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Abstract—In  this  paper,  we  present  a  performance 

comparison between linear recursive variable expansion (RVE) and 
linear  systolic  array  implementations of  the  Smith‐Waterman  (S‐
W)  algorithm.  The  results  demonstrate  that  the  temporal 
performance  of  linear  RVE  implementation  is  2.11  to  3  times 
better than the traditional  linear systolic array  implementation at 
the spatial cost of 2.02 to 2.54. 

 
Index terms: Bioinformatics, Sequence Alignment, Smith-
Waterman Algorithm, FPGAs, Systolic Arrays, Recursive 
Variable Expansion. 

I. INTRODUCTION 
The Smith-Waterman (S-W) algorithm is a well-known 

algorithm in bioinformatics that finds the optimal alignment 
between two DNA or protein sequences (the target sequence 
and the search sequence) [1]. Determining how well two 
sequences align is important in discovering homologous genes 
and studying the evolutionary history of molecules and 
species [2]. However, the S-W algorithm is not commonly 
used to search sequence databases because it becomes too 
slow when executed against many long sequences. Instead, 
faster heuristic algorithms like FASTA [3] and BLAST [4] are 
used, even though they achieve high speed at the cost of 
reduced accuracy. Therefore, to achieve both increased speed 
and an optimal alignment, it is necessary to develop an 
approach to reduce the processing run time of the S-W 
algorithm. 

Various approaches have been adopted to accelerate the S-
W algorithm by implementing either the whole algorithm or 
some part of it in hardware [5-7], [10-12], [14-19]. In [11], the 
authors show the implementation of a fully custom processing 
unit to realize the execution of the S-W algorithm. The 
authors state that for conducting comparisons of multiple 
sequence pairs, using the same set of processing units, two 
approaches can be used i.e. synchronous and asynchronous. 
The authors claim that the asynchronous parallel approach is 
(k-1)*(m-1) time steps faster than the synchronous parallel 
approach, where k represents the size of the existing 
sequences in the database, which grows exponentially. In [12], 

an efficient cell design for systolic S-W implementation is 
presented. The synthesis results show that the performance of 
the presented design is 54.37 MCUPS. This performance gain 
is 1.7 times higher than a similar reference design. In [15], the 
authors present a new approach to bio-sequence database 
scanning using re-configurable FPGA-based hardware 
platforms to gain high performance at low cost. Their FPGA 
implementation achieves a speedup of approximately 170, as 
compared to a Pentium-IV, 1.6 GHz processor. In [18], an 
approach to realize high speed sequence alignment using run-
time reconfiguration is proposed. With this approach, it is 
demonstrated that high performance can be achieved using 
off-the shelf FPGA boards. The performance is almost 
comparable with dedicated hardware systems. The time for 
comparing a query sequence of 2048 elements with a database 
sequence of 64 million elements by the S-W algorithm is 
about 34 sec, which is about 330 times faster than a desktop 
computer with a Pentium-III, 1.0 GHz processor. In [19], the 
design of a small fully custom processing element, called 
Proclet, is shown. This Proclet is used for a new VLSI 
implementation of the S-W algorithm. The results show that 
the design achieves a performance of 976 Kilo CUPS, but is 
not compared with any reference design. An overview of such 
approaches is given in [9]. In [20], an implementation based 
on systolic array architecture is presented, where systolic 
array is an arrangement of processors in an array (that may be 
either linear or rectangular), where data flows synchronously 
across the array between neighbours. In [21], a hardware 
implementation of the S-W algorithm using RVE approach is 
presented and its performance is compared with an equivalent 
rectangular systolic array implementation. The results 
demonstrate that applying the recursive variable expansion 
technique speeds up the performance by a factor of 1.36 to 
1.41, as compared to traditional acceleration approaches at the 
cost of using 1.25 to 1.28 times more hardware resources. But 
the main problem with this RVE implementation is that the 
hardware is underutilized most of the times. 

In this paper, we present a linear implementation of the S-
W algorithm based on recursive variable expansion approach 
and its comparison with a linear implementation based 



traditional systolic array approach. The results demonstrate 
that the linear implementation based on RVE approach is 2.11 
to 3 times faster than the linear implementation based on a 
systolic array approach at the cost of utilizing 2.02 to 2.54 
times more resources. 

The remainder of the p is organized as follows:  aper 
Section 2 provides a brief description of the S-W algorithm, 
data dependencies in the ݅ܪ, ݆ matrix and a brief introduction 
of the RVE approach. Section 3 presents our linear 
implementation based on systolic array approach. Section 4 
presents the linear implementation based on RVE approach. 
Section 5 discusses and compares the results obtained from 
the two implementations presented in Section 3 and Section 4. 
Section 5 gives a brief conclusion.  

II. THE S-W ALGORITHM 
Based on dynamic programming (DP) [8], the S-W 

algorithm [1] is a method used for local sequence alignment 
(i.e., identifying common regions in sequences that share local 
similarity characteristics). In the following subsections, we 
give a brief description of the algorithm and its inherent data 
dependencies. 

A. S-W Description 

When calculating the local alignment, a matrix ݅ܪ, ݆ is used 
to keep track of the degree of similarity between the two 
sequences to be aligned (݅ܣ and ݆ܤ). Each element of the 
matrix ݅ܪ, ݆ is calculated according to the following equation: 
 

,ሺ݅ܪ ݆ሻ ݔܽ ൞

0
ሺ݅ܪ െ 1, ݆ െ 1ሻ ൅ ܵ݅, ݆

ሺ݅ܪ െ 1, ݆ሻ െ ݀
ሺ݅, ݆ െ 1ሻ െ  ݀

                             ൌ ݉

ܪ

(1) 

where ܵ݅, ݆ is the similarity score of comparing sequence ݅ܣ 

to sequence ݆ܤ and ݀ is the penalty for a mismatch. 
The whole algorithm is divided into the following three steps: 

1. Initialization step 
2. Matrix fill step 
3. T ace ba k step r c

The matrix is first initialized with 0ܪ, ݆ ൌ 0 and ݅ܪ, 0 ൌ
0 for all ݅ and ݆. This is referred to as the initialization step. 
After the initialization, a matrix fill step is carried out using 
Equation 1, which fills out all entries in the matrix. The final 
step is the trace back step, where the scores in the matrix are 
traced back to inspect for optimal local alignment. The trace 
back starts at the cell with the highest score in the matrix and 
continues up to the cell, where the score falls down to a 
predefined minimum threshold. In order to start the trace 
back, the algorithm requires to find the cell with th  
value, which is done by traversing the e matrix

e maximum
 entir . 

The time complexity of initialization step is ܱሺܯ ൅ ܰሻ.  
During the matrix fill step, the entire ݅ܪ, ݆  matrix needs to be 
filled according to Equation 1, making its time complexity 
equal to the number of cells in the matrix or ܱሺܯ ൅ ܰሻ. The 
time complexity of the traceback is also ܱሺܯ ൅ ܰሻ, as the 
entire matrix needs to be traversed during this step. Thus the 

total time complexity of the S-W algorithm is ܱሺܯ ൅ ܰሻ ൅
 ܱሺܰܯሻ ൅  ܱሺܰܯሻ ൌ  ܱሺܰܯሻ. The total space complexity of 
the S-W algorithm is also ܱሺܰܯሻ, as it fills a single matrix of 
size ܰܯ. 

B. Data Dependencies trix in the ݅ܪ, ݆ Ma
In order to reduce the ܱሺܰܯሻ complexity of the matrix fill 
stage, multiple entries of the ݅ܪ, ݆ matrix are calculated in 
parallel. This is however complicated by data dependencies, 
whereby each ݅ܪ, ݆ entry depends on the values of three  
neighbouring entries ݅ܪ, ݆ െ ݅ܪ ,1 െ 1, ݆ and ݅ܪ െ 1, ݆ െ 1, 
with each of those entries in turn depending on the values of 
three neighbouring entries, which effectively means that this 
dependency extends to every other entry in the region ݅ܪ, ݆ 
,ݔܪ ݕ ׷ ൑ ݔ ݅, ൑ ݕ ݆. This implies that it is possible to 
simultaneously compute all the elements in each anti diagonal, 
since they fall outside each other’s data dependency regions. 
Figure 1 shows a sample ݅ܪ, ݆ matrix for two sequences, with 
the bounding boxes indicating the elements that can be 
computed in parallel. The right bottom cell is highlighted to 
show that its data dependency region is the entire remaining 
matrix. The dark diagonal arrow indicates the direction in 
which the computation progresses. At least 9 cycles are 
required for this computation, as there are 9 bounding boxes 
representing 9 anti diagonals and a maximum of 5 cells may 
be computed in parallel. 

 Figure 1: A sample ݅ܪ, ݆ matrix, showing the parallelization possibilities 
within the S-W algorithm 

C. Recursive Variable Expansion 
RVE [13] is a kind of loop transformation which removes all 
data dependencies from a program, so that the program is 
parallelized to its maximum. The basic idea is that if any 
statement ݅ܩ is dependent on statement ݆ܪ for some iteration 
݅ and ݆, then instead we wait for ݆ܪ to complete and then 
execute ݅ܩ, we will replace all the occurrences of the variable 
in ݅ܩ that create dependency with ݆ܪ with the computation of 
that variable in ݆ܪ. In this way there is no need to wait for the 
statement ݆ܪ to complete and statement ݅ܩ can be executed 
independently of ݆ܪ. This step is recursively repeated until



 
 

Figure 2: Linear systolic array implementation of the S-W algorithm using 10 elements 
 

the statement ݅ܩ is not dependent on any other statement, 
other than inputs or known values, which essentially means 
that ݅ܩ can be computed without any delays. This 
transformation is explained clearly in Example 1, which 
adds the loop counter. 
Example 1: A simple example which adds the loop 
counter 
ሾ1ሿܣ ൌ 1 

 5 ݋ݐ 2
ሾ݅ܣ െ 1ሿ ൅  ݅ െ െ െ െ െ െ െ ሺ݅ܩሻ 

for ݅ ൌ
ሾ݅ሿܣ ൌ  
end for 
 
Therefore after applying the RVE, we get an expression 
with five terms to be added, as shown in Example 2.  
 
Example 2: After applying RVE on Example 1 
ሾ5ሿܣ  ൌ ሾ4ሿܣ   ൅  5 
          ൌ ሾ3ሿܣ   ൅  4 ൅  5   

 
          ൌ ሾ2ሿܣ  ൅  3 ൅  4 ൅  5 
         ൌ ሾ1ሿܣ  ൅  2 ൅  3 ൅  4 ൅  5
          ൌ       1 ൅  2 ൅  3 ൅  4 ൅  5 
In this way, the whole expanded statement in Example 2 
can be computed in any order by computing the large 
number of operations in parallel and efficiently. The major 
drawback of this technique is that the speed up is achieved 
at the cost of redundancy, which consumes a lot of 
resources. The RVE approach is discussed in detail in [14]. 

III. LINEAR SYSTOLIC ARRAY IMPLEMENTATION 
Systolic array is an arrangement of processors in an array 
where data flows synchronously across the array between 
neighbours. It can be either linear or rectangular. Linear 
systolic array is used to compute the elements of ݅ܪ, ݆ 
matrix in the S-W algorithm [12, 15]. Figure 2 shows a 10 
elements linear systolic array, where each element is 
composed of a cell design as shown in Figure 3. 
In the cell design of Figure 3, Comp1 compares the 
corresponding characters of the two input sequences and 
generates a similarity score. The similarity score is equal to 
the match score if the corresponding characters are similar, 
otherwise it is equal to the mismatch score. The diagonal 
element ݅ܪ െ 1, ݆ െ 1 is delayed by Buf1 for one clock 
cycle, as it comes from the previous element in the array. 
Add1 adds the similarity score with the delayed diagonal 

element. Comp2 compares the output of Add1 with a 0. 

 
Figure 3: Cell design for the linea mentation of r systolic array imple

algorithm 

Add2 adds the left element ݅ܪ െ 1, ݆ െ 1 with the gap 
penalty. Add3 adds the up element (which is the current 
value of the cell) with the gap penalty. Comp3 compares 
the outputs of Add2 and Add3. Comp4 compares the 
outputs of Comp2 and Comp3. Buf2 keeps the output of 
the cell and also feeds it back to Add3 and Max1, where 
Max1 compares the current value of the cell with the 
external Max_in input. Max2 compares the output of Max1 
with the previous max value. The output of Max2 is stored 
back in Buf3. Buf4 delays the Sequence#2_in input by one 
clock cycle for the next element of the array. The cell 
design of Figure 3 is used as a building block for 
implementation of the linear systolic array shown in Figure 
2. The array shown in Figure 2 is implemented in VHDL 
and the post place and route simulation results show that 
for a clock period of 100 ns, the latency of the linear 
systolic array is 1900 ns, whereas the slices utilized are 297 
out of 13696. The platform used for implementation is 
Xilinx Virtex II Pro. Apart from the design of Figure 2, a 2 
elements linear systolic array is also implemented for 
comparison with the linear RVE block, to be discussed in 
the next section. For a clock cycle of 100 ns, the latency of 
the 2 elements linear systolic array is 300 ns, whereas the 
slices utilized are 50 out of 13696. 

the S-W 

 
 
 



 
 

 

 
  

 
 Figure 5: 5 blocks linear RVE design 

 

IV. LINEAR RVE IMPLEMENTATION 
This section presents our implementation of the S-W 

algorithm based on linear RVE design. We define the size of 
RVE block as the blocking factor (b), such that for a 2x2 
array, implemented using linear RVE design, the blocking 
factor b = 2. Figure 4 shows the block diagram representation 
of our linear RVE design with b = 2.  

Figure 4: Block diagram representation of the linear RVE design with b=2 
 

This design is implemented in VHDL and the post route 
simulation shows that for a clock period of 100 ns, the latency 
is 1 clock cycle. The slices utilized are 127 out of 13696. The 
device utilized is Xilinx Virtex II Pro. Using this linear RVE 
design as a building block, we implemented a 5 blocks linear 
RVE array as shown in Figure 5. This is equivalent to the 10 
elements linear systolic array implementation. 
Figure 6 gives the logical description of our linear RVE 
design with b = 2. The comparators in the 1st column of the 
figure compares the corresponding characters of the input 
sequences and generates the similarity score accordingly, 

whereas the buffer in the 1st column a s th e  
݅ ݆ െ 2 o e lock cycle. The ad i t e o   

 del y  e el ment
ܪ െ 2,  by n  c ders n h 2nd c lumn
adds the gap penalty with the elements ݅ܪ, ݆ െ ݅ܪ ,2 െ 1, ݆ െ
,݅ܪ ,2 ݆ and ݅ܪ, ݆ െ 1, where the 1st two are external elements 
and the second two are feedback elements. The AND gates in 
the 3rd column performs logic anding between the outputs of  
the upper 3 comparators in the 1st column. The adders and 
comparators in the following columns performs addition and 
max operation on the inputs from the preceding columns. The 
values of the five outputs ݅ܪ, ,݅ܪ ,݆ ݆ െ ݅ܪ ,1 െ 1, ݅ܪ ,݆ െ
1, ݆ െ 1 and Max_out are stored in registers named BUF. 
Seq2a_in and Seq2b_in are delayed by one clock cycle using 
buffers in the last column to get Seq2a_out and Seq2b_out for 
the next block in the array. The 5 blocks linear RVE design 
shown in Figure 5 is implemented in VHDL and the post 
place and route simulation results show that for a clock period 
of 100 ns the latency of the array is 900 ns, where as the slices 
consumed are 601 out of 13696. The platform used for 
implementation is Xilinx Virtex II Pro. 
 
Table 1: Filled matrix obtained using linear systolic array and linear 

RVE implementations 
  A G T A A G T A C A 
 0 0 0 0 0 0 0 0 0 0 0 
G 0 0 2 2 2 2 2 2 2 2 2 
G 0 0 2 2 2 2 4 4 4 4 4 
T 0 0 2 4 4 4 4 6 6 6 6 
C 0 0 2 4 4 4 4 6 6 8 8 
G 0 0 2 4 4 4 6 6 6 8 8 
G 0 0 2 4 4 4 6 6 6 8 8 
T 0 0 2 4 4 4 6 8 8 8 8 
C 0 0 2 4 4 4 6 8 8 10 10 
A 0 2 2 4 6 6 6 8 10 10 12 
C 0 2 2 4 6 6 6 8 10 12 12 

 
 

 



 
Figure 6: Logical description of the linear RVE design with b=2 

 
 

Table 2: Comparison between linear systolic array and linear RVE implementations 
Implementation Time 

consumed 
Clock 

frequency 
Speedup w.r.t. linear 

systolic array 
implementation

Number of 
slices 

Cost 
 

2 elements linear 
systolic array 

300 ns 10 MHz 1 50 out of 
13696 

1 

Single block linear 
RVE 

100 ns 10 MHz 3 127 out of 
13696 

2.54 

10 elements linear 
systolic array 

1900 ns 10 MHz 1 297 out of 
13696 

1 

5 blocks linear RVE 900 ns 10 MHz 2.11 601 out of 
13696 

2.02 

 

V. DISCUSSION OF RESULTS 
Table 1 presents the filled matrix obtained using the 10 
elements linear systolic array implementation and 5 blocks 
linear RVE implementation. The same input sequences are 
used in both the cases and the same correct results verify 
the correctness of both the designs. The bold digits in 
Table 1 indicate the trace back path. 
Table 2 summarizes the results presented in Section 3 and 
Section 4. It demonstrates that the 2 elements linear 
systolic array implementation consumes 300 ns with a 10  
 
 

 
 
MHz clock frequency and utilizes 50 out of 13696, when 
implemented on a Xilinx Virtex II Pro FPGA. The speedup 
and cost is 1, as the reference for comparison is the same 
linear systolic array design. The single block linear RVE 
implementation consumes 100 ns for a 10 MHz clock and 
utilizes 127 out of 13696 slices, while using the same 
Virtex II Pro device. Thus the single block linear RVE 
design is 3 times faster than the two elements linear 
systolic array design at the cost of 2.54 times more 
hardware resource utilization. 

 



The table further demonstrates that the 10 elements 
linear systolic array implementation consumes 1900 
ns for a 10 MHz clock frequency and utilizes 297 out 
of 13696 slices, when implemented on a Xilinx 
Virtex II Pro FPGA. The speedup and cost is 1, 
because the reference for comparison is the same 
linear systolic array design, which is traditionally 
used for accelerating the S-W algorithm. The 5 
blocks linear RVE implementation consumes 900 ns 
for a 10 MHz clock frequency and utilizes 601 out of 
13696 slices, when implemented on a Xilix Virtex II 
Pro FPGA. Thus in comparison with a 10 elements 
traditional linear systolic array implementation, the 5 
blocks linear RVE implementation improves the 
performance by a factor of 1900/900 = 2.11 at the 
cost of utilizing 601/297 = 2.02 times more resources.  
 

VI. CONCLUSION 
In this paper, we presented a new implementation 

of the S-W algorithm based on the linear RVE 
approach and compared its performance with a 
traditional linear systolic array implementation. The 
results demonstrate that the linear RVE 
implementation is 2.11 to 3 times faster than the 
traditional linear systolic array implementation at the 
cost of utilizing 2.02 to 2.54 times more hardware 
resources. The results lead to the conclusion that the 
implementation based on linear RVE approach is 
preferred to any other approach, in cases where 
hardware resources utilization cost is not a big 
concern. 

 

ACKNOWLEDGMENT 
This work is financially supported by the 

Computer Engineering Laboratory TU Delft and the 
Higher Education Commission of Pakistan. 

 
 
 

REFERENCES 
[1] Smith T. F. and Waterman M. S., “Identification of 

Common Molecular Subsequences”, In Journal of 
Molecular Biology, vol. 147, pp 195-197, 1981. 

[2] Page RD, “GeneTree: Comparing Gene and Species 
Phylogenies using Reconciled Trees”, Bioinformatics, vol. 
14(9), pp 819–820, 1998. 

[3] Pearson W. R. and Lipman D. J., “Rapid and Sensitive 
Protein Similarity Searches”, In Science, vol. 227, pp 1435-
1441, 1985. 

[4] Altschul S. F. et al, “Basic Local Alignment Search Tool”, 
In Journal of Molecular Biology, vol. 215, pp 403-410, 
1990. 

[5] Blas A. Di. et al, “The UCSC Kestrel Parallel Processor”, In 
IEEE Transactions on Parallel and Distributed Systems, 
vol. 16(1), pp 80–92, 2005. 

[6] Borah M. et al, “A SIMD Solution to the Sequence 
Comparison Problem on the MGAP”, Proceedings of the 
International Conference on Application Specific Array 
Processors, San Francisco, California, USA, 1994. 

[7] Chiang J. et al, “Hardware Accelerator for Genomic 
Sequence Alignment”, Proceedings of the 28th IEEE EMBS 
Annual International Conference, New York City, USA, 
Aug 30-Sept 3, 2006. 

[8] Giegerich R., “A Systematic Approach to Dynamic 
Programming in Bioinformatics”, Bioinformatics, vol. 16, 
pp 665-677, 2000. 

[9] Hasan L. et al, “Hardware Acceleration of Sequence 
Alignment Algorithms - An Overview”, Proceedings of 
International Conference on Design & Technology of 
Integrated Systems in Nanoscale Era (DTIS’07), pp 96-101, 
Rabat, Morocco, September 2–5, 2007. 

[10] Laiq Hasan and Zaid Al-Ars, “Performance Improvement of 
the Smith-Waterman Algorithm”, Annual Workshop on 
Circuits, Systems and Signal Processing (ProRISC), 
Veldhoven, The Netherlands, November 29–30, 2007. 

[11] Liao H. Y. et al, “A Parallel Implementation of the Smith-
Waterman Algorithm for Massive Sequences Searching”, 
Proceedings of the 26th Annual International Conference of 
the IEEE EMBS, San Francisco, CA, USA, September 1–5, 
2004. 

[12] Mustafa Gok and Caglar Yilmaz, “Efficient Cell Designs for 
Systolic Smith-Waterman Implementation” Proceedings of 
the 16th International Conference on Field Programmable 
Logic and Applications (FPL), Meliá Madrid Princesa, 
Madrid, SPAIN, 2006. 

[13] Nawaz Z. et al, “Recursive Variable Expansion: A Loop 
Transformation for Reconfigurable Systems”, Proceedings 
of InternationalConference on Field-Programmable 
Technology (FPT), Kokurakita, Kitakyushu, JAPAN, 
December 2007. 

[14] Nawaz Z. et al, “Acceleration of Smith-Waterman Using 
Recursive Variable Expansion”, Proceedings of 11th 
Euromicro Conference on Digital System Design (DSD), 
Parma, Italy, September 2008. 

[15] Oliver T. et al, “Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs”, FPGA’05, 
Monterey, California, USA, February 20-22, 2005. 

[16] Schroder A. et al, “Bio-Sequence Database Scanning on a 
GPU”, Proceedings of the Fifth IEEE International 
Workshop on High Performance Computational Biology 
(HICOMB), Rhodes Island, Greece, 2006. 

[17] Steve Margerm, Cray Inc, “Reconfigurable Computing in 
Real-World Applications”, FPGA and Structured ASIC 
Journal (www.fpgajournal.com), February 7, 2006. 

[18] Yamaguchi Y. et al, “High Speed Homology Search Using 
Run-Time Reconfiguration”, Proceedings of the 12th 
International Conference on Field Programmable Logic and 
Application (FPL), Montpellier (La Grande-Motte) – 
France, 2002. 

[19] Yang B. H. W., “A Parallel Implementation of Smith-
Waterman Sequence Comparison Algorithm”, Technical 
Report, Biochemistry department, Stanford University, 
USA, December 6, 2002. 

[20] L. Hasan, Y.M. Khawaja, A. Bais, “A Systolic Array 
Architecture for the Smith-Waterman Algorithm with High 
Performance Cell Design”, Proceedings of IADIS European 
Conference on Data Mining, Amsterdam, The Netherlands, 
July 2008. 

[21] L. Hasan, Z. Al-Ars, Z. Nawaz, K.L.M. Bertels, “Hardware 
Implementation of the Smith-Waterman Algorithm Using 
Recursive Variable Expansion”, Proceedings of 3rd 
International Design and Test Workshop IDT08, Monastir, 
Tunisia, December 2008. 

 

http://www.fpgajournal.com/

