CFAR Algorithm

V.Kyovtorov, G.Kuzmanov, H.Kabakchiev, and G.Gaydadjiev

W

 2

II. PROBLEM FORMULATION AND BACKGROUND DESCRIPTION

Problem formulation. The contemporary radar and
communication signal processing requirements pose very high
computational performance demands for the real time signal
processing. For example, a contemporary input signal
frequency band of 500�Hz needs a sampling rate of at least
1Gsps or, if we assume 16bit data samples, the system
throughput reaches 16Gbis/s. Solving the hardware design
problems for such high data rates is subject to buffering, which
require not only fast computational units, but also cost efficient
parallel structures. The purpose of this work is to propose a
performance efficient reconfigurable hardware CFAR
structure, to study the possibilities to parallelise the CFAR
algorithm and to reveal the dependences between the algorithm
parallelisation, power consumption and the speedup. We
believe that these results will be valuable for future CFAR
hardware algorithm designs.

The General CA CFAR processing. A usual radar and
communication environment encompasses signal, White
Gaussian Noise and pulse interference [1,2]. The pulse
interference has probability behaviour of appearance and its
power is comparable to the signal strength. Fig. 1 illustrates
such a typical input waveform. The waveform can be simply
described as [1,2]:

where n(t) is white Gaussian noise, which has power
spectral density equal to 1; �(t) is the signal, it exists at certain
time slot and its amplitude varies according to a Rayleigh
probability law and certain signal-to-noise ratio, i(t) is the
pulse interference, which amplitude varies according to a
Rayleigh probability law, certain interference-to-noise ratio
and has Poisson probability of appearance.

A typical detection process of such a mixture is threshold
separation of the signal from the interference and the noise.
The simplest way is the constant thresholding. It can be clearly
seen that constant threshoding (Fig.1 dashed line) results many
false alarms in the detection process. The interference
exceeding the fixed threshold is marked as “detected”, or false
alarm occurs.

One solution to reduce the detection of the interference

signals is increasing the threshold level. On the other hand,
considering the fact that the level of the interference compares
to the signal level, the threshold incensement results in less
signal detectability. Nowadays, the adaptive thresholding
(Constant False Alarm Ratio processing) become widely
applied [1-7]. An adaptive threshold is used to detect the
signal from the interference (Fig.1 doted line). The adaptive
threshold varies due to preliminary interference and noise
assessment and is applied to each time sample.

CA CFAR computational scheme. Fig. 2 illustrates the
mechanism of Constant False Alarm Ratio processing. It is a
well-known sequential processing structure [1,2,3]. It consists
of two sliding windows: a testing window and a learning
window. The testing and learning windows slide continuously
on the time samples. The information from the learning
window is used for the noise and interference estimation. The
noise and the interference assessment follow. A scalar factor –
TA, providing a constant probability of false alarm [1,2,3],
multiplies the output of the learning window. This factor is
tabulated in advance according to the interference environment
statistics. The obtained result is the specific detection
threshold for the level in the testing window (xz). If this level
exceeds the specific detection threshold, the output result is
“true”.

The noise and interference assessment is based on the sum
value estimation

�
=

=
n

i
i txtr

1

)()((2)

The threshold is formed according to
)(* trTAHd = (2a)

where TA is the pre-tabulated scalar factor, keeping the
probability of false alarm. The decision for target detection is
made according to:

�
�
�

>
≤

=
z

z

xHd

xHd
Pd

,0

,1 (3)

)()()()(tntitvts k ++= (1)

Fig. 1. An example of a mixture of signal, noise and pulse interference

distribution.

Fig. 2. The Constant False Alarm Ratio (CA-CFAR) computational scheme

 3

III. DESIGN IMPLEMENTATION

Algorithm parallelisation. Considering our goal, a parallel
CA CFAR algorithm was developed. An example of the
proposed parallel algorithm design is depicted in Figure 3,
where two CFAR sliding windows work in parallel: the first
one is positioned at input signal position n; the second one
takes position n+1. Figure 4 illustrates the typical application
of the two parallel CA-CFAR structures on real mixture of
signal, white Gaussian noise and interference. Both windows

process the signal in parallel and each cycle two outputs are
obtained. It is obvious that the processing speed potentially
doubles. Figure 5 suggests a k- generalization of the algorithm.
k – identical CA-CFAR computational structures work in
parallel. They slide along the signal sample dn+i. The input
data sequence are processed in parallel and k simultaneous
results are obtained at the output. Thus, k speed-up is feasible.

Bus width determination. If we consider input data width
of a bits, the sum of n numbers will have a maximum width of

))12((log2 −= a
r nb bits (consider Fig.2). Whereas, the

maximum bus width after the multiplication is
rTAc bbb += (4a)

Hence, the bc width is:
))12((log2 −+= a

TAc nbb (4b)

The total bus complexity, determined in bits Bcfar is the sum
of bit widths of each bus depicted in Fig.4 and the final output
bit:

1++++= zrTAccfar bbbbB (5a)

The total bus width for a k- parallel CA-CFAR structure is:

cfarkCFAR kBB = (5b)

If we consider learning CAFR length n=17 and 16bit data
length, the corresponding data flow diagram is depicted in
Fig.6.

The generalized a k-CFAR structure bus complexity
BkCFARout, including clock and reset signal for each block, is:

ankBkCFARout 2)6(++= [bits] (6)

where a is the data bit width; n - the CFAR length (the total
length of the learning and testing window); k-the number of
parallel structures. It is clear that the total bus complexity

determined in bits will be kCFARB + kCFARoutB . Taking into

consideration the above discussion on the bus design
complexity, we can conclude that it grows linearly with the
number of the parallel sliding windows. Therefore, the total
bus complexity will increase enormously when the number of
parallel CA-CFARS increases.

IV. EXPERIMENTAL RESULTS

The CA-CFAR design is implemented in Xilinx ISE 10.1
environment, and simulated through Modelsim, considering the
VIRTEX II Pro technology. The verification of the algorithm is
made through comparison with MATLAB simulation results
according to the chart flow provided in Fig. 7. The
approximate power consumption is estimated through the
XPower Analyzer tool.

Fig. 5. Parallel CA-CFAR computational k - structure

Fig. 3. Two parallel CA-CFAR computational structure

Fig. 4. An example of two parallel CA-CFAR sliding windows

Fig. 6. Hardware Data structure of two parallel CA-CFAR

 4

Three devices are tested: XC2VP2-7fg256; XC2VP30-7ff1152
and XC2VP70-7ff1517. The CAFR implementation has a
learning window size n= 16 and data bit width of 16.

Assuming 16bit input data, we determine the potential

design throughput as kfTrp **16= , where f is the maximal

frequency according to the Xilinx ISE synthesis tool, k-the
number of parallel CA-CFAR structures. Fig. 8 suggests the
maximal throughput obtained through the tested devices
considering 16bit input data width. As it was anticipated, the
throughput grows linearly with the number of parallel CFAR
units. For 32 parallel CFARs, the obtained throughput is

31Gbps, which is sufficient to meet the requirements of a
1GHz input signal bandwidth (see the problem formulation in
section II). A slight slowdown has been observed in the
XC2VP2 chip, in comparison to XC2VP30 and XC2VP70,
due to the saturation of the dedicated chip resources for
interconnections.

Table I provides the device utilization summary as a
function of the k-parallel CA-CFAR implementation on Virtex
II Pro. Generally, as expected, the design utilization is linear
as a function of the k- number parallel structures.

The power consumption is estimated by the Xilinx XPower
Analyzer tool. Fig. 9 depicts the total power consumption for
the three estimated devices as a function of the k-way of

parallelization. It has been observed that the estimated power
consumption grows slightly and almost linearly before it
enormously increases after the 18-way parallel design. This
incense is above 750%. Table II reveals the total power
consumption distribution between the signal and logic power
consumption.

Based on the results of XC2VP devices obtained from the
previously mentioned Xilinx synthesis and power analyzer
tool, a profound analysis has been made. Increasing the
number of parallel structures leads to increased number of
buffers and interconnects. The signals fanout dramatically
increases after a certain point, which costs extra power.
Because the design complexity is linear, these results are not

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

G
bp

s

k

XC2VP30, XC2VP70
XC2VP2

Fig. 8. The maximal throughput for XC2VP30, XC2VP70 and

XC2VP2, acc. to Xilinx ISE tool

Fig. 7. Algorithm verification procedures

TABLE II
LOGIC AND SIGNALS POWER CONSUMPTION (W) ACCORDING TO THE XPOWER

ANALYZER

 device
k

 X
C

2V
P7

0

X
C

2V
P3

0

X
C

2V
P2

si

gn
al

s

lo
gi

c

si
gn

al
s

lo
gi

c

si
gn

al
s

lo
gi

c

1 0,127 0,072 0,126 0,069 0.117 0,074

2 0,168 0,072 0,176 0,072 0.112 0,051

4 0,197 0,083 0,191 0,088 0.177 0,079

8 0,21 0,073 0,225 0,087 0.258 0,127

10 0,201 0,06 0,27 0,096

12 0,315 0,08 0,319 0,115

16 0,284 0,097 0,29 0,082

18 2,712 1,278 2,976 1,343

32 2,992 1,395 2,918 1,282

TABLE I
DEVICE UTILIZATION SUMMARY (XC2VP30/ XC2VP70)

Number
of

k

sl
ic

e
F

lip

F
lo

ps

of
 4

 in
pu

t
LU

Ts

oc
cu

pi
ed

Sl

ic
es

to
ta

l 4
 in

pu
t

LU
Ts

us
ed

 a
s

lo
gi

c

us
ed

 a
s

a
ro

ut
e-

th
ru

1 329 371 385 385 371 14
2 402 742 587 770 742 28
4 548 1380 989 1436 1380 56

862 2609 1781 2721 2609 112
8

840* 2401* 1406* 2513* 2401* 112*

10 1005 3215 2170 3355 3215 140
12 1165 3779 2551 3947 3779 168
16 1483 5011 3342 5235 5011 224
18 1660 5618 3754 587 5618 252
32 2778 9857 6498 10305 9857 448

* Xilinx Virtex II Pro XC2VP2 chip

 5

due to the design specifics, but concern the particular
implementation technology in general and the particular FPGA
chip considered. For example, from the power consumption
point of view, for this particular case, using two separate

(smaller) FPGA chip for a 18th parallel CFAR implementation
could be more efficient than a single one. Furthermore, the
contemporary market price of a single XC2VP70 chip costs
twice more than XC2VP30 and ten times more than XC2VP2.
This might be another reason to consider smaller devices for
the particular algorithm realizations.

V. CONCLUSIONS

This paper suggested some principles for Constant False
Alarm Ratio algorithm implementations on hardware. A
parallel k-stage CA CFAR algorithm realization on
reconfigurable hardware has been presented. The algorithm
has been fully parallelised. It has been shown that a k - full
parallelisation is possible, hence a k - speedup is possible
Three Virtex II Pro chips were studied through Xilinx ISE and
the Xilinx Power Analyzer tool. Linear resource utilization as a
function of k parallelisation has been demonstrated. After
k=18 the power consumption increases dramatically. Taking
into consideration the power consumption, resource utilization
and market price, discussions about the most suitable Virtex II
pro device for parallel CA-CFAR algorithm hardware
realizations have been presented. As a future work we plan to
investigate the influence of the design characteristics from
different FPGA technologies and to study deeper the power
saving potentials of the proposed design.

REFERENCES
[1] Barton D. K. “Radar System Analysis and Modeling”. Norwood, MA:

Artech House, 2005.
[2] W M. I. Skolnick, Radar Handbook, 2nd ed., p. 14.1, McGraw-Hill,

New York (1990).
[3] Garvanov and Chr. Kabakchiev – Average decision threshold of CA

CFAR and excision CFAR detectors in the presence of strong pulse
jamming, Proc. of the German Radar Symposium – GRS 2002, Bonn,
Germany, September, pp.615 - 620, 2002

[4] C. Torres-Huitzil, Cumplido-Parra R., López-Estrada S., “Design and
Implementation of a CFAR Processor for Target Detection”, LNCS,
August, vol. 30203 / 2004 pp.943 – 947.

[5] T. Saed, J. Ali, Z. Yassen, “An FPGA Based Implementation of CA-
CFAR Processor”, Asian Journal of Information Technology; 2007, pp.
511-514

[6] Lei Zhao, Wexian Liu, Xin Wu and Jeffrey S Fu, “A Novel Approach
for CFAR Processor Design”, 2001 IEEE Radar Conference, pp. 284-
288.

[7] Rohling H. “Radar CFAR Thresholding in Clutter and Multiple Target
Situations”, IEEE Trans., vol. AES-19, No 4, 1983, pp. 608-621.

[8] Wilson P., “Design Principles for FPGAs”, Newnes, May 2007).
[9] L. Shang, A. S. Kaviani, and K. Bathala “Dynamic Power Consumption

in Virtex-II FPGA Family,” Proceedings of the 2002 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays. 2002,
pp.157-164.

0 5 10 15 18 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

k

po
w

er
,W

XC2VP30
XC2VP70
XC2VP2

Fig. 9. Total power consumption for XC2VP2, XC2VP70 and XC2VP30 as

a function of k

