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Abstract In this paper we present an efficient data
fetch circuitry to retrieve several operands from a
n-way parallel memory system in a single machine
cycle. The proposed address generation unit operates
with an improved version of the low-order parallel
memory access approach. Our design supports data
structures of arbitrary lengths and different odd strides.
The experimental results show that our address gen-
eration unit is capable of generating eight 32 − bit
addresses every 6 ns for different strides when imple-
mented on a VIRTEX-II PRO xc2vp30-7ff1696 FPGA
device using only trivial hardware resources.

Keywords Address generation unit ·
Parallel memory · Stride

1 Introduction

Vector architectures were originally adopted for build-
ing supercomputers in 1970s [1]. Since then, they have
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played a central role in conventional supercomputers
and have flourished for almost two decades till the
appearance of the “vector aware” microprocessors in
the early 1990s. The most successful ones include the
Cray series [2] and the NEC SX series [3].

Nowadays, with the advance of the integration tech-
nology, more and more transistors can be integrated
on a single chip. Consequently, the SIMD processing
paradigm (including vector execution model) regains
its position in the organization of on-chip computa-
tion resources, such as the General Purpose Processors
(GPP) SIMD enhancements [4–6] and vector accel-
erators in more specific application domains such as
home entertainment [7] and computer graphics [8]. In
order to provide sufficient and sustained bandwidth and
to reduce memory access latency, parallel (multibank)
memories are widely used in these SIMD processing
systems [2, 3, 8]. A fast and efficient address generation
for the memory subsystem is one of the key issues
in system design when many memory banks work in
parallel. This paper deals with the address generation
problem of on-chip vector accelerators. More specif-
ically, the main contributions of this paper are the
following:

– the design of an address generation unit (AGEN)
capable of generating eight 32 − bit addresses in a
single machine cycle. Arbitrary memory sequences
are supported by using only one special purpose
instruction;

– an organization that uses optimized Boolean equa-
tions to generate the offsets instead of including an
additional adder stage;

– an FPGA implementation of the proposed design
able to fetch 1.33 Giga operands per second from an
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Figure 1 Two paradigms of
vector address generation:
a centralized, b distributed.
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8-way-parallel memory system using only 3% of
the slices and only 4% of the lookup tables
(LUTs) of the targeted device, the VIRTEX-II
PRO xc2vp30-7ff1696 FPGA.

The paper is organized as follows. In Sections 2 back-
ground information and related works are provided. In
Section 3 and 4, the basic definitions and the design of
the proposed AGEN are presented. An outline of the
experimental results is given in Section 5. Concluding
remarks and an outline of conducted research are given
in Section 6.

2 Background and Related Work

One of the main issues in vector processing systems
with multi-bank or multi-module memories is the ad-
dress generation. There are two major paradigms for
address generation: centralized and distributed. When-
ever a vector memory access command comes in cen-
tralized address generation, the base address as well
as the stride1 are sent to the AGEN, just as shown in
Fig. 1a. The centralized address generation paradigm
is widely used in traditional vector supercomputers.
In centralized AGEN, local addresses of all memory
modules are calculated and distributed to the corre-
sponding modules using the address routing circuit (e.g.
a crossbar) under the guidance of the corresponding
module assignments. In the distributed AGEN, instead
of sending individual addresses to each memory mod-

1A formal definition of stride is presented in Section 3. Anyhow,
the stride is the address distance between two consecutive data
elements stored in a memory system.

ule, Corbal et al. proposed a Command Vector Memory
(CVM) System [9] that broadcasts the vector access
command to all memory modules simultaneously. The
local addresses of each memory module are then calcu-
lated independently by the local module controller, as
illustrated in Fig. 1b. Note that in Fig. 1, fi(B, S)(i = 0,

1, . . . , 7) are the local address generation functions
where B and S denote the vector base and stride,
respectively. It is shown in Fig. 1 that the address rout-
ing circuitry is successfully removed by the distributed
address generation scheme. Additionally, in [9] the
authors have demonstrated the feasibility of this mem-
ory organization with simulations at the architectural
level of a CVM coupled with an out-of-order vector
processor.

There are two clear advantages using the distrib-
uted address generation. First, the local address routing
circuit can be substantially simplified (usually from a
crossbar to a bus), that potentially allows for shorter
data access latencies. Second, since there can be more
than one memory address seen by the local module
controller, a distributed address generation can exploit
in a better way the internal features of the module to
improve performance. This is the case, for example,
when there are more than one access going to the
same memory module on a long vector access command
or when multiple vector commands are queued in the
module controller. In the CVM system, each memory
module is a commodity SDRAM module with internal
banks and row buffers. The performance of the mem-
ory system can therefore be enhanced by properly and
independently scheduling of the address sequences on
each module to increase the row buffer hit rate.

An extension of the work presented in [9] is pro-
posed by Mathew et al. in [10, 11] where the authors
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proposed a Parallel Vector Access unit (PVA). This
unit is a vector memory subsystem that provided strided
data accesses with high efficiency on a multi-module
SDRAM memory. The PVA unit adopts the same idea
of the CVM system when it transmits vector commands
instead of individual addresses to memory modules,
and lets the modules independently determine which
addresses are requested from them and how to pro-
vide these requests. The authors, not only provided
architectural simulation and the hardware design of the
memory control unit but they also validated the design
through gate-level simulation.

In order to perform PVA in command-based mem-
ory system, one of the key points is the use of distrib-
uted high-bandwidth address generation mechanisms
capable of inferring which addresses are requested
from the local memory module. However, there ex-
ist no progress work reported in the literature that
focuses on the study of address generation circuitries
for distributed address generation. The high-bandwidth
AGEN proposed in this paper unravels the design
issues by providing a case study for the distributed
address generation.

Besides memory address generation, another critical
design consideration in multi-bank memory systems is
the distribution of the data within the different memory
banks to ensure maximum benefits from multi-bank
memory organization. One simple low-order interleav-
ing scheme which maps address a to bank (a mod m)
at local address (offset) (a div m) is easy to imple-
ment, when m is a power of two, and the stride equals
one.2 Unfortunately, when the stride is different than
one, there is a large performance degradation due to
bank conflicts [12]. To cope with this problem, many
researchers focused their work on parallel memory
schemes. Two categories are identified: memory sys-
tems with redundancy and memory system without
redundancy [13]. An illustrative example of the first
category is represented by the prime memory systems.
These systems are used by many researchers and re-
search projects [14–17] and are built upon previous
work on prime numbers. The drawback of these sys-
tems is the modulo operation on prime numbers which
is difficult to implement efficiently in hardware. An
example of the second category is represented by the
skewing memory systems including the widely used row
rotation schemes and XOR schemes [18–24].

The focus of our paper is on the high-bandwidth
address generation circuitry for multi-bank memory

2Given two integers a and b we have a=bq + r where a div b =q
is the quotient and a mod b = r is the rest, with a, b , q, r ∈ N and
q, r univocally determined.
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Figure 2 An example of a memory system composed by 8 banks
of memory, each one holding the same number of memory cells,
where 8 data are stored in two different ways: a in a consecutive
way, b leaving a fix number of cells between the data.

systems with low-order interleaving scheme. Although
the details of vector address generation is closely re-
lated to the memory schemes that the vector process-
ing systems adopt, we believe that the methodologies
presented in this paper may also be of interest for ad-
dress generation circuitry under other parallel memory
schemes.

3 Theoretical Background

In this section, we begin by introducing a motivating
example to informally outline the main concepts of the
proposed method. Thereafter we present the theoreti-
cal foundation of our approach.

3.1 Motivating Example

Let us consider a memory system composed by n banks
of memory each holding m memory cells. The m × n
memory cells can be represented by a matrix [m × n]
where each column corresponds to a memory bank.
Let us consider the data a0, ..., an−1 to store in the
main memory system. Let us assume the element a0 is
identified by the pair of indexes (i0, j0) in the matrix
representing the memory. The data are stored per row
in a circular way: when a data aα is stored in position
(iα, n − 1) then aα+1 is stored in position (iα + 1, 0). Let
us assume to store the data leaving a certain num-
ber of cells S between two consecutive data elements.
Then aα is identified by the pair of indexes: iα = iα−1+
( jα−1 + S) div n and jα = ( jα−1 + S) mod n.

In Fig. 2, we present two examples of storing 8 data
elements in a memory system composed by 8 memory
banks, each one holding the same number of mem-
ory cells. In Fig. 2a the data are stored consecutively
whereas in Fig. 2b the data are stored leaving a fixed
number of cells between two consecutive elements. As
the figure shows, the 8 elements belong to different
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memory banks. This means that 8 data can be read in
parallel without problem of conflict in a single cycle if
we are able to design an AGEN capable of generating
the eight addresses.

3.2 Theoretical Foundation of the AGEN Design

Definition 1 We call stride the address distance be-
tween two consecutive data elements stored in a mem-
ory system.

Roughly speaking, the address distance between
two consecutive data is represented by the number of
cells separating the two elements per row as described
above. The stride is clearly an integer number.

Let us consider n banks of memory each one holding
m memory cells. The m × n memory cells can be rep-
resented as a matrix [m × n] where each column cor-
responds to a memory bank. In addition, the memory
cell i of the memory bank j corresponds to the matrix
element with indexes (i, j ). We denote this matrix as
A and consider n = 2h and m for its dimensions, with
h, m ∈ N. Additionally, the stride is an integer Str =
2q + 1, q ∈ N. From now on, the data stored in the
memory banks will be considered as matrix A elements.
Let the n consecutive data placed in the memory banks
be denoted by:

a0, ..., an−1. (1)

Remark 1 Every element aα , with α = 0, ..., n − 1, is
identified in the matrix by its row-index i, with i = 0,

1, ..., m − 1, and its column-index j, with j = 0, 1, ...,

n − 1. Additionally, the pair of indexes (iα, jα) can be
used to represent aα as a number in base n, obtain-
able as juxtaposition of iα as most significant digit and
jα as least significant digit. The two indexes can also
be used in a base 10 representation. Therefore, we
have the following chain of equivalent representations
for aα :

aα ↔ (iα, jα) ↔ (iα jα)|n ↔ (niα + jα)|10. (2)

The usefulness of this result will be more clear in the
proof of Theorem 1. As an example, Table 1 shows the
pair of indexes identifying the data in the matrix for
n = 8 and Str = 3 (Fig. 2b), assuming (i0, j0) = (0, 0).

Remark 2 Without loss of generality, we can assume
that the first element a0 stored in the matrix remains
at position (i0, j0) = (0, 0).

Lemma 1 The number of rows necessary to hold n
elements with stride Str = 2q + 1, q ∈ N is Str.

Table 1 Correspondence aα ↔ (iα, jα) ↔ aα|n ↔ aα|10 for n = 8
and Str = 3.

Element aα Row-index iα Column-index jα aα|8 aα|10

a0 0 0 00 0
a1 0 3 03 3
a2 0 6 06 6
a3 1 1 11 9
a4 1 4 14 12
a5 1 7 17 15
a6 2 2 22 18
a7 2 5 25 21

Proof The number of cells (�cell) necessary to store
n elements with stride Str is �cell = n + (Str − 1) n =
n(2q + 1). Therefore, the number of rows is:

�cell mod n = n(Str) mod n = Str. (3)

��

Remark 2 and Lemma 1 imply that the necessary
rows to store the n elements with stride Str are:

{0, 1, ..., Str − 1} (4)

As an example, in Fig. 2b it is possible to see that the
eight data are stored in 3 rows (Str = 3).

The n data aα can be defined recursively. If a0 =
(i0, j0) the elements a2, ..., an−1 can be recursively de-
fined as follows:

aα = aα−1 + Str. (5)

This is equivalent to the following: given aα−1 identified
by the pair of indexes (iα−1, jα−1), aα is identified by the
pair of indexes:

iα = iα−1 + ( jα−1 + Str) div n

jα = ( jα−1 + Str) mod n (6)

Theorem 1 Let n be the number of elements aα , with
α = 0, ..., n − 1, stored in a matrix A, m × n, with n =
2h. Let the stride be the integer Str ∈ N. If (iα, jα) and
(iβ, jβ) are the index pairs identifying aα and aβ in the
matrix and gcd(n, Str) = 1, we have:

jα �= jβ ∀α, β ∈ [0, ..., n − 1]. (7)

Proof Without loss of generality, by Remark 2, we can
assume (i0, j0) = (0, 0). By contradiction let jα = jβ .
We have two possible cases: (1) iα = iβ and (2) iα �= iβ .

The first case does not occur: more precisely, if iα =
iβ , the assumption jα = jβ leads to aα = aβ (see Remark
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1). In the second case: iα �= iβ . Firstly, by Eq. 4, it
follows:

iβ − iα ∈ [0, Str − 1]. (8)

Without loss of generality we can assume β > α. By
Eq. 5 we have:

aβ = aβ−1 + Str = aβ−2 + 2Str = ... = aα + xStr, (9)

with x ∈ N and x < n; it is straightforward to show that
x = β − α. By using the representation in base 10 of aα

and aβ (see Eq. 2), Eq. 9 becomes:

niβ + jβ = niα + jα + x Str, (10)

taking into account the assumption jα = jβ we can
rewrite Eq. 10 as

n(iβ − iα) = x Str. (11)

Since gcd(n, Str) = 1 and n divides the product x Str,
it follows that n is a non trivial divisor of x (i.e. a
divisor different from 1 and n). This implies that: x =
r n, with r ∈ N. It follows x > n which contradicts the
original hypothesis. As a consequence, it must be that
jα �= jβ , for all α, β ∈ [0, ..., n − 1]. ��

The previous theorem implies the following:

(S): n data stored in n memory banks can be accessed
in parallel in a single machine cycle if n is coprime
with the stride.

This because by Theorem 1 each data is stored in a
different memory bank. This holds, in particular, if n =
2h and Str is an odd integer and viceversa, n an odd
integer and Str = 2h.

Example 1 Let us consider Fig. 2b and Table 1. In this
case n = 8 and Str= 3. In Column 3 of Table 1, it is
possible to see that each data stored in the system is
allocated in a different memory bank. This follows by
Theorem 1. If there exist two elements aα, aβ with the
same column index then there exists x < 8 such that:
n(iβ − iα) = x(2q + 1) (q = 1 in this case). Considering
that n = 8 in our example, n(iβ − iα) can be either 8 or
16. The difference cannot be 0 since in that case iα = iβ
and therefore aα = aβ . As a consequence, we have two
cases 8 = 3x or 16 = 3x and both equations do not have
an integer solution for x.

Remark 3 Let the stride Str = 2q + 1 be and odd inte-
ger. Let aα and aβ be two consecutive data located in
the same memory bank. Then |iβ − iα| = Str.

Proof Let aα and aβ be identified by the pairs of
indexes (iα, jα) and (iβ, jβ) respectively with jα = jβ .
Without loss of generality we can assume iβ > iα . By
the proof of Theorem 1, we know that if jα = jβ , then:

n(iβ − iα) = x Str. (12)

Therefore

(iβ − iα) = x
n

Str. (13)

Since iβ − iα ∈ N, it means that x = pn with p ∈ N.
Since aα and aβ are two consecutive data located in the
same memory bank, it means that x = minp∈N pn = n.
Then

(iβ − iα) = n
n

Str = Str. (14)

��

Previous remark can be reformulated saying that if
the stride is an odd integer coprime with the number of
memory banks, the distance between two consecutive
data belonging to the same banks of memory is equal
to the stride and independent by i and j.

Theorem 3 Let a0 be identified by the pair of indexes
(i0, j0) with j0 = 0 and let Str be an odd stride. For an
element aα we have that

iα = BS + Aα (15)

where BS= i0 + k Str with k ∈ N and Aα = φ(n, jα, Str)
is a function of n, jα and Str.

Proof By Eq. 6 we can easily obtain the following:

iα = i0 + ( j0 + αStr) div n

jα = ( j0 + αStr) mod n (16)

Additionally, we know that from the algorithm of di-
vision: given two integers a and b we have a = bq + r
where a div b = q is the quotient and a mod b = r is
the rest, with a, b, q, r ∈ N and q, r univocally deter-
mined. Combining these two results, if we consider
a = j0 + αStr and b = n, we obtain the following:
j0 + αStr = n(iα − i0) + jα, (17)

and therefore we can obtain iα as follows:

iα = i0 + j0 − jα + αStr
n

. (18)
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Adding and subtracting the quantity k Str, since
BS = i0 + k Str, we have the following:

iα = i0 + k Str + j0 − jα + αStr
n

− k Str

= BS + j0 − jα + αStr
n

− k Str. (19)

From Eq. 16, we have that:

jα = ( j0 + αStr) mod n. (20)

This means that there exists k1 ∈ N such that:
j0 + αStr = jα + k1n

α = jα + k1n − j0
Str

. (21)

This means that there exists a function ψ such that
α = ψ(n, jα, Str) ∈ N. As a consequence, we have:

iα = BS + j0 − jα + αStr
n

− k Str

= BS + j0 − jα + Strψ(n, jα, Str)
n

− k Str

= BS + φ(n, jα, Str) = BS + Aα.

(22)

where φ : N × N × N → N. ��

Remark 4 By the previous Theorem 3 we can see that
knowing the bank index jα and the Stride Str, it is
possible to identify the row index iα of an element.
More precisely, it is possible to calculate the local ad-
dress (row index) in a distributed manner, with only the
knowledge of the local bank index jα , the address of
the first element a0 (or B in Fig. 1b) and the stride Str.
We note that the structure of φ(n, jα, Str) is completely
determined by the bank assignment and row assign-
ment functions. From a hardware point of view, it can
be either a SRAM-based lookup table or hardwired. In
the next Section 4 we will show the hardwired Aα (i.e.
the φ(n, jα, Str) functions). Additionally we can note
that BS, called base-stride, represents the combination
of the base i0 and a certain number k ∈ N of times Str,
which depends on the number of accesses necessary to
collect the data. Clearly Aα depends on the memory
bank and it is variable. For example, let us consider
the example depicted in Fig. 3. In the example, the
vector to be accessed has 2n elements. This means that
2 parallel accesses are required to collect the data. This
means that k can assume the value 0 or 1. For instance,
to calculate the local address (row index) of bank 2
( jα = 2) during the second memory access (k = 1), us-
ing Theorem 3, we have iα = BS + Aα = i0 + 1 · Str +
Aα = 1 + 3 + 2 = 6. In this case, since k = 1, α ∈ [8, 15]
and therefore k1 = 5 univocally determined.

BS

A2

i0

k*S(k=1)

Bank 0 1 2 3 4 5 6 7

1st parallel access 2nd parallel access

Figure 3 Distributed local address (row index) calculation.

4 The Address Generation Unit

In this section, we will describe the design of our dis-
tributed AGEN scheme.

In Fig. 4 a simple vector based SIMD organiza-
tion is shown. The shaded part depicts the distributed
AGEN unit proposed in this paper. There are i mem-
ory modules and processing elements connected by a
shuffling switch. The base address, stride and index
are used by the distributed address generation scheme
to provide with the current addresses. Please note the
difference between the simple 1-to-1 data permutation
in space performed by the switch (between the memory
modules and the processing elements) and the oper-
ation of the memory control and data unit function-
ality, e.g. reordering DRAM memory accesses, hiding
bus turnaround penalties and more. In addition, when
proper mapping of data onto the memory banks is

Figure 4 Vector processor based organization.
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Figure 5 The special-purpose-instruction [31].

applied, the switch can be avoided at all. This will
additionally slightly increase the system performance.
Organization like this can be used for proposals with
strict demands on the timing of the address generation
process as the ones presented in [25, 26].

Such organization can also be applied for polymor-
phic computing systems as the one proposed in [27].
The arbiter used to distribute the instructions between
the general purpose processor and the reconfigurable
vector co-processor will provide the required control
instructions at the exact moment in the instruction flow.
Such an organization is assumed in the reminder of this
section.

We consider an 8-way parallel memory where the
memory banks are built using dual ported memories,
such as BRAMs [28], which in case of an implemen-
tation on an FPGA are shared by the core processor
and the vector co-processor (composed by the PE’s in
the figure). The 8 memory banks are arranged as a lin-
ear array memory with low-order interleaving address
mapping [29] from the general purpose processor and
the memory controller side. The second BRAM port
is used by the vector processing elements that see the
memory organized as a 2D rectangular array [13]. Since
the two memory accesses are decoupled in nature and
the address generation is critical for the SIMD perfor-
mance, we will concentrate on the vector co-processor
side.

When the vector co-processor needs to access the
memory banks in parallel, the Effective Address (EA)
computation impacts performance [30]. Our AGEN
unit (different from the one embedded into the main
memory controller and the general purpose processor)
which generates the addresses for the data stored in
the parallel memory in the correct sequence plays an

important role. Considering an 8-way parallel memory,
8 different addresses for each memory access are neces-
sary. The proposed AGEN generates those 8 addresses
needed to fetch the data simultaneously from the mem-
ory at high rate. More specifically, as we will see in
Section 5, the proposed AGEN is able to generate eight
32-bit addresses every 6 ns for different odd strides
when implemented in Xilinx FPGA technology.

Our AGEN unit is designed to work with single or
multiple groups of streamed data (with the same stride)
using a special-purpose-instruction like in [31]. This
instruction configures the base addresses, the stride
and the length of the particular streaming data format.
Additionally, the memory accesses can be performed in
parallel with the execution phase of a previous iteration
using a decoupled approach as presented in [32] and as
shown in Fig. 4.

Figure 5 depicts an example of the special-purpose-
instruction for operations with multiple indices such as
Sum of Absolute Differences operation (SAD) and/or
Multiply-ACcumulate operation (MAC). More pre-
cisely, the special-purpose-instruction contains the fol-
lowing information:

– Basei (i = 1, 2, 3). These three fields contain the
memory addresses of the data to read or write
in the memory. For example, these fields can be
used to store the minuend and subtrahend of the
SAD operation or the multiplicand, multiplier and
addendum in the MAC operation.

– Length. This field contains the number of n-tuples
(cycles) needed to fetch n elements from the mem-
ory. For example, if Length = 10 and n = 8, in 10
memory cycles 80 elements will be fetched.

– Stride. This field contains the address distance be-
tween two consecutive data elements stored in an n-
way parallel memory. In this paper we address only
the odd strides between 1 and 15. Future research
will include the analysis of the remaining cases.

Figure 6 AGEN:
a accumulator for BS
computing, b accumulator
for loop control, c hardwired
encoder, d index
accumulator, e final addition
EA computing.
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Figure 7 Main accumulator
circuitry.

These 8 different strides are encoded using three
bits, even though 4 bits are reserved for this field.

– Index. This field can contain two different informa-
tion field:

• The field contains the vertical distance between
two consecutive groups of n elements. As an
example, in Fig. 2a the index, or vertical stride,
is equal to 9.

• The field contains an offset address used by the
AGEN to retrieve a single data word.

Equation 23 shows the EA (i.e. the row address
of memory bank j on k − th parallel memory access)
computation:

EA j = BS + A j(0...3) + I X ∀ 0 ≤ j ≤ 7 ∧ RES ≥ 0

(23)

where BS is a base-stride combination explained in
Theorem 3, IX is the index and A j(0...3) is the memory-
bank offset, which is also exactly in accordance with in
Theorem 3. Figure 6e depicts the eight EA generators

for the targeted 8-way parallel memory system. BS is
calculated as follows: BS = i0 + k · Str, where i0 is the
row index (i.e. local address) of the first element of the
vector access (a0). During the first cycle, BS is equal to
i0 (k = 0). After that, at iteration k, BS is augmented
of k · Str.

Figure 6a shows the accumulator structure. This
structure is composed by two accumulator stages par-
tially (4-bits only) shown in Fig. 7. The first stage con-
sists of a 4/2 counter which receives the SUM and the
carry signals of the previously computed value and the
mux-es outputs used to select the appropriate operands
(base and stride values) as previously explained. The
second stage consists of a 2/1 adder which produces the
BS values.

Figure 6b depicts the subtractor used for counting
the number of memory accesses. At each clock cycle
the subtractor value is decremented by one unit until it
reaches zero. A negative value of the subtractor result
(underflow) indicates the end of address generation
process.

The stride values considered in our implementation
are encoded using 3 bits and represented by S2S1S0.
The pattern range 0002..1112 encodes the odd stride

Table 2 Hardwired encoder:
set up table of equations for
the address generation.

For example the address
bit A2 of bank 1 will be:
A2 = S2 · S0 + S1 · S2. This
value (offset) is added to the
current Base address value to
calculate EA2 (see Eq. 23).

Bank A0 A1 A2 A3

0 0 0 0 0
1 S2 · S1 · S0 + S2 · S1 · S0+ S2 · S1 S2 · S0 + S1 · S2 S2 · S1

S2 · S1 · S0 + S2 · S1 · S0

2 S1 S2 · S1 · S0 + S2· S2 · S1 · S0 S2 · S0

S0 + S2 · S1

3 S2 S2 · S0 S2 · S1 S2 · S1

4 S0 S1 S2 0
5 S2 S2 · S0 S2 · S1 · S0 + S2 · S1 · S0 S2 · S1 · S0

6 S1 S2 · S1 + S2 · S0+ S2 · S1 · S0 S2 S1S0

S2 · S1 · S0

7 S2 · S1 · S0 + S2 · S1 · S0+ S2 · S1 S2 · S1 + S2 · S0 0
S2 · S1 · S0
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Table 3 Time delay and
hardware usage of the AGEN
unit and the embedded
arithmetic units.

aEmbedded circuitry inside
the AGEN unit presented
without I/O buffers delays.

Unit Time delay (ns) Hardware used

Logic delay Wire delay Total delay Slices LUTs

AGEN 4.5 1.4 6.0 673 1072
Hardwired encoder (Digitwise)a 0.3 – 0.3 9 16
4:2 countera 0.5 0.5 1.0 72 126
3:2 countera 0.3 – 0.3 37 64
32-bit CPA (2/1) addera 2.2 0.7 2.9 54 99

values ranging from 1 to 15. A hardwired encoder
is used to transform the encoded stride values into
the corresponding A0(0...3),.., A7(0...3) address offsets
using a memory-bank-wise operation. A memory-bank-
wise address is created based on the stride value. For
example, Fig. 2b shows the case when the stride is 3.
In this case, it is possible to see that for the memory
banks 1 and 2 it is required an offset value of 1 and 2
respectively. These values are generated by the hard-
wired encoder presented in Fig. 6c (see Table 2).

5 Experimental Results

The proposed AGEN unit has been implemented in
VHDL, synthesized and functionally validated using
the ISE 7.1i Xilinx environment [33]. The target device
used was a VIRTEX-II PRO xc2vp30-7ff1696 FPGA.
Table 3 summarizes the performance results in terms
of delay time and hardware utilization. The results are
for the complete AGEN unit as well as for the major
sub-units used in our design.

From the data presented in Table 3 it is possible to
conclude that the 32-bit CPA adder used is the most
expensive component in terms of delay. However, this
delay can be additionally reduced by using a deeper
pipeline organization, as shown in [34], with an increase
in the overall performance. This becomes important
when the target technology has a lower memory la-
tency like the Virtex 4 and the Virtex 5 platforms
[35]. The AGEN unit proposed in this paper has a 3-
stage pipeline. Stage 1 and stage 2 are used by the
accumulator for generating the BS values (see Fig. 6a).
Stage number 3 is used for the 3/2 counter array and the
final 2/1 adder which represents the critical path of our
implementation.

The proposed AGEN reaches an operation fre-
quency of 166 MHz which means that the proposed
AGEN is capable of generating 1.33 Giga addresses of
32-bits, a total of 43.5 Gbps, to fetch the data from the
8-way parallel memory system. The proposed AGEN
makes use of very few hardware resources: only 3% of

the slices and only 4% of the LUTs of the target device
(VIRTEX-II PRO xc2vp30-7ff1696 FPGA).

6 Conclusions

In this paper we have presented the design of an ef-
ficient AGEN unit for fetching several data from an
n-way parallel memory system in a single machine
cycle. The proposed AGEN can reach an operation
frequency of 166 MHz, which means that the proposed
AGEN is capable of generating 1.33 Giga addresses of
32-bits, a total of 43.5 Gbps, to fetch the data from the
parallel memory system. The proposed AGEN makes
use of a limited amount of hardware resources: only 3%
of the total slices and only 4% of the total LUTs of the
target platform, the VIRTEX-II PRO xc2vp30-7ff1696
FPGA.

The proposed AGEN unit reduces the number of
cycles required for data transfers within the memory
system, providing a high bandwidth utilization and a
short critical path in hardware.
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