
Mapping KPN Models of Streaming Applications on A Network-on-Chip Platform

Ashkan Beyranvand Nejad1, Kees Goossens1,2, Johan Walters3, Bart Kienhuis3,4

1Computer Engineering, Delft Unniversity of Technology, Delft, the Netherlands
2Corporate Research Department, NXP Semiconductors, Eindhoven, the Netherlands

3Compaan Design BV, Amsterdam, the Netherlands
4LIACS, Leiden University, Leiden, the Netherlands

A.BeyranvandNejad@tudelft.nl, kees.goossens@nxp.com, jwalters@compaandesign.com, kienhuis@liacs.nl

Abstract

Designing complex parallel systems begins with behav-
ioral modeling of applications. The more desired models
should be at high abstract level of applications’ behavior.
One of this model is Kahn Process Network gives a parti-
tioned model of applications as concurrently communicat-
ing processes. At the implementation level of applications,
growing demands of running multiple applications on a
single chip, introduced Network on Chip as an appropriate
interconnection network between large number of IP cores
for different applications. Therefore, design way from high
abstract model of application to implementation level is be-
coming an issue. Here, in this paper we propose an approach
for mapping KPN model of a streaming application on an
architecture based on Network on Chip. We also provide an
implementation of the applications using this approach as
SystemC model of the architectures to be simulated.

1. Introduction

Traditionally, an application can be expressed as various
models of behaviors. The most imperative model typically
used by designers is a model of computation, most com-
monly C. On the other hand, running many tasks in parallel
on different IP cores concurrently due to recent advances in
systems on chip (SOC) design, pops up the needs of having
parallel models of computation for applications. One of the
most popular models of computations for specially streaming
based applications like image processing, audio, etc., is Kahn
Process Networks (KPN). The KPN considers a network of
concurrent processes communicate through unbounded First-
In-First-Out (FIFO) queue channels (pipes). Each process
known as a node of the network, is a sequential program
does blocking read on its inputs, executes its computational
task and posts results to its outputs [1], [2]. Figure 1 shows
a very simple application modeled as 3-node KPN.

Nowadays there is not only one application running on a
single chip. Consequently, modern SOCs have become very
complex in terms of large number of IP cores involve in
running different applications. This has made the commu-
nication between those IPs a significant issue on a single
chip. Network on chip (NoC) is a promising communication

Function SinkSource

node:

FIFO:

Pipe:

Figure 1. The KPN model of a simple streaming appli-
cation

platform to solve this issue by providing not only modularity
and scalability for designing new systems, but also it has
raised up the abstraction level of system’s designing up to
the application level, i.e it can guarantee requirements such
as delay and throughput at the demands of application level.

In this paper we present a method of mapping applications
modeled as Kahn Process Networks (KPN) on a NoC. In
order to achieve this, it is discussed that these four problems
should be solved: 1) Nodes’ functional implementation, 2)
correspondence of communication pipes, 3) generation of
appropriate NoC topology & configuration, and 4) corre-
sponding elements for communication FIFOs. Our goal of
implementation in this work is realizing SystemC model
of NoC-based system for any given application modeled as
KPN. For this purpose, an automatic design flow is proposed
which starts from KPN model of application, generates
SystemC model of correspondent NoC-based system and
simulates it. Here, we use the Compaan design tools to
derive KPN model of application from specified model in C
[3]. However, we leave any RTL implementations as future
works.

In [4], a framework for NoC-based multiprocessor SOC
is presented. Its underlying model of computation is also
KPN mapped on a NoC-based architecture. However, in
this work communication pipes are software implemented
as processor global FIFOs handled by primitives of an
embedded operating system. In our work we propose our
mapping approach based on using the already available
NoC’s resources (e.g. NI’s FIFOs) as communication pipes
in the KPN model of applications. Despite the realization of
KPN pipes as dedicated hardware in [5] and [6], the proposed
architecture is based on traditional bus interconnects which
is hardly scalable and appropriate for concurrent parallel

applications.However, our proposed approach here is based
on taking advantages of the NoC as scalable and concurrent
interconnection platform.

The rest of this paper is organized as follows. Section
2 explains the NoC platform as our target interconnection
architecture. In section 3, our approach of mapping KPN to
a NoC-based system with its different aspects are discussed,
continuing to Section 4 describes SystemC implementation
of approach. In Section 5 we propose a design flow for
our method, following the description of an experimental
example in Section 6. Finally, we conclude our paper in
Section 7.

2. Target NoC Platform

The target NoC platform used in this paper to map KPN
model of an application on, is the Æthereal NoC platform
[7]. Its basic building blocks are Routers (Switches) and
Network Interfaces (NIs) (Figure 2.a). The Routers and NIs
are connected together by bidirectional communication links,
forming a mesh-like topology. Different IP blocks (Cores)
are connected to the NoC via Network Interfaces. NI is
responsible to translate communication protocol of various
IPs to the interface protocol understandable by the network,
and vice versa. The buffered end-to-end flow control policy
used by the Æthereal platform has made the architecture of
the NI very important for us. The NIs have different number
of ports according to the number of logical communication
channels (request or response) should be connected to the
corresponding Router. Architecture of a NI with one port is
illustrated in Figure 2.b. There is a dedicated variable size
queue for each channel, where the sizes can be determined
at the NoC design time.

R RIP IP

R RIP IP

NI
NI

NINI

request

response

port

NI

(a) (b)

Figure 2. a) Mesh-like topology of the NoC, b) The
schematic architecture of a Network Interfaces

Data transformed by the NIs into the format of packets
should be routed by Routers. A Packet contains routing
path information and destination address. Regarding to ap-
plications running on the network, there are two kinds of
packet require different quality of services to be offered;
Best Effort (BE) and Guaranteed Throughput (GT). In order
to achieve application’s requirements, the GT packets have
higher priority than the BE ones to be routed by Routers.
Therefore, the GT packets are routed immediately and there
is no buffering of them inside the Routers; while there are
buffers (queues) for the BE packets that might need to wait
to be routed.

Later in section 3 it is shown how we use the available
queues in the NoC as a novel approach in our work.

3. Mapping Approach

In order to map a KPN model of an application to
the system consists of a NoC as interconnection network
between different IP cores, there are four main procedures
distinguished. These procedures are closely related to the
features of the KPN model. In the KPN model, there are
number of nodes running sequential computational tasks,
communication links between nodes form a communication
configuration, and First-In-First-Out (FIFO) queues for stor-
ing intermediate data. Considering the KPN model shown in
Figure 1 and NoC-based system illustrated in Figure 3, the
four processes can be enumerated as follows:

1) implementation of nodes’ computational functionality
2) Physical or logical correspondence of communication

pipes
3) Generation of appropriate NoC topology & configura-

tion
4) Corresponding elements for communication FIFOs

Depending on a task performed by each node, there can
be a dedicated hardware IP core or a processor element
correspondence to that node (process) runs the sequential
program. However, our goal of implementation in this work
is not realizing hardware; in Section 4 we will explain
our implementation’s method of every node’s function in
SystemC to deal with the aforementioned Step 1.

The automatic design flow of the Æthereal platform [8]
provides topology generation and appropriate configuration
of a NoC architecture by declaring our model’s IP cores
(nodes) and logical communication links between them in the
XML format. Thus, this has already solved above mentioned
procedures 2 & 3 as the NoC generation and the communi-
cation pipes. It is more explained in Section 5 where the
design flow is detailed.

KPN considers unbounded size for all the FIFO queues
in the model of an application. However, in reality it is not
possible to have such unlimited size FIFOs. On the other
hand, it is discussed in Section 2 that there are some queues
in the Routers and NIs of the Æthereal platform. These
FIFOs which are there to fulfill application requirements by
NoC, can be also used as communication FIFOs between
nodes in KPN model of the application. Since NIs’ queue
is there for both BE and GT traffic and Router queues are
for temporary storing of only BE data, the NI’s queue is
in interest of our mapping approach. The novelty of our
approach is using NoC’s NI dedicated FIFOs for commu-
nication channels as communication FIFOs in KPN model.
A node which is correspondent to an IP posts its produced
data to the target IP core over the NoC and it would be
stored in the target NI’s queue. IF the target NI’s queue is
full, end-to-end flow control policy stops sending data. In this
case the data is kept in the source NI’s queue till there would
be available space. The space becomes free by consumption

of data already available in target queue by target node (IP
core).

Moreover, sizing KPN queues should be done in such
a way that occurring deadlock in running application be
avoided. This can be perform by doing static analysis on
KPN model of application; or starting system implementation
with large enough size of FIFOs to find out the exact con-
sumed queues’ space after performing SystemC simulation
and back annotate them. Since the NoC design flow (Section
5) assigns the queue sizes to fulfill its own requirements, the
starting point should be some values at least equal to or more
than calculated ones by the flow.

Figure 3 shows a conceptual view of NoC-based system
corresponds to the KPN model illustrated in Figure 1. There
are three IP cores resemble three nodes of the KPN. Logical
communication channels are set-up over the network, where
there are dedicated source and target NIs for every link.

Source

Sink

Function

R R

R R
NOC

NINI

NI

NI

Figure 3. The NOC-based model of a simple streaming
application

4. SystemC Implementation

Generally computational function of each KPN node is
performed in two distinguished tasks: Communication and
Computation. The communication task is the same for all
nodes, except that the number of input and output ports for
each node might be different. Every node should wait for the
data to be available at all its input ports (blocking read) and
sends out the result from its output ports (unblocking write)
to the FIFOs. In other words, there is two interface phases
of reading and writing, while in between computation task
is performed. Every node has its own function implementing
a specific sequential program.

A SystemC module has been implemented as a generic
wrapper for every node to perform communication phases
to the NoC regardless of its computational function. This
wrapper is instantiated as IP cores interfacing with the NoC.
Therefore, there is a one-to-one mapping between KPN
nodes and SystemC wrappers (procedure 1 in Section 3).
The wrapper is parameterized for every node according to its
number of in/output ports. However, it should also executes
the specific function of every node. For this purpose, every
KPN node’s computational functionality is implemented as
a C++ function code to be called inside its own wrapper
module at run time. To make it feasible, the function should
be compiled as a Shared Object Library (.so files in Linux) at

the design time. During the time of running SystemC model
of the application, the wrapper executes its function by dy-
namically loading corresponding library, passing input data
to and receiving back the results from that. This procedure
is illustrated as a flow chart in Figure 4.

Initializing SystemC
module

Data available
at all inputs?

Sends out
the results

N

Y

Calls & Executes
Node's Function

Figure 4. The functional flow chart of the generic
wrapper

5. Design Flow

The Æthereal design flow is an automated tool flow gener-
ates appropriate NoC architecture for any specified applica-
tions. An application is identified in two design spaces. First,
its architecture, i.e the number and type of the IP cores it has,
and second, the communication between the IPs and their
requirements (e.g. bandwidth, latency and throughput) should
be declared. These are provided respectively as architecture
& communication XML format files.

KPN Model of App.

System Architecture &
Communication (XML)

NOC Topology &
Configuration

SystemC Model
of Design

SystemC
Simulation

Æ
th

e
re

a
l

D
e
s
ig

n
 F

lo
w

Statistical Results
 (XML, HTML)

Functional Code of
KPN Nodes (ANSII C)

Compile

Shared Libs
(.so)

Constraints

SystemC
Models

Application
Output(s)

Figure 5. Mapping Design Flow

Our contributions in this section is to extend and modify
the Æthereal design flow to:

1) Provides declaration of application KPN model in
above mentioned XML files

2) Adds our generic wrapper module to its SystemC
module library

3) Generate Shared Object Libraries automatically from
functional codes of KPN nodes

Figure 5 shows complete overview of the Æthereal modified
design flow. It can also simulate the SystemC model of the
design and gives us some statistical results of the simulated
architecture, e.g. maximum queue’s occupancy for each
channel, data delivery delay over channels.

6. Experimental Example

As an application example we have chosen the Sobel algo-
rithm for image’s edge detection, modeled in C. KPN model
of this application is derived by using Compaan Design tools.
We run our design flow for this example to generate the
NoC-based system architecture of this application. Generated
network consists of 5 nodes’ wrapper modules, 4 Routers
and 16 NIs. Having simulated the SystemC model of the
application for input data image size of 255*255 pixels, the
time taking to process this image is equal to 6m seconds at
500 MHz clock cycle. The real time of simulation took about
3.5 seconds on a PC.

7. Conclusion

The work presented here is a straightforward approach
from application modeled as Kahn Process Network to be
mapped on a NoC-based system architecture. The NoC
platform used in this project is the Æthereal NoC which our
method taking advantages of its already available resources
in NIs. Our goal of implementation to realize the SystemC
model of the application is fulfilled by introducing an auto-
matic design flow. However, further realization of the system
based on this method in RTL and hardware implementation
is left as our future work.

Acknowledgment

We would like to acknowledge that this work is funded
as part of the TSAR European project coded as 2A718 by
MEDEA+.

References

[1] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information Processing ’74: Proceedings
of the IFIP Congress, J. L. Rosenfeld, Ed. New York, NY:
North-Holland, 1974, pp. 471–475.

[2] E. A. Lee and T. M. Parks, “Dataflow process networks,”
Proceedings of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[3] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan:
deriving process networks from matlab for embedded signal
processing architectures,” in CODES ’00: Proceedings of
the eighth international workshop on Hardware/software
codesign, 2000, pp. 13–17.

[4] G. Sassatelli, N. Saint-Jean, C. Woszezenki, I. Grehs, and
F. Moraes, “Architectural issues in homogeneous noc-based
mpsoc,” in Rapid System Prototyping, 2007. RSP 2007. 18th
IEEE/IFIP International Workshop on, May 2007, pp. 139–
142.

[5] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and
E. Deprettere, “System design using kahn process networks:
The compaan/laura approach,” in DATE ’04: Proceedings of
the conference on Design, automation and test in Europe.
Washington, DC, USA: IEEE Computer Society, 2004, p.
10340.

[6] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. F. Deprettere,
“Laura: Leiden architecture research and exploration tool,”
in FPL, 2003, pp. 911–920.

[7] K. Goossens, J. Dielissen, and A. Rădulescu, “The Æthereal
network on chip: Concepts, architectures, and implementa-
tions,” IEEE Design and Test of Computers, vol. 22, no. 5,
pp. 21–31, Sept-Oct 2005.

[8] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana,
A. Rădulescu, and E. Rijpkema, “A Design Flow for
Application-Specific Networks on Chip with Guaranteed
Performance to Accelerate SOC Design and Verification,”
in Proc. of the Design, Automation and Test in Europe
Conference and Exhibition (DATE), Mar. 2005, pp. 1182–
1187.

