
Performance Comparison between Linear RVE
and Linear Systolic Array Implementations of the

Smith-Waterman Algorithm

Laiq Hasan Zaid Al-Ars
Delft University of Technology

Computer Engineering Laboratory
Mekelweg 4, 2628 CD Delft, The Netherlands
Tel: +31 15 27 86172 Fax: +31 15 27 84898

L.HASAN@TUDELFT.NL

Abstract—In this paper, we present a performance

comparison between linear recursive variable expansion (RVE) and
linear systolic array implementations of the Smith‐Waterman (S‐
W) algorithm. The results demonstrate that the temporal
performance of linear RVE implementation is 2.11 to 3 times
better than the traditional linear systolic array implementation at
the spatial cost of 2.02 to 2.54.

Index terms: Bioinformatics, Sequence Alignment, Smith-
Waterman Algorithm, FPGAs, Systolic Arrays, Recursive
Variable Expansion.

I. INTRODUCTION
The Smith-Waterman (S-W) algorithm is a well-known

algorithm in bioinformatics that finds the optimal alignment
between two DNA or protein sequences (the target sequence
and the search sequence) [1]. Determining how well two
sequences align is important in discovering homologous genes
and studying the evolutionary history of molecules and
species [2]. However, the S-W algorithm is not commonly
used to search sequence databases because it becomes too
slow when executed against many long sequences. Instead,
faster heuristic algorithms like FASTA [3] and BLAST [4] are
used, even though they achieve high speed at the cost of
reduced accuracy. Therefore, to achieve both increased speed
and an optimal alignment, it is necessary to develop an
approach to reduce the processing run time of the S-W
algorithm.

Various approaches have been adopted to accelerate the S-
W algorithm by implementing either the whole algorithm or
some part of it in hardware [5-7], [10-12], [14-19]. In [11], the
authors show the implementation of a fully custom processing
unit to realize the execution of the S-W algorithm. The
authors state that for conducting comparisons of multiple
sequence pairs, using the same set of processing units, two
approaches can be used i.e. synchronous and asynchronous.
The authors claim that the asynchronous parallel approach is
(k-1)*(m-1) time steps faster than the synchronous parallel
approach, where k represents the size of the existing
sequences in the database, which grows exponentially. In [12],

an efficient cell design for systolic S-W implementation is
presented. The synthesis results show that the performance of
the presented design is 54.37 MCUPS. This performance gain
is 1.7 times higher than a similar reference design. In [15], the
authors present a new approach to bio-sequence database
scanning using re-configurable FPGA-based hardware
platforms to gain high performance at low cost. Their FPGA
implementation achieves a speedup of approximately 170, as
compared to a Pentium-IV, 1.6 GHz processor. In [18], an
approach to realize high speed sequence alignment using run-
time reconfiguration is proposed. With this approach, it is
demonstrated that high performance can be achieved using
off-the shelf FPGA boards. The performance is almost
comparable with dedicated hardware systems. The time for
comparing a query sequence of 2048 elements with a database
sequence of 64 million elements by the S-W algorithm is
about 34 sec, which is about 330 times faster than a desktop
computer with a Pentium-III, 1.0 GHz processor. In [19], the
design of a small fully custom processing element, called
Proclet, is shown. This Proclet is used for a new VLSI
implementation of the S-W algorithm. The results show that
the design achieves a performance of 976 Kilo CUPS, but is
not compared with any reference design. An overview of such
approaches is given in [9]. In [20], an implementation based
on systolic array architecture is presented, where systolic
array is an arrangement of processors in an array (that may be
either linear or rectangular), where data flows synchronously
across the array between neighbours. In [21], a hardware
implementation of the S-W algorithm using RVE approach is
presented and its performance is compared with an equivalent
rectangular systolic array implementation. The results
demonstrate that applying the recursive variable expansion
technique speeds up the performance by a factor of 1.36 to
1.41, as compared to traditional acceleration approaches at the
cost of using 1.25 to 1.28 times more hardware resources. But
the main problem with this RVE implementation is that the
hardware is underutilized most of the times.

In this paper, we present a linear implementation of the S-
W algorithm based on recursive variable expansion approach
and its comparison with a linear implementation based

traditional systolic array approach. The results demonstrate
that the linear implementation based on RVE approach is 2.11
to 3 times faster than the linear implementation based on a
systolic array approach at the cost of utilizing 2.02 to 2.54
times more resources.

The remainder of the p is organized as follows: aper
Section 2 provides a brief description of the S-W algorithm,
data dependencies in the ݅ܪ, ݆ matrix and a brief introduction
of the RVE approach. Section 3 presents our linear
implementation based on systolic array approach. Section 4
presents the linear implementation based on RVE approach.
Section 5 discusses and compares the results obtained from
the two implementations presented in Section 3 and Section 4.
Section 5 gives a brief conclusion.

II. THE S-W ALGORITHM
Based on dynamic programming (DP) [8], the S-W

algorithm [1] is a method used for local sequence alignment
(i.e., identifying common regions in sequences that share local
similarity characteristics). In the following subsections, we
give a brief description of the algorithm and its inherent data
dependencies.

A. S-W Description

When calculating the local alignment, a matrix ݅ܪ, ݆ is used
to keep track of the degree of similarity between the two
sequences to be aligned (݅ܣ and ݆ܤ). Each element of the
matrix ݅ܪ, ݆ is calculated according to the following equation:

,ሺ݅ܪ ݆ሻ ݔܽ ൞

0
ሺ݅ܪ െ 1, ݆ െ 1ሻ ൅ ܵ݅, ݆

ሺ݅ܪ െ 1, ݆ሻ െ ݀
ሺ݅, ݆ െ 1ሻ െ ݀

 ൌ ݉

ܪ

(1)

where ܵ݅, ݆ is the similarity score of comparing sequence ݅ܣ

to sequence ݆ܤ and ݀ is the penalty for a mismatch.
The whole algorithm is divided into the following three steps:

1. Initialization step
2. Matrix fill step
3. T ace ba k step r c

The matrix is first initialized with 0ܪ, ݆ ൌ 0 and ݅ܪ, 0 ൌ
0 for all ݅ and ݆. This is referred to as the initialization step.
After the initialization, a matrix fill step is carried out using
Equation 1, which fills out all entries in the matrix. The final
step is the trace back step, where the scores in the matrix are
traced back to inspect for optimal local alignment. The trace
back starts at the cell with the highest score in the matrix and
continues up to the cell, where the score falls down to a
predefined minimum threshold. In order to start the trace
back, the algorithm requires to find the cell with th
value, which is done by traversing the e matrix

e maximum
 entir .

The time complexity of initialization step is ܱሺܯ ൅ ܰሻ.
During the matrix fill step, the entire ݅ܪ, ݆ matrix needs to be
filled according to Equation 1, making its time complexity
equal to the number of cells in the matrix or ܱሺܯ ൅ ܰሻ. The
time complexity of the traceback is also ܱሺܯ ൅ ܰሻ, as the
entire matrix needs to be traversed during this step. Thus the

total time complexity of the S-W algorithm is ܱሺܯ ൅ ܰሻ ൅
 ܱሺܰܯሻ ൅ ܱሺܰܯሻ ൌ ܱሺܰܯሻ. The total space complexity of
the S-W algorithm is also ܱሺܰܯሻ, as it fills a single matrix of
size ܰܯ.

B. Data Dependencies trix in the ݅ܪ, ݆ Ma
In order to reduce the ܱሺܰܯሻ complexity of the matrix fill
stage, multiple entries of the ݅ܪ, ݆ matrix are calculated in
parallel. This is however complicated by data dependencies,
whereby each ݅ܪ, ݆ entry depends on the values of three
neighbouring entries ݅ܪ, ݆ െ ݅ܪ ,1 െ 1, ݆ and ݅ܪ െ 1, ݆ െ 1,
with each of those entries in turn depending on the values of
three neighbouring entries, which effectively means that this
dependency extends to every other entry in the region ݅ܪ, ݆
,ݔܪ ݕ ׷ ൑ ݔ ݅, ൑ ݕ ݆. This implies that it is possible to
simultaneously compute all the elements in each anti diagonal,
since they fall outside each other’s data dependency regions.
Figure 1 shows a sample ݅ܪ, ݆ matrix for two sequences, with
the bounding boxes indicating the elements that can be
computed in parallel. The right bottom cell is highlighted to
show that its data dependency region is the entire remaining
matrix. The dark diagonal arrow indicates the direction in
which the computation progresses. At least 9 cycles are
required for this computation, as there are 9 bounding boxes
representing 9 anti diagonals and a maximum of 5 cells may
be computed in parallel.

 Figure 1: A sample ݅ܪ, ݆ matrix, showing the parallelization possibilities
within the S-W algorithm

C. Recursive Variable Expansion
RVE [13] is a kind of loop transformation which removes all
data dependencies from a program, so that the program is
parallelized to its maximum. The basic idea is that if any
statement ݅ܩ is dependent on statement ݆ܪ for some iteration
݅ and ݆, then instead we wait for ݆ܪ to complete and then
execute ݅ܩ, we will replace all the occurrences of the variable
in ݅ܩ that create dependency with ݆ܪ with the computation of
that variable in ݆ܪ. In this way there is no need to wait for the
statement ݆ܪ to complete and statement ݅ܩ can be executed
independently of ݆ܪ. This step is recursively repeated until

Figure 2: Linear systolic array implementation of the S-W algorithm using 10 elements

the statement ݅ܩ is not dependent on any other statement,
other than inputs or known values, which essentially means
that ݅ܩ can be computed without any delays. This
transformation is explained clearly in Example 1, which
adds the loop counter.
Example 1: A simple example which adds the loop
counter
ሾ1ሿܣ ൌ 1

 5 ݋ݐ 2
ሾ݅ܣ െ 1ሿ ൅ ݅ െ െ െ െ െ െ െ ሺ݅ܩሻ

for ݅ ൌ
ሾ݅ሿܣ ൌ
end for

Therefore after applying the RVE, we get an expression
with five terms to be added, as shown in Example 2.

Example 2: After applying RVE on Example 1
ሾ5ሿܣ ൌ ሾ4ሿܣ ൅ 5
 ൌ ሾ3ሿܣ ൅ 4 ൅ 5

 ൌ ሾ2ሿܣ ൅ 3 ൅ 4 ൅ 5
 ൌ ሾ1ሿܣ ൅ 2 ൅ 3 ൅ 4 ൅ 5
 ൌ 1 ൅ 2 ൅ 3 ൅ 4 ൅ 5
In this way, the whole expanded statement in Example 2
can be computed in any order by computing the large
number of operations in parallel and efficiently. The major
drawback of this technique is that the speed up is achieved
at the cost of redundancy, which consumes a lot of
resources. The RVE approach is discussed in detail in [14].

III. LINEAR SYSTOLIC ARRAY IMPLEMENTATION
Systolic array is an arrangement of processors in an array
where data flows synchronously across the array between
neighbours. It can be either linear or rectangular. Linear
systolic array is used to compute the elements of ݅ܪ, ݆
matrix in the S-W algorithm [12, 15]. Figure 2 shows a 10
elements linear systolic array, where each element is
composed of a cell design as shown in Figure 3.
In the cell design of Figure 3, Comp1 compares the
corresponding characters of the two input sequences and
generates a similarity score. The similarity score is equal to
the match score if the corresponding characters are similar,
otherwise it is equal to the mismatch score. The diagonal
element ݅ܪ െ 1, ݆ െ 1 is delayed by Buf1 for one clock
cycle, as it comes from the previous element in the array.
Add1 adds the similarity score with the delayed diagonal

element. Comp2 compares the output of Add1 with a 0.

Figure 3: Cell design for the linea mentation of r systolic array imple

algorithm

Add2 adds the left element ݅ܪ െ 1, ݆ െ 1 with the gap
penalty. Add3 adds the up element (which is the current
value of the cell) with the gap penalty. Comp3 compares
the outputs of Add2 and Add3. Comp4 compares the
outputs of Comp2 and Comp3. Buf2 keeps the output of
the cell and also feeds it back to Add3 and Max1, where
Max1 compares the current value of the cell with the
external Max_in input. Max2 compares the output of Max1
with the previous max value. The output of Max2 is stored
back in Buf3. Buf4 delays the Sequence#2_in input by one
clock cycle for the next element of the array. The cell
design of Figure 3 is used as a building block for
implementation of the linear systolic array shown in Figure
2. The array shown in Figure 2 is implemented in VHDL
and the post place and route simulation results show that
for a clock period of 100 ns, the latency of the linear
systolic array is 1900 ns, whereas the slices utilized are 297
out of 13696. The platform used for implementation is
Xilinx Virtex II Pro. Apart from the design of Figure 2, a 2
elements linear systolic array is also implemented for
comparison with the linear RVE block, to be discussed in
the next section. For a clock cycle of 100 ns, the latency of
the 2 elements linear systolic array is 300 ns, whereas the
slices utilized are 50 out of 13696.

the S-W

 Figure 5: 5 blocks linear RVE design

IV. LINEAR RVE IMPLEMENTATION
This section presents our implementation of the S-W

algorithm based on linear RVE design. We define the size of
RVE block as the blocking factor (b), such that for a 2x2
array, implemented using linear RVE design, the blocking
factor b = 2. Figure 4 shows the block diagram representation
of our linear RVE design with b = 2.

Figure 4: Block diagram representation of the linear RVE design with b=2

This design is implemented in VHDL and the post route
simulation shows that for a clock period of 100 ns, the latency
is 1 clock cycle. The slices utilized are 127 out of 13696. The
device utilized is Xilinx Virtex II Pro. Using this linear RVE
design as a building block, we implemented a 5 blocks linear
RVE array as shown in Figure 5. This is equivalent to the 10
elements linear systolic array implementation.
Figure 6 gives the logical description of our linear RVE
design with b = 2. The comparators in the 1st column of the
figure compares the corresponding characters of the input
sequences and generates the similarity score accordingly,

whereas the buffer in the 1st column a s th e
݅ ݆ െ 2 o e lock cycle. The ad i t e o

 del y e el ment
ܪ െ 2, by n c ders n h 2nd c lumn
adds the gap penalty with the elements ݅ܪ, ݆ െ ݅ܪ ,2 െ 1, ݆ െ
,݅ܪ ,2 ݆ and ݅ܪ, ݆ െ 1, where the 1st two are external elements
and the second two are feedback elements. The AND gates in
the 3rd column performs logic anding between the outputs of
the upper 3 comparators in the 1st column. The adders and
comparators in the following columns performs addition and
max operation on the inputs from the preceding columns. The
values of the five outputs ݅ܪ, ,݅ܪ ,݆ ݆ െ ݅ܪ ,1 െ 1, ݅ܪ ,݆ െ
1, ݆ െ 1 and Max_out are stored in registers named BUF.
Seq2a_in and Seq2b_in are delayed by one clock cycle using
buffers in the last column to get Seq2a_out and Seq2b_out for
the next block in the array. The 5 blocks linear RVE design
shown in Figure 5 is implemented in VHDL and the post
place and route simulation results show that for a clock period
of 100 ns the latency of the array is 900 ns, where as the slices
consumed are 601 out of 13696. The platform used for
implementation is Xilinx Virtex II Pro.

Table 1: Filled matrix obtained using linear systolic array and linear

RVE implementations
 A G T A A G T A C A
 0 0 0 0 0 0 0 0 0 0 0
G 0 0 2 2 2 2 2 2 2 2 2
G 0 0 2 2 2 2 4 4 4 4 4
T 0 0 2 4 4 4 4 6 6 6 6
C 0 0 2 4 4 4 4 6 6 8 8
G 0 0 2 4 4 4 6 6 6 8 8
G 0 0 2 4 4 4 6 6 6 8 8
T 0 0 2 4 4 4 6 8 8 8 8
C 0 0 2 4 4 4 6 8 8 10 10
A 0 2 2 4 6 6 6 8 10 10 12
C 0 2 2 4 6 6 6 8 10 12 12

Figure 6: Logical description of the linear RVE design with b=2

Table 2: Comparison between linear systolic array and linear RVE implementations
Implementation Time

consumed
Clock

frequency
Speedup w.r.t. linear

systolic array
implementation

Number of
slices

Cost

2 elements linear
systolic array

300 ns 10 MHz 1 50 out of
13696

1

Single block linear
RVE

100 ns 10 MHz 3 127 out of
13696

2.54

10 elements linear
systolic array

1900 ns 10 MHz 1 297 out of
13696

1

5 blocks linear RVE 900 ns 10 MHz 2.11 601 out of
13696

2.02

V. DISCUSSION OF RESULTS
Table 1 presents the filled matrix obtained using the 10
elements linear systolic array implementation and 5 blocks
linear RVE implementation. The same input sequences are
used in both the cases and the same correct results verify
the correctness of both the designs. The bold digits in
Table 1 indicate the trace back path.
Table 2 summarizes the results presented in Section 3 and
Section 4. It demonstrates that the 2 elements linear
systolic array implementation consumes 300 ns with a 10

MHz clock frequency and utilizes 50 out of 13696, when
implemented on a Xilinx Virtex II Pro FPGA. The speedup
and cost is 1, as the reference for comparison is the same
linear systolic array design. The single block linear RVE
implementation consumes 100 ns for a 10 MHz clock and
utilizes 127 out of 13696 slices, while using the same
Virtex II Pro device. Thus the single block linear RVE
design is 3 times faster than the two elements linear
systolic array design at the cost of 2.54 times more
hardware resource utilization.

The table further demonstrates that the 10 elements
linear systolic array implementation consumes 1900
ns for a 10 MHz clock frequency and utilizes 297 out
of 13696 slices, when implemented on a Xilinx
Virtex II Pro FPGA. The speedup and cost is 1,
because the reference for comparison is the same
linear systolic array design, which is traditionally
used for accelerating the S-W algorithm. The 5
blocks linear RVE implementation consumes 900 ns
for a 10 MHz clock frequency and utilizes 601 out of
13696 slices, when implemented on a Xilix Virtex II
Pro FPGA. Thus in comparison with a 10 elements
traditional linear systolic array implementation, the 5
blocks linear RVE implementation improves the
performance by a factor of 1900/900 = 2.11 at the
cost of utilizing 601/297 = 2.02 times more resources.

VI. CONCLUSION
In this paper, we presented a new implementation

of the S-W algorithm based on the linear RVE
approach and compared its performance with a
traditional linear systolic array implementation. The
results demonstrate that the linear RVE
implementation is 2.11 to 3 times faster than the
traditional linear systolic array implementation at the
cost of utilizing 2.02 to 2.54 times more hardware
resources. The results lead to the conclusion that the
implementation based on linear RVE approach is
preferred to any other approach, in cases where
hardware resources utilization cost is not a big
concern.

ACKNOWLEDGMENT
This work is financially supported by the

Computer Engineering Laboratory TU Delft and the
Higher Education Commission of Pakistan.

REFERENCES
[1] Smith T. F. and Waterman M. S., “Identification of

Common Molecular Subsequences”, In Journal of
Molecular Biology, vol. 147, pp 195-197, 1981.

[2] Page RD, “GeneTree: Comparing Gene and Species
Phylogenies using Reconciled Trees”, Bioinformatics, vol.
14(9), pp 819–820, 1998.

[3] Pearson W. R. and Lipman D. J., “Rapid and Sensitive
Protein Similarity Searches”, In Science, vol. 227, pp 1435-
1441, 1985.

[4] Altschul S. F. et al, “Basic Local Alignment Search Tool”,
In Journal of Molecular Biology, vol. 215, pp 403-410,
1990.

[5] Blas A. Di. et al, “The UCSC Kestrel Parallel Processor”, In
IEEE Transactions on Parallel and Distributed Systems,
vol. 16(1), pp 80–92, 2005.

[6] Borah M. et al, “A SIMD Solution to the Sequence
Comparison Problem on the MGAP”, Proceedings of the
International Conference on Application Specific Array
Processors, San Francisco, California, USA, 1994.

[7] Chiang J. et al, “Hardware Accelerator for Genomic
Sequence Alignment”, Proceedings of the 28th IEEE EMBS
Annual International Conference, New York City, USA,
Aug 30-Sept 3, 2006.

[8] Giegerich R., “A Systematic Approach to Dynamic
Programming in Bioinformatics”, Bioinformatics, vol. 16,
pp 665-677, 2000.

[9] Hasan L. et al, “Hardware Acceleration of Sequence
Alignment Algorithms - An Overview”, Proceedings of
International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS’07), pp 96-101,
Rabat, Morocco, September 2–5, 2007.

[10] Laiq Hasan and Zaid Al-Ars, “Performance Improvement of
the Smith-Waterman Algorithm”, Annual Workshop on
Circuits, Systems and Signal Processing (ProRISC),
Veldhoven, The Netherlands, November 29–30, 2007.

[11] Liao H. Y. et al, “A Parallel Implementation of the Smith-
Waterman Algorithm for Massive Sequences Searching”,
Proceedings of the 26th Annual International Conference of
the IEEE EMBS, San Francisco, CA, USA, September 1–5,
2004.

[12] Mustafa Gok and Caglar Yilmaz, “Efficient Cell Designs for
Systolic Smith-Waterman Implementation” Proceedings of
the 16th International Conference on Field Programmable
Logic and Applications (FPL), Meliá Madrid Princesa,
Madrid, SPAIN, 2006.

[13] Nawaz Z. et al, “Recursive Variable Expansion: A Loop
Transformation for Reconfigurable Systems”, Proceedings
of InternationalConference on Field-Programmable
Technology (FPT), Kokurakita, Kitakyushu, JAPAN,
December 2007.

[14] Nawaz Z. et al, “Acceleration of Smith-Waterman Using
Recursive Variable Expansion”, Proceedings of 11th
Euromicro Conference on Digital System Design (DSD),
Parma, Italy, September 2008.

[15] Oliver T. et al, “Hyper Customized Processors for Bio-
Sequence Database Scanning on FPGAs”, FPGA’05,
Monterey, California, USA, February 20-22, 2005.

[16] Schroder A. et al, “Bio-Sequence Database Scanning on a
GPU”, Proceedings of the Fifth IEEE International
Workshop on High Performance Computational Biology
(HICOMB), Rhodes Island, Greece, 2006.

[17] Steve Margerm, Cray Inc, “Reconfigurable Computing in
Real-World Applications”, FPGA and Structured ASIC
Journal (www.fpgajournal.com), February 7, 2006.

[18] Yamaguchi Y. et al, “High Speed Homology Search Using
Run-Time Reconfiguration”, Proceedings of the 12th
International Conference on Field Programmable Logic and
Application (FPL), Montpellier (La Grande-Motte) –
France, 2002.

[19] Yang B. H. W., “A Parallel Implementation of Smith-
Waterman Sequence Comparison Algorithm”, Technical
Report, Biochemistry department, Stanford University,
USA, December 6, 2002.

[20] L. Hasan, Y.M. Khawaja, A. Bais, “A Systolic Array
Architecture for the Smith-Waterman Algorithm with High
Performance Cell Design”, Proceedings of IADIS European
Conference on Data Mining, Amsterdam, The Netherlands,
July 2008.

[21] L. Hasan, Z. Al-Ars, Z. Nawaz, K.L.M. Bertels, “Hardware
Implementation of the Smith-Waterman Algorithm Using
Recursive Variable Expansion”, Proceedings of 3rd
International Design and Test Workshop IDT08, Monastir,
Tunisia, December 2008.

http://www.fpgajournal.com/

