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Abstract

Due to the rapid decrease of technology feature size speed
related faults, such as Address Decoder Delay Faults
(ADDFs), are becoming very important. In addition, in-
creased leakage currents demand for improved tests for Bit
Line Imbalance Faults (BLIFs)(caused by memory cell pass
transistor leakage). This paper contributes to new and im-
proved algorithms for detecting these faults. First it pro-
vides an improved version of existing GalPat algorithm and
introduces two new algorithms to detect ADDFs; the paper
also shines a new light on the use of the different stress com-
binations (counting methods, data-backgrounds) and their
importance for the detection of ADDFs. Second, it provides
an improved algorithm for detecting BLIFs; it increases the
defect coverage by being able to detect lower leakage cur-
rents.

Keywords: Memory testing, Address Decoder Delay
Faults, Address methods, Data backgrounds, Bit Line Im-
balance Faults.

1 Introduction

The discipline of memory testing has been evolving and
maturing for a long time. However, due to the rapid decrease
of the technology feature size, faults due to increased leak-
age currents, such as Bit Line Imbalance Faults (BLIFs), and
speed related faults, such as Address Decoder Delay Faults
(ADDFs), are becoming important [1]-[4]. In addition, the
understanding of the used constructs for composing mem-
ory tests, such as the capabilities of the Counting Methods
(CMs) [5] (i.e., linear, address complement, etc), and the use
of Data Backgrounds (DBs), has made progress.

Traditionally BILFs are tested by applying walking 1 us-
ing fast-row addressing direction [2, 6]. In addition, most
authors have solved the problem of detecting ADDFs by us-
ing a test calledMoving Inversion ‘MOVI’ [4, 7, 8]. [9] even
uses the time consuming GalPat test [5].

This paper contributes to the field of memory testing by in-
troducing new algorithms and improving upon existing al-
gorithms for detecting ADDFs and BLIFs.

For detecting ADDFs, the paper shows that the tradi-
tional expensive GalPat [10] algorithm detects such faults.
Thereafter, an improved version of GalPat, GalPat-, is intro-
duced; it reduces the test time by 25%, while maintaining
the same fault coverage. In addition, two new efficient algo-
rithms for detecting ADDFs are introduced: the Scan+ and
the Worst Case Gate Delay (WCGD) algorithm.

For detecting BLIFs, a brief discussion of existing test al-
gorithm is given, followed by an improved version of BLIF,
called BLIF+. It puts the memory cell in a worst-case stress
condition, hence improving the defect coverage; i.e., it de-
tects lower leakage currents.

The paper is organized as follows. Section 2 introduces the
notation used for describing the algorithms. Section 3 de-
scribes the ADDFs; Section 4 discusses testing for ADDFs,
and introduces two new algorithms. Section 5 addresses
testing of BLIFs and proposes an improved version of the
traditional BLIF algorithm. Section 6 ends with conclu-
sions.

2 Algorithm and stress notation

The algorithms in this paper consist of linear and non-
linear algorithms, described with an extended notation for
march algorithms. March algorithms are the most com-
mon algorithms used for testing memories. An exam-
ple of a march algorithm is MATS+ [11], defined as:
{�(w0);⇑(r0, w1);⇓(r1, w0)}; see Table 1. The special
symbols �, ⇑, and ⇓ are the Address Orders (AOs); they
determine the way one proceeds from one address to the
next address. ⇑ denotes an ascending AO (e.g., 0,1,2,3,...),
⇓ denotes a descending AO, while � denotes that the AO
can be chosen freely. MATS+ consists of three March El-
ements (MEs), which are separated by the ’;’ symbol. The
ME ’⇑ (r0, w1)’ specifies the ⇑AO, while to each address a
read operation with expected value ’0’ will be applied, after
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Table 1. Address Complement CM
Step Addr. AC⇑ AC ⇓

0 000 1,2,3
1 111 22,23,24
2 001 4,5,6
3 110 19,20,21
4 010 7,8,9
5 101 16,17,18
6 011 10,11,12
7 100 13,14,15

which a ’1’ will be written.

An algorithm stress specifies the way the algorithm is per-
formed, and therefore it influences the sequence and/or the
type of the memory operations. These stresses have shown
to be important for the fault coverage of the algorithm
[12],[13]. The following algorithm stresses are of interest
for this paper:

1. The Address Direction (AD). It is the extension of the
one dimensional AO to the two dimensional space of
the memory cell array. A real memory consists of a
number of rows and columns (and thus also of a num-
ber of diagonals). The AD specifies the dimension
along which the address sequence has to be applied
and consists of three types: Fast-row, Fast-column and
Fast-diagonal. Fast-row (Fast-column, Fast-diagonal)
increments or decrements the row address (column ad-
dress, diagonal address) most frequently. To indicate
the Fast-row, Fast-column and Fast-diagnoal AD, the
subscripts r, c and d are used with the AO respectively;
e.g., r⇑ indicates ⇑ AO with Fast-row AD.

2. The Counting Method (CM). It determines the address
sequence. Many CMs exist; e.g., there are 6 ways of
address counting for a 3-address memory: 012, 021,
102, 120, 201 and 210. It has been shown that the
CM is important for detecting Address Decoder De-
lay Faults (ADDFs) [4, 14]. The most common CM is
the Linear CM, denoted by the superscript ’L’ of the
AO (e.g., L⇑), where L specifies the address sequence
0,1,2,3, etc.). Because it is the default CM, the super-
script ’L’ is often deleted.
Another CM is the Address Complement (AC CM); it
generates all address transitions x→ x by using ⇑ AO
(denoted as AC⇑) and all address transitions x → x

using ⇓ AO (denoted as AC⇓). For example for a
three-bit address (i.e., N=3), the AC CM specifies the
following address sequences, see Table 1: AC⇑= 000,
111, 001, 110, 010, 101, 011,100 and AC⇓=100, 011,
101, 010, 110, 001, 111, 000 [4, 14]; each bold address
is the 1’s complement of the preceding address. Note
that the ’AC⇓ starts with address 100 because it has to
be the exact reverse of the ’AC⇑’.
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(a) Typical row decoder (b) ActD and DeactD

Figure 1. Typical row decoder and ADDFs

3. The Data Background (DB). It is the data pattern which
is actually in the cells of the memory cell array. The
four DBs commonly used in industry are:

Solid (sDB): all 0s (i.e., 0000.../0000... ) or all 1s.
Checkerboard (bDB): 0101.../1010.../0101.../1010...
Column Stripes (cDB): 0101.../0101.../0101.../0101...
Row Stripes (rDB): 0000.../1111.../0000.../1111...
A ’w0’ means that the selected DB is applied; a ’w1’
means that the inverse of that DB is applied.

Note: the paper assumes that the logical width of the
memory is 1 bit; [15] describes how a an algorithm for bit-
oriented- can be modified for word-oriented memories.

3 Address decoder delay faults

Memories can exhibit static and dynamic faults. High
speed memories, typically operating at speeds of 1 GHz or
more, exhibit more dynamic faults, which are speed related.
Especially Address Decoder Delay Faults (ADDFs) [4, 14]
are increasing in importance, because address decoders typ-
ically consist of pre-decoders, connected to local word line
decoders and local column decoders via long wires with
many via’s. Klaus [4] claims that the defect-per-million
level decreases by 670 due to tests for ADDFs. Because of
production tolerances, the wiring is susceptible to resistance
and capacitance variations, while the increasing number of
vias experiences extra resistive defects, causing RC delays.
In a GHz memory, for example, an extra delay of 0.1 ns is
already 10% of the clock frequency; hence, such memories
are very sensitive to marginal delay defects [1]-[4], [16],
which can be modeled as ADDF.

Figure 1(a) shows an example row decoder with 8 Word
Lines (WLs), selected under control of the three address
lines a2,a1,a0. In case of a ’defect free’ memory, the acti-
vation and deactivation of any word line will have no delay;
see the timing of the word line WLg in Figure 1(b). How-
ever, in the presence of a defect Rdef in the path of an input
(e.g., a1), the activation and deactivation of the word line
(e.g., WL7) will be delayed as the timing of the word line
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Table 2. Algorithms considered in this paper
# Name Test length Description
1 MATS+ 5n {�(w0);⇑(r0, w1);⇓(r1, w0)}
2 GalPat 4n2 + 6n {� (w0); ⇑v (w1v , ⇑−v (r0, r1v), w0v); � (w1); ⇑v (w0v , ⇑−v (r1, r0v), w1v)}
3 GalRow 4nR + 6n {� (w0); ⇑v (w1v , ⇑R−v (r0, r1v), w0v); � (w1); ⇑v (w0v , ⇑R−v (r1, r0v), w1v)}
4 GalCol 4nC + 6n {� (w0); ⇑v (w1v , ⇑C−v (r0, r1v), w0v); � (w1); ⇑v (w0v , ⇑C−v (r1, r0v), w1v)}
5 Gal5R 22n {� (w0); ⇑v (w1v , �(r0, r1v), w0v); � (w1); ⇑v (w0v , �(r1, r0v), w1v)}
6 Gal9R 38n {� (w0); ⇑v (w1v , (r0, r1v), w0v); � (w1); ⇑v (w0v , (r1, r0v), w1v)}

7 Scan 4n {⇓(w0); ⇑(r0); ⇑(w1); ⇓(r1)}
8 BLIF 8n {� (w0); r⇑(w1, r1, w0); ⇑ (w1); r⇑(w0, r0, w1)}

New proposed algorithms
9 Scan+ 6n {⇓(w0); ⇑(r0); ⇓(r0); ⇑(w1); ⇓(r1); ⇑(r1)}

10 WCGD 6n(1 + N) {⇑ (w0); ⇑v(w1v , ⇑N−1

i=0
(r0

v⊕2i ,r1v , r0
v⊕2i , w0v)); ⇑(w1); ⇑v(w0v , ⇑N−1

i=0
(r1

v⊕2i , r0v , r1
v⊕2i , w1v))}

Improved algorithms
11 BLIF+ 10n {⇑ (w0); r⇑(w1, w0nxt, r1, w0); ⇑ (w1); r⇑(w0, w1nxt, r0, w1)}

12 GalPat- 3n2 + 6n {⇑ (w0);⇑n−1

v=0
(w1v ,⇑n−1

a=v+1
(r0a, r1v , r0a), w0v) ⇑ (w1);⇑n−1

v=0
(w0v ,⇑n−1

a=v+1
(r1a, r0v , r1a), w1v)}

13 GalRow- 3nR + 6n {⇑ (w0);⇑R−1

v=0
(w1v ,⇑R−1

a=v+1
(r0a, r1v , r0a), w0v) ⇑ (w1);⇑R−1

v=0
(w0v ,⇑R−1

a=v+1
(r1a, r0v , r1a), w1v)}

14 GalCol- 3nC + 6n {⇑ (w0);⇑C−1

v=0
(w1v ,⇑C−1

a=v+1
(r0a, r1v , r0a), w0v) ⇑ (w1);⇑C−1

v=0
(w0v ,⇑C−1

a=v+1
(r1a, r0v , r1a), w1v)}

Note:
�: apply operations to four neighbors of the v-cell: north, west, south and east N = R + C = the total number of address bits

: apply operations to eight neighbors of the v-cell n= the total number of cells
⇑−v : apply operations to all cells, except the v-cell C = the number of Column address bits
⇑R−v : apply operations to all cells of same Row as the v-cell, except the v-cell R = the number of Row address bits
⇑C−v : apply operations to all cells of same Column as the v-cell, except the v-cell r ⇑: denotes Fast-row addressing direction
r0

v⊕2i : r0 from cell at address v ⊕ 2i w0nxt= w0 to next cell in same column

WLf of Figure 1(b) shows. This results in the two fault
models for address decoder delay faults: Activation Delay
(ActD) and Deactivation Delay (DeactD).

In the presence of Rdef in the input line a1, the Ad-
dress Transition (AT) of any word line to WL7 may incur
an ActD because of the extra RC time constant of input a1

to the top NAND gate of Figure 1(a). Similarly, the same
RC time constant may cause a DeacD when WL7 is dese-
lected. Given Rdef , the ActD will only occur upon an AT
x0y→111 (x, y ∈ {0, 1}); i.e., at least input a1 makes a
0→ 1 transition; the other inputs may, or may not, make
a transition, depending on the values of x and y. Simi-
larly, a DeactD will occur upon the AT 111→ 101; i.e., if
only input a1 makes a transition. From the above it can be
seen that, given the 3-input top NAND gate of Figure 1(a), 4
ATs may cause an ActD: 000→111, 001→111, 100→111,
and 101→111; while only a single AT may cause a DeactD
which 111→101.

At this point it may be appropriate to introduce the con-
cept of Hamming distance (H) between two addresses: H

is defined as the number of bit positions in which two ad-
dresses differ; i.e., the detection of DeactD faults requires
address pairs with H=1, while the detection of ActD faults
requires address pairs with H≥1. Note that an algorithm
which generates all address pairs with H=1 detects all ActD
and all DeactD faults.

4 Testing of ADDFs

In this section it will be shown that the traditional Gal-
Pat algorithm detects ADDFs. Next, the GalPat- algorithm
is introduced; it has the same fault coverage as the GalPat
algorithm with a 25% reduction in test time. Thereafter two
efficient new algorithms to detect ADDFs are introduced.

4.1 Traditional GalPat

Section 2 has shown that the detection of ADDFs re-
quires special Address Transitions (ATs). In addition, al-
gorithms for detecting ActD and DeactD faults have to as-
sume that the defect Rdef can be located on any gate of the
address decoder, and on any input of a gate. This means
that they have to generate all ATs covering each possible
position of Rdef .

The most well-known algorithm which generates all ad-
dress transitions between any pair of addresses is the GalPat
algorithm; see Alg#2 in Table 2. This algorithm is non-
linear and has a test time complexity of O(n2) (n is the size
of the memory). It has the property that for a given victim
cell (v-cell), which has e.g., the value ’1’, ATs are made
from all other memory cells; these other cells are denoted
as the aggressor cells (a-cells); see Figure 2(a). GalPat de-
tects all ADDFs, because each cell will become v-cell and
ATs are made between all cells. The algorithm applies a
Read-after-Read (RaR) sequence, which means that a ’rx’
operation is applied to the a-cell, followed by a ’rx’ op-
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Figure 2. Galpat and Galpat- diagrams

eration to the v-cell [2]. In the march notation for GalPat
’⇑v(w1v , ⇑−v(r0, r1v), w0v)’ denotes a nested ME. The
inner ME ⇑−v(r0, r1v) is applied for each v-cell; the AO
’⇑−v’ means that all addresses are visited, except the v-cell,
which has to be skipped; hence the subscript ’-v’.

The test length of GalPat is too long for larger and/or
slower memories. Subsets of this algorithm are the GalRow
and the GalCol algorithms; see Alg#3 and Alg#4 in Table
2. They have the property that for a given v-cell, the a-cells
are limited to the row or column of the v-cell. Hence only
testing for ADDFs in the row or in the column decoder, but
not in both decoders simultaneously. The time complexity
of both GalRow and GalCol is of order O(n

3

2 ).
Even more simplified versions of GalPat are Gal5r and

Gal9r [12]. They perform the same operations as GalPat, but
only involving 5, respectively, 9 neighboring cells; thus re-
ducing the time complexity from O(n2) to O(n); see Alg#5
and Alg#6 in Table 2. Even though Gal5r and Gal9r are
highly simplified versions of GalPat, their fault coverage are
impressive as compared with regular march algorithms [12].

4.2 Improved GalPat

GalPat algorithm has the property that for a given v-cell,
ATs are made from any a-cell to the current v-cell, while
all cells become v-cell in turn; see Figure 2(a). Section 3
has shown that in order to detect all ADDFs, an AT has to
be made between all pairs of cells, while applying a Read-
after-Read sequence to the pair of cells. E.g., consider the
pair of cells p and q: ATs have to be made from p→q, and
from q→p. GalPat does this by making the cells p and q

v-cell in turn, and applying two read operations for sen-
sitizing and detecting possible ADDFs occurring during a
p→q AT, and later two read operations for detecting possi-
ble ADDFs occurring during a q→p AT. The result is that
two sequences, each with two read operations, are applied.

However, for a given cell q, the following two ATs can be
made: from p→q, and back from q→p. In this case the fol-
lowing single sequence with three read operations can de-
tect the possible ADDFs: rxp, rxq, rxp. The net result is
that the number of read operations is reduced from 4 to 3,
which is a 25% reduction; see Figure 2(b). The resulting
new GalPat- algorithm is given in Table 2. Similar improve-
ments can be made for GalRow and GalCol; see GalRow-
(Alg#13) and GalCol- (Alg#14) in Table 2.

Table 3. Address transitions for ActD
WL Def # Defective line Address Transitions
WL0 1 a2 1xy → 000

2 a1 x1y → 000
3 a0 xy1 → 000

WL1 4 a2 1xy → 001
5 a1 x1y → 001
6 a0 xy0 → 001
.. ... ...

WL7 22 a2 0xy → 111
23 a1 x0y → 111
24 a0 xy0 → 111

4.3 Scan+ algorithm

In addition to the Linear Counting Method (CM), the Ad-
dress Complement (AC) CM [5] has a wide industrial use.
The AC counting method has the property that, upon an ad-
dress transition, N or N−1 address bits change; note: the
total of address bits is N ; see Table 1.

When using the AC CM many gates in the address de-
coder will switch, causing a maximum of noise and power
dissipation (which causes voltage drops, noise spikes, and
increases the die temperature). Hence the AC CM is a very
effective stress. This paper shows that the AC has another
property: it is able to generate all address pairs required for
detecting all ActD faults, using only a linear algorithm.

Section 3 has shown that the detection of an ActD fault,
for the case of Rdef at input a1 of a 3-input NAND gate,
requires the AT x0y→111; (with x, y ∈ {0, 1}). Table 3
shows the ATs required for detecting ActD faults caused by
Rdef in the inputs of the NAND gates for WL0, WL1 and
WL7. The entries for WL7 show that the detection of the
ActD fault due to Rdef in input a2 (Def#22) requires the
AT 0xy→111, Rdef in input a1 (Def#23) requires the AT
x0y→111, while Rdef in input a0 (Def#24) requires the AT
xy0→111. Hence, a defect in any of the three gate inputs
can be detected with the single AT 000→111. Similarly,
Rdef in any of the inputs of the NAND gate for e.g., WL1
will be detectable with the AT 110→001 , etc.

The column ’Addr’ of Table 1 shows the AC counting
method; the column AC⇑ lists the ActD faults detected by
the corresponding AT. For example, the AT 000→ 111 de-
tects the defects Def#22, Def#23 and Def#24 of Table 3.
The AT 111→000, see column AC⇓, detects the defects
Def#1, Def#2 and Def#3. Hence, by performing the AC
counting method for the ⇑ and the ⇓ AO, all ActD faults are
detected.

Section 3 has already shown that a RaR sequence is re-
quired for the detection of the ADDFs. The Scan algorithm
[11] is the simplest algorithm which allows for a RaR se-
quence; see Alg#7 in Table 2. Note that in order to support
the RaR sequence, rDB or bDB should be used with Fast-
row Addressing Direction (AD); while cDB or bDB should
be used with Fast-column AD. In addition, rx-after-rx se-
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Rdef

Figure 3. 3NAND gate

quences have to performed for x∈ {0, 1} and for the ⇑ and
⇓ AOs, resulting in the modified version of Scan, denoted
Scan+ (see Alg#9 in Table 2):
{⇓(w0); AC⇑(r0); AC⇓ (r0); ⇑(w1); AC⇓ (r1); AC⇑ (r1)}

Note that the AO of the March Element (ME) ⇓ (w0) is
⇓’; while the AO ⇑ has been chosen for the ME ’ ⇑ (w1)’ in
order to have write sequences with address transitions from
a higher to a lower, and from a lower to a higher address.
In addition, the AOs of the read operations have to be the
inverse of that of the preceding write operations in order to
prevent fault masking.

4.4 WCGD test

This section extends the ADDF model to include the
Worst Case Gate Delay (WCGD) fault model. It comes from
the observation that the switching speed of a gate depends
on the number of inputs which change, together with the
direction of their change. The worst case situation occurs
when only a single input changes. E.g., for the defect Rdef

in Figure 3, only input a1 needs to make 0→1 transition; the
surrounding inputs (denoted by dotted input levels) do not
make a transition. In this case, the capacitive load on the
switching input is worst case; hence, the gate will exhibit
its slowest behavior. When this gate is part of the address
decoder like the one of Figure 1(a), then the ATs of Table 4
have to be generated in order to be able to detect the WCGD
faults for each gate of the address decoder. E.g., if the Rdef

is in the input line a1 of the NAND gate of WL7, then
the transition 101 → 111 → 101 is required for WCGD.
Note that the ATs consist of address pairs with hamming
distance H=1. Therefore they sensitize both ActD and De-
actD faults; hence the WCGD algorithm detects ActD and
DeactD faults caused by the WCGD fault. E.g., for a defect
in line a2 of the NAND gate of WL7, the AT 011 → 111
will sensitize the ActD while the AT 111 → 011 will sensi-
tize the DeactD (see Table 4).

The WCGD algorithm (see Alg#10 in Table 2) is as fol-
lows:
{⇑ (w0); ⇑v(w1v , ⇑N−1

i=0
(r0

v⊕2i ,r1v , r0
v⊕2i , w0v));

⇑(w1); ⇑v(w0v , ⇑N−1

i=0
(r1

v⊕2i , r0v , r1
v⊕2i , w1v)) }

The test length of the WCGD algorithm is: 6n(1 + N).
The notation assumes a decoder with N address bits and n

addresses, as follows:

• ⇑N−1

i=0
(r0v⊕2i ,r1v , r0v⊕2i , w0v) contains a nested ME.

• ⇑N−1

i=0
: steps the a-cell of the nested ME; the address of

the a-cell is the address of v-cell⊕2i.

Table 4. Address transitions for WCGD
WL Defective line address transition
WL0 a2 100 → 000 → 100

a1 010 → 000 → 010
a0 001 → 000 → 001

WL1 a2 101 → 001 → 101
a1 011 → 001 → 011
a0 000 → 001 → 000
... ...

WL7 a2 011 → 111 → 011
a1 101 → 111 →101
a0 110 → 111 → 110

5 Testing for pass transistor leakage

This section derives the new Bit Line Imbalance Fault
(BLIF) algorithm, which improves the fault coverage of the
existing BLIF algorithm [5, 6]. Before the improved version
will be introduced, the BLIF will be described together with
it’s traditional algorithm.

5.1 Bit Line Imbalance Fault (BLIF)

The BLIF was first introduced by Mazumder [6]. The
root cause of the fault is the leakage current of the pass tran-
sistors of a cell. Figure 4 shows a v-cell connected to the
True Bit line (TB) and the Complement Bit line (CB) via two
pass transistors. During a read operation the v-cell is se-
lected, by enabling the word line WL1, such that it’s state
is transferred to TB and CB. Note that all other cells in the
same column, referred to as the a-cells, are not selected; i.e.,
their word lines are not enabled.

During a read operation, assuming that the v-cell con-
tains a ’1’, the TB remains at its pre-charge level, while the
CB is discharged. However, because of the leaking pass
transistors, the a-cells in the same column also affect the
charge level on TB and CB. Assuming that columns consist
of C cells, and all a-cells have a ’0’ value, then TB will be
discharged and CB will be charged by C-1 pass transistor
leakage currents. The result may be that the read operation
applied to the v-cell may fail.

v−cell 01

0 a−cell 

a−cell 10

1

CBTB
WL1

WL2

WLn

Figure 4. v-cell in a column with a-cells
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5.2 Traditional BLIF Test

The following BLIF algorithm has traditionally been
used for detecting this fault [5, 6]; see Alg#8 in Table 2:
{⇑ (w0); r⇑ (w1, r1, w0); ⇑ (w1); r⇑(w0, r0, w1)}. After
initializing the memory to all 0s, a Walking 1 is applied by
the ’w1’ operation of the next ME using Fast-row address-
ing direction. When the ’1’ has been written, the other C−1
cells in the column have a ’0’ value, such that the result of
the following ’r1’ operation is maximally impacted by the
leakage currents of the C−1 a-cells in the column of the v-
cell. The ’r1’ operation therefore should detect the BLIF.
Because of the symmetry of the fault model, the algorithm
has to apply a Walking 1 and a Walking 0 to each column.

5.3 Improved BLIF Test

The above traditional BLIF algorithm will detect BLIFs,
assuming that the precharge operation, applied to the v-cell,
after the ’w1’ and before the ’r1’ operation, completely
precharges CB. However, during this precharge operation,
the voltage on CB effectively behaves as the voltage of a
capacitor being charged via a resistor, such that completely
charging CB will take a long time. Today’s fast memories
only can meet their speed requirements by having a reduced
precharge time. This means that some remnant charge of the
’w1’ operation is still left; this will oppose the detection of
the BLIF by the ’r1’ operation of the ME r⇑(w1, r1, w0).
This can be prevented by performing a ’w0’ operation to a
cell in the same column as the v-cell, prior to applying the
’r1’ operation to the v-cell. This change results in the im-
proved BLIF+ algorithm (see Alg#11 in Table 2):
{⇑ (w0);
r⇑(w1, w0nxt, r1, w0); ⇑ (w1); r⇑(w0, w1nxt, r0, w1)}.

The operation w1nxt means that a w0 operation is ap-
plied to the next cell in the column of the v-cell, such that
the bit lines are pre-biased in the least favorable state for
the following ’r1’ operation to pass. That way an imperfect
precharge operation increases the likelihood for the ’r1’ op-
eration to fail. Even though the BLIF+ algorithm requires
two addresses simultaneously (i.e., the address of the a-cell
and the address of the v-cell) the implementation of the ad-
dress generator for the nxt address can be very simple.

6 Conclusions

In this paper new developments and insight in memory
testing are covered. Two aspects are addressed.
Testing Address Decoder Delay Faults (ADDFs). The

paper elaborates on the ADDFs which is of increasing im-
portance. The ADDFs are shown to consist of two com-
ponents: the Activation Delay (ActD) and the Deactivation

Delay (DeactD) fault models; their detection requires spe-
cial address transitions. In addition, it has been shown that
the traditional GalPat algorithm detects ADDFs. Next, the
GalPat- algorithm, which a reduced version of GalPat algo-
rithm, is introduced. It has the same ADDFs fault coverage,
but it’s test length is 25% less than that of GalPat. There-
after, two new algorithms are introduced: the Scan+ and
the WCGD algorithms. Scan+ uses the address complement
counting method and is the shortest algorithm (with a test
lenght of 6n) for detecting ActD faults. WCGD is proposed
for detecting the WCGD fault, which occurs when a gate
switches due to a change of a single input. The WCGD al-
gorithm is non-linear and has a test length of 6n ∗ (1 + N);
i.e., it depends on the number of address bits N .
Testing Bit Line Imbalance Faults (BLIFs) which are

caused by the leakage current of the pass transistors. In or-
der to improve the fault/defect coverage of the traditional
BLIF algorithm, a new version is introduced. It puts the
prechare of the bit line during the read operation in the
worst-case stress combination, hence enabling the detection
of lower leakage currents. The new version of the algo-
rithms has a test length of 10n while the traditional one has
a test length of 8n.
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