
Fault Diagnosis Using Test Primitives in Random Access Memories

Zaid Al-Ars Said Hamdioui

Computer Engineering Lab., Faculty of EE, Mathematics and CS

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: z.al-ars@tudelft.nl

Abstract

As diagnostic testing for memory devices increasingly

gains in importance, companies are looking for flexible,

cost effective methods to perform diagnostics on their fail-

ing devices. This paper proposes the new concept of

test primitives as a method to diagnose memory faults.

Test primitives provide an easy-to-use, extensible, low-cost

memory fault diagnosis method that is universally appli-

cable, since it uses simple platform-independent test se-

quences. The paper defines the concept of test primitives,

shows their importance and gives examples to the way they

are derived and used in a memory test environment.

Keywords: test primitives, fault primitives, memory test-

ing, fault diagnosis, test optimization

1 Introduction

Diagnostic testing is becoming an important issue for

memory devices. For manufacturers at many different lev-

els of the memory supply chain, be it for large commodity

memory producers, for memory IP design houses or for

companies using memory devices in their systems, it is not

enough to run memory tests designed only to detect mem-

ory faults, but it is also necessary to run tests for memory

fault localization and diagnosis. On the one hand, this is

driven by the need to curb the continued increase in test

cost of newer ICs, by diagnosing the faults actually tak-

ing place in the memory and limiting the used memory

tests set to detect these faults only. On the other hand,

the on-going fragmentation of the IC production process

forces memory designers, memory manufacturers and test-

service providers to use standardized, easy-to-implement

test methods that enables effective transfer of test informa-

tion between different companies [Vermeulen04].

Diagnostic testing for memory devices has been stud-

ied by many researchers in the past, and has seen more

active investigation in recent years. David[90] proposed a

fault diagnosis method based on running pseudo-random

test experiments and comparing pass/fail data with statisti-

cally generated fault probabilities. This method is not de-

terministic and is rather time consuming in terms of test

time. Yarmolik[96] presented a diagnostic memory test

that is able to distinguish between a number of specific

fault models by recording the read operation that resulted

in first memory fail. Niggemeyer[00] and then Li[01], on

the other hand, introduced the idea of fault diagnosis us-

ing output tracing, which involves keeping track of the

pass/fail information of every read operation in the diag-

nostic test, thereby generating a signature for each fault.

These tests are designed to diagnose a limited number of

memory faults.

More recently, the concept of fault primitives

[Al-Ars03] has been used as a basis for diagnosis ac-

tivities. Fault primitives describe the whole space of

memory faults, and have been shown by researchers

to correspond to memory faulty behavior observed in

practice [Huott99, Borri03]. Recent fault diagnosis

work proposes a specific march-like test in combina-

tion with a signature for every targeted fault primitive

[Harutunyan06, Al-Harbi07]. Clearly, these methods are

hardwired to a specific predefined diagnostic test and any

modifications to the set of targeted faults needs a new

diagnostic test along with a new set of fault signatures.

In this paper, we propose the concept of test primitives

(TP), which is a new more flexible approach to fault diag-

nosis, that is both extensible and implementation indepen-

dent. Extensible in the sense that new diagnosis capabil-

ities for new fault primitives can be added easily without

the need to modify existing tests or signatures. Implemen-

tation independence means that the tests do not require any

specific test implementation techniques, other than running

a test and identifying the pass/fail status of the test. Diag-

nostic tests proposed so far require keeping track of fail

signatures (i.e., pass/fail status of specific read operations

within the test), something that is not generally possible on

every memory test platform.

This paper is organized as follows. Section 2 defines the

concept of test primitives and discusses its advantages and

limitations. Section 3 outlines a procedure to be used to

create a diagnostic dictionary needed to perform TP-based

fault diagnosis. Section 4 presents the way to apply the

concept of TPs to diagnose single-cell static FPs. Section 5

ends with the conclusions.

2 Concept of test primitives

This section presents the concept of TPs, and discusses

their advantages and limitations. The section starts by

defining the space of faults to be diagnosed using the TPs in

this paper. Then the test notation used for TPs is presented.

Finally, the concept of TPs is introduced and discussed.

2.1 Fault primitives

In order to specify a certain memory fault, one has to rep-

resent it in the form of a fault primitive (FP), denoted as

<S/F/R>. S describes the operation sequence that sen-

sitizes the fault, F describes the logic level in the faulty

cell (F ∈ {0, 1}), and R describes the logic output level

of a read operation (R ∈ {0, 1, −}). R has a value of

0 or 1 when the fault is sensitized by a read operation,

while the “−” is used when a write operation sensitizes

the fault. For example, in the FP <0w1/0/−>, which is

the up-transition fault (TF1), S = 0w1 means that a w1 op-

eration is written to a cell initialized to 0. The fault effect

F = 0 indicates that after performing w1, the cell remains

in state 0. The output of the read operation (R = −) indi-

cates there is no expected output for the memory.

Functional fault models (FFMs) can be defined as a

non-empty set of FPs. This paper targets the class of

single-cell static FFMs, which is the most important class

of FFMs. Single-cell static FFMs consist of FPs sensitized

by performing at most one operation on a faulty cell.

Table 1 lists all single-cell static FFMs and their cor-

responding FPs. In total, there are 6 different types of

FFMs: state fault (SF), transition fault (TF), write de-

structive fault (WDF), read destructive fault (RDF), incor-

rect read fault (IRF), and deceptive read destructive fault

(DRDF) [Adams96].

Table 1. Single-cell static FFMs and their FPs.

Fault FP Name

1 SF <0/1/−>, <1/0/−> State fault

2 TF <0w1/0/−>, <1w0/1/−> Transition fault

3 WDF <0w0/1/−>, <1w1/0/−> Write destructive fault

4 RDF <0r0/1/1>, <1r1/0/0> Read destructive fault

5 IRF <0r0/0/1>, <1r1/1/0> Incorrect read fault

6 DRDF <0r0/1/0>, <1r1/0/1> Deceptive RDF

2.2 Test notation

Test primitives use the same notation as march tests,

which is defined as a finite sequence of march elements

[Suk81, vdGoor98]. A march element is a finite sequence

of memory operations applied in order on a specific mem-

ory cell before proceeding to the next cell. The way one

proceeds from one cell to the next is determined by the ad-

dress order which can be an increasing address order (e.g.,

increasing address from the cell 0 to the cell n-1), denoted

by the ⇑ symbol, or a decreasing address order, denoted

by the ⇓ symbol. The ⇑ and ⇓ address orders should be

the exact opposite of each other. When the address order

is irrelevant, the symbol m (i.e., ⇑ or Dn) will be used.

A memory operation can either be w0, w1, r0 or r1. A

complete march test is delimited by the ‘{...}’ bracket pair,

while a march element is delimited by the ‘(...)’ bracket

pair. The march elements in the test are separated by semi-

colons, while the operations within a march element are

separated by commas. As an example of a march test, the

MATS+ = {m(w0); ⇑(r0, w1); ⇓(r1, w0)} consist of the

march elements m(w0), ⇑(r0, w1), and ⇓(r1, w0). The

first march element initiates all the memory cells to 0, the

second march element reads 0 followed by writing 1 to

each cell, while the third march element works in the op-

posite way of the second element.

2.3 Test primitives

A test primitive (TP) is defined as a march test that satisfies

the following two criteria:

1. Uniqueness—the test is constructed to detect a spe-

cific FP (called the target FP) or a set of externally

identical FPs

2. Minimality—the test should contain the minimum

number of operations needed to diagnose the target

FP

It is important to note that a TP does not only detect the

target FP, but it may also detect other FPs that share (part

of) the sensitizing operation sequence of the target FP. For

example, the FP <0w1/0/> representing transition fault

1 has the following corresponding TP {m(w0); m(w1);
m (r1)}. This TP detects other FPs such as read destruc-

tive fault 1 <1r1/0/0>. However, if a TP does not result

in a fault in the memory under test, this means that the

target FP does not take place in the memory. This way,

by performing a collection of increasingly more complex

test primitives on the memory, it is possible to diagnose

the faulty behavior of the memory. This requires a dictio-

nary that maps pass/fail information of different TPs to a

specific set of FPs.

There are a number of advantages to test primitives.

• Extensibility: new FPs can be added to the diagnosis

process if desired without affecting the diagnosis of

already existing FPs. By the same token, a specific

set of TPs can be easily reduced to diagnose subsets of

the original set of diagnosable FPs, without affecting

the diagnosis of other FPs (some conditions apply).

• Platform independence: TPs are applied in the same

regular way any detecting memory test is applied to

the memory. There is not extra memory needed to

store test signatures, or the specific read operation

failing. This makes them implementable on any mem-

ory test platform irrespective of its capabilities. The

only thing needed is to store pass/fail information of

the whole set of test primitives to perform the diagno-

sis.

• Unknown fault identification: Some combinations of

failing TPs might not be described by any known

fault. In this case, TPs make it possible to empiri-

cally define a fault, and subsequently derive a test for

it. This is a very powerful characteristic of TPs that

can augment the limited theoretical understanding of

new faults.

• Customer returns analysis: A product that functions

correctly through production testing in the manufac-

turing company may still fail in the field at the cus-

tomer side. These field fails (referred to as customer

returns) are shipped back to the manufacturer who

needs to adjust the test process to prevent deliver-

ing components with same fails to the customer. The

manufacturer can use TPs to identify what faults are

taking place in the products, or even define them in

case unknown faults are taking place. Then the test

process can be modified to account for these faults.

• Test program optimization: Using TPs to diagnose

faults in a product provides information about the

probabilities of different faults taking place in the

product. This information can be used to optimize

the test program by performing trade-off analysis be-

tween fault coverage and test cost, depending on the

required outgoing product quality.

Fault diagnosis using external memory tests has inher-

ent diagnostic limitations. Since tests are applied exter-

nally to the memory, performing a read operation is the

only way to identify the content of a memory cell. There-

fore, if a read operation fails, the test cannot distinguish

between an incorrect value stored in the cell or an incor-

rect read operation.

In general, two FPs are called externally identical FPs if

they have the same detection characteristics for any mem-

ory test. In other words, there is no test that is able to

identify a difference between these faults. One class of ex-

ternally identical faults is represented by FPs that only dif-

fer in their internal behavior. For example, the two faults

RDF1 = <1r1/0/0> and IRF1 = <1r1/1/0> in Table 1

have the same behavior externally since both result in a

faulty 0 at the output while trying to perform a r1 oper-

ation. However, internally they have a different behavior

since RDF1 also results in changing the value of the cell,

while IRF1 leaves the cell content intact. More precisely, if

FP1 = <S1/F1/R1> and FP2 = <S2/F2/R2>, then FP1

and FP2 are called externally identical in case S1 = S2 and

R1 = R2. These two different faults result in the same value

on the output of the memory using the same sensitizing op-

eration sequence. Therefore, these two faults are externally

identical (i.e., no external test exists that can distinguish

between the two). TPs are not required to distinguish be-

tween externally identical faults.

3 Generation of TP dictionary

In order to use TPs to diagnose memory faults, we need to

generate a TP dictionary that maps the pass/fail character-

istics of a set of TPs to their corresponding faults. The TP

diagnostic dictionary is produced in four steps.

1. Generate a TP for each targeted FP.

2. Create a table listing the detection capabilities of each

TP on the set of targeted FPs.

3. Perform faults classification.

4. Optimize the table to create the TP dictionary.

In the following these steps are discussed in more detail.

3.1 TP generation

First of all, a set of targeted FPs is chosen to be diagnosed.

For each targeted FP, the detection condition is derived in

order to generate a corresponding march test that detects it.

This march test will represent a TP for the targeted FP if

it satisfies the uniqueness and minimality criteria for TPs.

To meet the uniqueness requirement, it is desired that the

march elements of a TP contain the minimum number of

operations to sensitize and detect the targeted FP. This is in

order to prevent the TP from sensitizing other non-targeted

FPs.

To meet the minimality requirement for a single-cell FP,

we just need to convert each sensitizing operation in the

detection condition into its own march element, and end

the TP with a rx. This will result in the shortest TP in most

cases. For example, to generate a TP for <0w1/0/−>, we

start by an initializing w0, followed by a sensitizing w1

and end with a detecting r1. This results in the following

TP {m(w0); m(w1); m(r1)}.

When producing TPs for FPs that are not externally

identical, we might generate a TP that is the same as an

existing one. In that case, it is advised to keep this TP

rather than generating a new one, since diagnosis between

two FPs does not only rely on their own TPs but also de-

pends on all the signatures from all TPs. As a result, it is

possible for two FPs with the same TP to have different

signatures in the dictionary through other TPs. However, if

after constructing the diagnosis dictionary it turns out that

two externally distinguishable FPs with the same TP have

exactly the same signatures for all TPs, we can add a new

TP to identify the required FP.

Example 1: Consider the following 4 FPs we would like

to generate a set of TPs for: WDF0 = <0w0/1/−>, SF0 =

<0/1/−>, IRF0 = <0r0/0/1> and TF0 = <1w0/1/−>.

According to the procedure described above, we now gen-

erate the corresponding TPs for each of these FP: TWDF0

= {m(w0); m(w0); m (r0)}, TSF0 = {m(w0); m(r0)},

TIRF0 = {m(w0); m(r0)} and TTF0 = {m(w1); m(w0);
m(r0)}, respectively. Note that two TPs in the TP list are

identical (TSF0 = TIRF0), however it might not be neces-

sary to generate a separate TP for either of them.

3.2 TP detection capabilities

The next step in the TP dictionary generation process is

to evaluate the detection capabilities of each generated TP

in Section 3.1 on the set of targeted FPs. This is done by

listing all the TPs in a table and indicating whether they are

capable of detecting each targeted FP. In case some TPs are

identical, they are listed only once. This makes it possible

to identify a so-called pass/fail signature for the targeted

set of FPs, such that diagnosis can take place.

In some cases, the signatures are not able to distinguish

all available FPs in the table, which happens when for ex-

ample a couple of FPs have the same signatures. In this

case, new TP(s) should be added such that each FP has a

unique signature (if possible) to facilitate diagnosis.

To illustrate this step, we consider the resulting TPs in

Example 1. Since TSF0 and TIRF0 are identical, we se-

lect TSF0 to be included in the diagnosis table, as shown

in Table 2. Each row in the table represents one of the tar-

geted FPs, while the columns represent the generated TPs.

Each entry in the table contains a 1 to indicate that the TP

is able to detect the corresponding FP, while a 0 indicates

otherwise.

Comparing the signatures of the FPs in the table shows

that both SF0 and IRF0 cannot be distinguished using the

provided set of TPs. It would be desirable to provide a set

of TPs able to tell apart SF0 and IRF0. This is, however,

Table 2. Pass/fail signatures of targeted FPs in Example 1.

FP name TSF0 TWDF0 TTF0

SF0 1 1 1

WDF0 0 1 0

TF0 0 0 1

IRF0 1 1 1

not possible since state faults are purely internal faults that

get sensitized without performing any external operations.

This makes it impossible diagnose them using only exter-

nally applied tests.

3.3 Perform faults classification

FPs in a signature table can be classified into three different

classes:

• Externally identical FPs

• Externally distinguishable FPs

• Unknown FPs

Externally identical FPs refer to two FPs that have

identical pass/fail signatures for all possible TPs. In other

words, there is no test that is able to distinguish between

these two faults, since memory tests are based on exter-

nal observations of the behavior. Taking into consideration

that SF0 and IRF0 are externally identical (see Table 2), we

can lump these together into one row, as shown in Table 3.

Table 3. Combining identical FPs.

FP name TSF0 TWDF0 TTF0

SF0, IRF0 1 1 1

WDF0 0 1 0

TF0 0 0 1

Externally distinguishable FPs are those that show a

difference in behavior for a given TP, which results in a

difference in their signatures in the signature table. For

example, WDF0 and TF0 are distinguishable.

Unknown FPs are faults with signatures that do not cor-

respond to the faulty behavior of any known fault model.

This can take place, for example, when applying TPs on

actual memory devices, where some types of faulty behav-

ior results in unexpected pass/fail information. Such sig-

natures represent faults that are not understood and not yet

modeled. This presents a unique opportunity to empirically

define and model such faults using their signatures under

specific TPs. The number of possible unknown faults can

be quantified as follows. Suppose there are m targeted FPs

with different signatures that correspond to n different TPs,

then there will be 2n − m − 1 possibilities for unknown

FPs. In case the number of possible unknown signatures is

small, these can be included in the signature table, other-

wise these could be left out. Table 4 shows the unknown

signatures possible for the TPs generated in Example 1.

Table 4. Signatures for unknown FPs.

FP name TSF0 TWDF0 TTF0

SF0, IRF0 1 1 1

WDF0 0 1 0

TF0 0 0 1

Unknown FP1 0 1 1

Unknown FP2 1 1 0

Unknown FP3 1 0 0

Unknown FP4 1 0 1

3.4 Signature table optimization

The final step in the process of creating the FP dictionary

is to optimize the signature table with the objective of min-

imizing the test cost. For the optimization process, we use

a signature table that does not include the unknown FPs

shown in Table 4. Next, we remove (if possible) some TPs

with two conditions: 1. already distinguishable FPs remain

distinguishable after removal, 2. we should guarantee that

no FP has a signature with all 0 after this removal. Such

removable TPs are called redundant TPs. Taking Example

1 for illustration, it is possible to show that TSF0 is a re-

dundant TP and is thus removable. TWDF0 and TTF0 are

on the other hand not redundant, since removing either of

them will render some FPs undetectable by assigning them

an “all 0” signature. Table 5 shows the final signature table

for the set of FPs described in Example 1.

Table 5. Signature table for Example 1.

FP name TWDF0 TTF0

SF0, IRF0 1 1

WDF0 1 0

TF0 0 1

Note that performing Step 3 (Section 3.3) and Step 4

(Section 3.4) on the signature generation process are op-

tional from an industrial point of view. In practice, in the

initial yield learning phase of the fabrication process, a test

engineer may be more interested in detecting and charac-

terizing new unknown types of faulty behavior in the man-

ufactured chips. In this case, it is more advisable to skip

the optimization step (Step 4) and spend more test time at-

tempting to detect unexpected faulty behavior. However,

in the later phases of the fabrication process, where the

process is well-understood and production goes into high-

volume, test time becomes critical. In this case, a test engi-

neer may choose to skip identifying unknown faults (Step

3) and focus on test set optimization in Step 4.

4 TPs for single-cell static FPs

In this section, we apply the concept of TPs as a diagnostic

tool for the most well-known memory fault class: the class

of single-cell static faults (discussed in Section 2.1). This

serves as a case study of the capabilities of TPs in prac-

tice. The same approach can be used to diagnose any fault

class in the space of fault primitives (for example, two-cell

faults, dynamic faults, etc.). In order to generate the di-

agnostic dictionary for the set of single-cell static faults,

the procedure outlined in the previous section will be used.

The following discusses the different steps needed to gen-

erate the dictionary:

1. The first step is to create a TP for each targeted FP.

Table 6 lists the TPs required for detecting individual

single-cell static FPs.

Table 6. List of TPs for single-cell static FPs.

FP name FP TP TP name

SF0 <0/1/−> {m(w0);m(r0)} TSF0

SF1 <1/0/−> {m(w1);m(r1)} TSF1

TF0 <1w0/1/−> {m(w1);m(w0);m(r0)} TTF0

TF1 <0w1/0/−> {m(w0);m(w1);m(r1)} TTF1

WDF0 <0w0/1/−> {m(w0);m(w0);m(r0)} TWDF0

WDF1 <1w1/0/−> {m(w1);m(w1);m(r1)} TWDF1

RDF0 <0r0/1/1> {m(w0);m(r0)} TRDF0

RDF1 <1r1/0/0> {m(w1);m(r1)} TRDF1

IRF0 <0r0/0/1> {m(w0);m(r0)} TIRF0

IRF1 <1r1/1/0> {m(w1);m(r1)} TIRF1

DRDF0 <0r0/1/0> {m(w0);m(r0);m(r0)} TDRDF0

DRDF1 <1r1/0/1> {m(w1);m(r1);m(r1)} TDRDF1

2. Then, we incorporate pass/fail information for the

TPs and their corresponding FPs. In this step, the

pass/fail information shows that TSF0, TRDF0 and

TIRF0 have the same signature. The same is true for

TSF1, TRDF1 and TIRF1. Therefore, the TRDF0,

TIRF0, TRDF1 as well as TIRF1 are removed, leav-

ing only TSF0 and TSF1 in the table.

3. Next, we perform fault classification, which shows

that there are 28 − 8 − 1 = 247 unknown faults.

4. Finally, we optimize the signature table in order to

reduce the test time by removing redundant TPs. Ta-

ble 7 shows the optimized TP dictionary for single-

cell static FPs (the columns for TSF0 and TSF1 are

deleted since they are redundant).

Table 7. TP dictionary for single-cell static FPs.

FP name TTF0 TTF1 TWDF0 TWDF1 TDRDF0 TDRDF1

SF0, RDF0 1 0 1 0 1 0

& IRF0

SF1, RDF1 0 1 0 1 0 1

& IRF1

TF0 0 1 0 0 0 0

TF1 1 0 0 0 0 0

WDF0 0 0 1 0 0 0

WDF1 0 0 0 1 0 0

DRDF0 0 0 0 0 1 0

DRDF1 0 0 0 0 0 1

Using the TPs listed in Table 6 and the associated dic-

tionary in Table 7, it is possible diagnose single-cell static

FPs that are not externally identical. As mentioned in Sec-

tion 2.3, performing diagnostic testing using this set of TPs

provides a number of advantages when compared to well-

known approaches that use a single test. For example, this

test set is extensible, which means that new classes of FPs

(e.g., two-cell faults) can be diagnosed by adding the asso-

ciated TPs. A second advantage is the platform indepen-

dence of this test set, meaning that only simple pass/fail

information of each TP is needed to perform diagnosis, in-

stead of signature analysis for each read operation in the

test, which is not possible for a generic test platform. In

addition, the same information provided by this set of TPs

can be used to identify unknown faults in the behavior of

the failing device, making it possible to perform a much

more thorough diagnosis of the faulty behavior of the de-

vice under test than with other diagnostic approaches.

5 Conclusions

In this paper, we introduced the concept of test primitives

used to diagnose the faulty behavior of memory devices.

This new diagnosis method has a number of advantages

over conventional diagnostic testing. One advantage is that

test primitives are extensible and flexible, such that addi-

tional tests can be added to diagnose new faults that are

not included originally. Platform independence is another

advantage, enabling the application of test primitives on

any memory testing system, without the need for special-

ized changes to the existing test infrastructure. The new

diagnosis method is also able to empirically model new,

unknown faults in a memory product. Furthermore, the

paper presents a procedure to perform fault diagnosis us-

ing test primitives for any given set of faults. Finally, the

paper presents a set of test primitives and their associated

diagnostic dictionary to be used to diagnose the class of

single-cell static faults.

References

[Adams96] R.D. Adams and E.S. Cooley, “Analysis of a De-

ceptive Read Destructive Memory Fault Model and Recom-

mended Testing”, in Proc. IEEE North Atlantic Test Workshop,

1996.

[Al-Ars03] Z. Al-Ars and A.J. van de Goor, “Static and Dynamic

Behavior of Memory Cell Array Spot Defects in Embedded

DRAMs,” in IEEE Trans. on Computers, vol. 52, no. 3, 2003,

pp. 293-309.

[Al-Harbi07] S.M. Al-Harbi, F. Noor and F.M. Al-Turjman,

“March DSS: A New Diagnostic March Test for All Mem-

ory Simple Static Faults,” in IEEE Trans. Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 26, no. 9, 2007,

pp. 1713–1720.

[Borri03] S. Borri, M. Hage-Hassan, P. Girard, S. Pravos-

soudovitch and A. Virazel, “Defect-Oriented Dynamic Fault

Models for Embedded-SRAMs,” in Proc. European Test

Workshop, 2003, pp. 23–28.

[David90] R. David and A. Fuentes, “Fault Diagnosis of RAMs

from Random Testing Experiments,”, in IEEE Trans. on Com-

puters, vol. 39, no. 2, 1990, pp 220–229.

[Huott99] W. Huott et al., “The Attack of the ‘Holey Shmoos’: A

Case of Advanced DFD and Picosecond Imaging Circuit Anal-

ysis (PICA),” in Proc. of IEEE Int’l Test Conference, 1999,

pp. 883–891.

[Li01] J.-F. Li, K.-L. Cheng, C.-T. Huang and C.-W. Wu,

“March-Based RAM Diagnosis Algorithms for Stuck-at and

Coupling Faults,” in Proc. IEEE int’l Test Conf., 2001,

pp. 758–767.

[Niggemeyer00] D. Niggemeyer, M. Redeker, E.M. Rudnick,

“Diagnostic testing of embedded memories based on output

tracing,” in Proc. IEEE Int’l Workshop on Memory Technol-

ogy, Design and Testing, 2000, pp. 113–118.

[Harutunyan06] G. Harutunyan, V.A. Vardanian and Y. Zorian,

“Minimal March-Based Fault Location Algorithm with Partial

Diagnosis for All Static Faults in Random Access Memories,”

in Proc. IEEE Design and Diagnostics of Electronic Circuits

and Systems, 2006, pp. 260–265.

[Suk81] D.S. Suk and S.M. Reddy, “A March Test for Functional

Faults in Semiconductor Random Access Memories”, In IEEE

Trans. on Comp., vol. 30, no. 12, pp. 982–985, 1981.

[vdGoor98] A.J. van de Goor, “Testing Semiconductor Memo-

ries, Theory and Practice”, ComTex Publishing, Gouda, The

Netherlands, 1998.

[Vermeulen04] B. Vermeulen, C. Hora, B. Kruseman, E.J.

Marinissen and R. van Rijsinge, “Trends in Testing Integrated

Circuits,” in Proc. IEEE Int’l Test Conf., 2004, pp. 688–697.

[Yarmolik96] V.N. Yarmolik, Yu.V. Klimets, A.J. van de Goor

and S.N. Demidenko, “RAM Diagnostic Tests,” in Proc. IEEE

Int’l Workshop on Memory Technology, Design and Testing,

1996, pp. 100–102.

