
Instruction-Level Fault Tolerance Configurability
Demid Borodin, B.H.H. (Ben) Juurlink, Said Hamdioui, and Stamatis Vassiliadis†

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Telephone: +31 15 2786623, Fax: +31 15 2784898.
E-mail: {demid,benj,said,stamatis}@ce.et.tudelft.nl

Abstract—Due to modern technology trends such as decreasing
feature sizes and lower voltage levels, fault tolerance (FT) is
becoming increasingly important in computing systems. Several
schemes have been proposed to enable a user to configure the
FT at the application level, thereby enabling the user to trade
stronger FT for performance or vice versa. In this paper, we
propose supporting instruction-level rather than application-level
configurability of FT, since different parts of some applications
(e.g., multimedia) can have different reliability requirements.
Weak or no FT will be applied to less critical parts, resulting
in time and/or resource gains. These gains can be used to
apply stronger FT techniques to the more critical parts; hence
increasing the overall reliability. The paper shows how some
existing FT techniques can be adapted to support instruction-
level FT configurability, how a programmer can specify the
desired FT level of the instructions, and how the compiler can
manage it automatically. A comparison between the existing FT
scheme EDDI (which duplicates all instructions) and the proposed
approach is performed both at the kernel and at full application
levels. The simulation results show that both the performance and
the energy consumption are significantly improved (up to 50%
at the kernel and up to 16% at full application level), while the
fault coverage depends on the application. For the full application
(JPEG encoder), our approach is only applied to one kernel in
order to avoid increasing the programming effort significantly.

I. INTRODUCTION

The importance of fault tolerance (FT) of computing systems
is increasing instantly nowadays [1]. This is a consequence
of the technology trends which try to follow Moore’s law.
Smaller feature size, greater chip density, and minimal power
consumption lead to increasing device vulnerability to external
disturbances such as radiation, internal problems such as
crosstalk, and other reliability problems, which result in an
increasing number of faults, especially transients, in comput-
ing systems.

After the switch from tubes to more reliable transistors
and until recently, strong FT used to be a requirement only
of special-purpose high-end computing systems. The tech-
nology reliability was considered sufficient, and only a few
FT techniques, such as Error Correcting Codes (ECC) [2] in
memory, were usually used. However, according to [1], [3], the
technology trends will pose more and more reliability issues
in future. This means, in turn, that FT features are required
even in PCs.

Many fault tolerant schemes exist. There is always a trade-
off between FT and cost, either in performance or resources.

System hardware resources are limited, and the more of them
are dedicated to FT, the more performance suffers. Further-
more, the redundancy introduced to provide FT dissipates
additional energy. It is therefore desirable to have a config-
urable system which is able to use its resources to improve
either FT or performance. Some proposed FT schemes may
enable system configuration before an application is run, which
allows to choose between higher performance or stronger FT
depending on the application requirements.

Saxena and McCluskey [4] notice that multithreaded FT ap-
proaches can target both high-performance and high-reliability
goals, if they allow configuration to either high-throughput
or fault tolerant modes, as is the case for slipstream pro-
cessors [5], [6]. Breuer, Gupta, and Mak [7] propose an
approach called Error Tolerance, which increases the fabri-
cation yield. This is achieved by accepting fabricated dies
which are not completely error-free, but deliver acceptable
results. The tolerance of multimedia applications to certain
errors is discussed in this context. Chung and Ortega [8]
develop a design and test scheme for the motion estimation
process. This reveals that the effective yield can be improved
if some faulty chips are accepted. Reis et al. [9] present the
software fault detection scheme Software Implemented Fault
Tolerance (SWIFT) which duplicates instructions, compares
their results at strategic places, and checks the control flow.
The authors mention that SWIFT can allow a programmer
to protect different code segments to varying degrees, like our
scheme does. Oh and McCluskey [10] introduce the technique
called Selective Procedure Call Duplication (SPCD), which
minimizes the energy consumption and performance overhead
of protective redundancy. For every procedure, SPCD either
duplicates all its statements in the high-level language source
code, or duplicates the call to the whole procedure, comparing
the results. The decision is made based on the error latency
constraints imposed. Procedure-level duplication is a coarse-
grain version of fine-grain statement-level duplication. It re-
duces the energy and performance overhead by decreasing the
number of checks executed. Experimental results show that
SPCD provides the average energy savings of 26.2% compared
to EDDI [11] (a software FT scheme which duplicates all
the assembly instructions). However, SPCD does not guaran-
tee protection against control-flow errors within a procedure
whose call is duplicated. Lu [12] presents the Structural In-

mailto:demid@ce.et.tudelft.nl?Subject=By the link in ILCOFT paper

tegrity Checking technique using a watchdog processor [13] to
verify the correctness of an application control flow. “Labels”
are inserted into the application at the places where a check
should be performed. The higher the density of the “labels”,
the more checking is done. Thus, a programmer can increase
the density of the “labels” at the critical parts of an application,
increasing the amount of checking applied to them.

We propose to leverage the natural error tolerance of certain
applications to improve their overall reliability and/or improve
their performance and resource consumption. This goal can
be achieved by a system which may be configured to target
either FT or performance at the instruction, rather than ap-
plication, level. A developer should be able to configure the
strength of FT techniques applied to particular instructions
or blocks of instructions in the application. This is useful for
applications in which more and less critical parts (instructions)
can be distinguished. For example, as noticed in [7], [8],
for multimedia applications, most of the computations do
not strictly require absolute correctness. Many errors in these
computations would not be noticeable for a human, while
others can cause a slight, tolerable inconvenience. The ap-
plication parts performing these computations can have lower
or no protection with a little risk. This minimizes protective
redundancy which degrades performance and/or increases the
system cost. However, other parts of the same applications can
be very critical. For example, if the control of a multimedia
application is damaged, the whole application is likely to
crash. As another example, a fault in the data assignment
to the quantization scale can affect the quality of the video
significantly. These parts require a strong FT. Moreover, the
time and/or resources saved by reducing redundancy for non-
critical parts can be used to enhance the FT of the critical
parts even further. In this case, the overall reliability of the
application increases, at the expense of reduced reliability of
non-critical parts. By reducing the protection of non-critical
and increasing it for critical application parts, a developer can
play with the trade-off between resources and reliability, fine-
tuning it for the particular purposes.

We call the strength of FT features applied to an instruction
the degree of FT. The more efficient FT techniques are applied,
the higher the degree of FT is. The minimum degree of FT
corresponds to the absence of any FT techniques. Duplication
and comparison of the results has a lower degree of FT than
Triple Modular Redundancy (TMR) [14], [15]. Normally, a
higher degree of FT corresponds to a greater amount of re-
dundancy, and hence, is more expensive in terms of resources
and/or time.

The proposed technique is referred to as Instruction-Level
Configurability of Fault Tolerance (ILCOFT). If a system
supports several degrees of FT, an application developer is
able to specify the desired degree of FT for each instruction
or group of instructions. This can be done either in high-level
language or in assembly code. Partially, it could also be per-
formed automatically by the compiler. The system adapts one
of the existing FT schemes to satisfy the needs of particular
instructions, for example, by duplicating or triplicating them

in software or hardware, and possibly comparing the results.
This paper is organized as follows. Section II presents

ILCOFT. Section III demonstrates and analyzes experimental
results at the kernel level, and Section IV – at the application
level. Finally, Section V draws conclusions and discusses
future work.

II. ILCOFT

This section presents Instruction-Level Configurability of Fault
Tolerance (ILCOFT). ILCOFT allows to apply different de-
grees of FT to different application parts, depending on
how critical they are. ILCOFT is a general technique that
can be applied to many existing FT schemes, as will be
shown in Section II-C. A particular ILCOFT implementation
depends on the system architecture (the FT scheme used),
and the application constraints. ILCOFT can be applied both
to hardware and software FT schemes. A certain hardware
support is required in the case of hardware FT schemes.
Moreover, ILCOFT always requires a certain software-level
activity to assign degrees of FT to application parts, as will be
discussed in Section II-B. The actions taken by the system in
the case of a fault detection depend on the FT scheme adapted.
For example, FT schemes providing only error detection will
terminate the faulty execution unit, possibly perform a graceful
degradation, etc. FT schemes supporting recovery may recover
and continue execution. The FT characteristics of ILCOFT-
enabled FT schemes depend on the FT techniques which are
adapted and on the developer’s instructions ranking in terms
of their criticality.

Section II-A gives the reasoning behind ILCOFT. Sec-
tion II-B discusses the possible ways for an application de-
veloper to specify the required degree of FT for particular
instructions or code blocks. Section II-C shows how several
existing FT schemes can be adapted to support ILCOFT.

A. Motivation

Many multimedia applications, such as image, video and
audio coders/decoders, use lossy algorithms. After decoding, a
stream produced is not perfect. It incorporates errors which the
human eye cannot notice or can easily tolerate. For example,
if one of more than 307 thousand (640×480) pixels in an
image or a video frame has a wrong color, it is likely to
be ignored by a human. If an error occurs in calculations
associated with motion compensation in video decoding, it can
result in a wrong (rather small) block for one or a few frames.
The number of frames that can be affected depends on the
place where the error appeared and on how far the following
key frame is. Because usually there are 20 to 30 frames per
second, the chance that a human will notice this error is
quite low. Moreover, if it is noticed, it will probably result in
less inconvenience than the compression-related imperfections.
Errors can be allowed in this kind of computations. However, if
an error occurs in the control part of a multimedia application,
it is very likely that the whole application will crash. Errors
in some other parts can lead to a significant output corruption.
Therefore, errors are not allowed to occur in the latter cases.

For yet more insight into the classification of critical and
non-critical instructions, consider the image addition kernel
presented in Figure 1. If an error occurs in any of the
expressions that evaluate the pixel value sum, it will result in a
wrong pixel in the output image; this is tolerable. However, if a
problem appears in the statements controlling the loops, there
is a very small chance that it will not crash the application
or seriously damage the results. A normal termination with
correct results can happen in this case if one or both loops
performed too many iterations, but the memory which they
damaged was not used (read) later. This scenario, however,
has a very low probability. It is likely that the application
will crash (due to a jump to an invalid address, damage of
memory, etc.), or, if the loop is exited too early, the part of
the image which has not been processed yet will be wrong. The
if statement which controls saturation is less critical than the
loops, because if the condition is evaluated incorrectly, only
one pixel suffers. If the branch target address is corrupted,
however, the application will most probably crash. Thus, this
if statement can also be considered for a higher degree of FT.

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

sum = ImageX[i][j] + ImageY[i][j] ;
if(sum > 255) /* saturation */

sum = 255;
ImageX[i][j] = sum;

}

Fig. 1. Image addition

In ILCOFT, the programmer specifies the required FT
degree of every instruction or group of instructions. In other
words, the programmer indicates which parts of an application
are critical and which are not. In Section II-B we describe how
this can be done by the programmer, and under which circum-
stances it can be performed automatically by the compiler. For
example, for the image addition kernel presented in Figure 1,
the programmer should specify the maximum FT degree for
the instructions controlling the loops and the branch target
address of the if statement. For the other instructions, which
calculate the pixel values, a lower FT degree is acceptable,
and even desirable, when aiming at performance and resource
consumption minimization.

By reducing the degree of FT of non-critical instructions,
ILCOFT reduces the need in time or resource redundancy
implementing FT. Space redundancy, which increases the
amount of required hardware and energy resources, can
achieve FT without a performance loss, at the expense of
increased resources cost. The amount of hardware is often
limited, however, and to achieve FT under this constraint,
time redundancy is used, which degrades performance, and
keeps energy consumption high. When both resources and
time are limited, which is very common, ILCOFT increases
performance and reduces energy consumption at the expense
of decreased reliability of non-critical application parts. How-

ever, the critical parts are still as reliable as with a full FT
scheme, so the overall application reliability is not affected.
Optionally, the saved time can be used to further improve
the FT of the critical application parts by applying more
time-redundant techniques to them. In this case the overall
application reliability increases, because its critical parts are
protected better.

B. Specification of the Required FT Degree

Two possible ways how a programmer can specify the desired
degree of FT applied to an instruction are to set it in assembly
code or in high-level language. Alternatively the compiler can
perform this automatically.

We do not consider it feasible for large applications that
a programmer marks the required degree of FT for every as-
sembly instruction or high-level language statement manually.
It makes sense first to choose the appropriate policy which
determines the default degree of FT. The default degree of FT
is applied automatically to all unmarked instructions. It can
be set to, for example, the minimum, maximum, or average
possible degree of FT, as will be explained below.

The approach which sets the default degree of FT
to the minimum requires a programmer to mark instruc-
tions/statements that should receive a higher degree of FT. This
method does not look very practical, because there is a high
chance that many instructions are critical for an application,
e.g. an illegal branch in any place can crash the whole
application.

The opposite approach, when the default degree of FT is
the maximum, looks more useful for many applications. In
this case, a programmer marks the instructions or statements
that should have the lower degree of FT, and all the others
get a higher degree. This is especially suitable for multimedia
applications, many of which spend most of the runtime in
small kernels. Decreasing the degree of FT of a few com-
putational instructions in a heavily used kernel can provide a
significant application-level performance gain (we demonstrate
this in Section IV).

Finally, the default degree of FT can be assigned some
intermediate value. Then, a programmer has to specify instruc-
tions/statements requiring higher and lower degree of FT.

Next we discuss how an application developer can specify the
degree of FT in the source code, and how it can be done
automatically by the compiler.

1) In Assembly Code: If a developer specifies the required
degree of FT in assembly code, the way how it can be done
depends on the FT scheme which is used, if it is a hardware
or software technique.

If FT is implemented in hardware, the way the program-
mer marks instructions might depend on how the degree of
FT is passed to the hardware (see Section II-C). With the
degree of FT information embedded in instruction encoding,
the programmer marks instructions using some flags, and
the assembler encodes the necessary information into every

instruction. With special FT mode configuration instructions,
a programmer places these instructions in appropriate places.
With separate versions of every instruction, the program-
mer uses an appropriate version. Alternatively, the assembler
can be designed to support hardware-independent marking,
which is translated automatically into the supported FT degree
communication scheme. Then a programmer always marks
instructions in the same way.

In pure software, the EDDI technique [11] discussed in
Section II-C can be used. Adapting EDDI, a programmer
can duplicate the critical instructions manually, taking care
about the register allocation, register spilling, possibly memory
duplication, etc. However, an automatic assisting tool would
be very useful. This tool can be based on the compiler post-
processor used in [11], which automatically includes EDDI
into an application. A compiler reserves registers for dupli-
cate instructions, and the tool duplicates everything. In the
resulting assembly file, the programmer removes the undesired
redundancy manually.

2) In High-Level Language: Figure 2 demonstrates a pos-
sible way for a programmer to specify the desired degree
of FT for particular statements or blocks of statements in a
high-level language. This is done in the form of a #pragma
statement which determines the degree of FT that should be
applied to the following statements, until the next #pragma
statement changes it. The larger the number corresponding to
FT DEGREE is, the higher degree of FT should be. Each
statement is compiled into instruction(s) whose degree of FT
is equal to that of the corresponding statement. In the case
of control statements, a compiler must be able to find their
dependencies and to apply the appropriate degree of FT to
them. To be on the safe side, by appropriate degree of FT here
we mean the highest between the previously assigned degree
and the one required for the considered control statements.

In Figure 2, the instructions which are generated for the
for statement, should have the degree of FT equal to 3. The
instructions inside the loop (and after the loop until the next
#pragma) should have the degree of FT 1. Obviously, the loop
control depends on the values of the variables i and n, which
have been assigned before. Hence, the compiler should walk
backwards to find all the instructions on which the values of
these variables depend, and assign the degree of FT 3 to them.

#pragma FT_DEGREE 3

for(; i < n; i++)
{
#pragma FT_DEGREE 1

c[i] = a[i] + b[i];
}

Fig. 2. Possible FT degree specification in a high-level language

3) Automatically by the Compiler: If a system supports
only two degrees of FT, for example, no FT (no FT techniques

are applied) and fault tolerant (some techniques are applied),
in some cases the compiler can determine the instructions that
need to be fault tolerant automatically. This saves a program-
mer from manual work. The automatic compiler scheme can be
based, for example, on the observation that in most cases, the
instructions on which an application’s control flow depends,
require a higher degree of FT. All control flow instructions,
such as branches, jumps, and function calls, are assigned a
higher degree of FT. Furthermore, all instructions on which
these control flow instructions depend should also receive the
higher FT degree. The efficacy of this scheme depends on the
compiler’s ability to perform exact dependence analysis. In the
worst case, all instructions on which a control flow instruction
could depend need to be given the higher FT degree.

C. FT Schemes Adaptable to ILCOFT

Fault tolerant systems adapted to support ILCOFT need to pro-
vide several FT techniques of varying strengths, corresponding
to different degrees of FT. For example, a non-redundant
instruction execution has FT degree 0 (no FT), duplication
with comparison of the results can be assigned FT degree
1, and a Triple Modular Redundancy (TMR) is associated
with FT degree 2. Duplication and triplication assumes either
hardware or time redundancy. Hardware redundancy can be
represented by multiple execution units where the copies are
executed simultaneously. Time redundancy is provided by
a sequential (or partially sequential) execution of multiple
copies.

Because the main goal of ILCOFT is performance and
energy consumption optimization, we focus on FT techniques
that aim similar objectives. ILCOFT does not target systems
for which only a high level of FT is important, and a large
amount of redundancy is not an issue. There exist several tech-
niques for high-performance processors that try to minimize
the performance overhead created by protective redundancy.
Below we discuss how some of them can be adapted to support
ILCOFT.

Error Detection by Duplicated Instructions (EDDI) [11] is a
pure software technique. It duplicates all instructions in the
program assembly code and inserts checks to determine if the
original instruction and its duplicate produce the same result.
More precisely, the registers are partitioned into two groups,
one for the original instructions and one, called the shadow
registers, for the duplicate instructions. After the execution of
a duplicate instruction, the contents of the shadow register(s)
it affects should be identical to the contents of the destination
register(s) of the original instruction. A mismatch signals an
error. Instead of comparing the registers after the execution of
every duplicate instruction, EDDI allows faults to propagate
until the point where the value is saved to memory, and detects
them just before saving. In other words, EDDI compares the
registers only before their values are stored in memory. This
minimizes the number of checking instructions needed, and
thus, reduces the performance overhead, while data integrity
is still guaranteed. EDDI also duplicates the data memory.

This means that the data memory has a shadow copy which is
referenced by the duplicate load/store instructions. Thus, after
any duplicate store instruction, the contents of the shadow data
memory must be the same as the original data memory.

From the point of view of performance overhead minimiza-
tion, the main idea behind EDDI is that most applications
cannot profit from wide-issue superscalar processors because
they do not exhibit sufficient Instruction-Level Parallelism
(ILP) [16]. Because the original instructions and the duplicate
instructions are independent, applying EDDI will increase ILP
and, therefore, detect errors with a minimal or reasonable
performance overhead in superscalar processors.

The original EDDI scheme supports only one degree of FT:
duplication and comparison. It is straightforward, however, to
extend EDDI to allow more redundancy, implementing, for
example, triplication with voting. A lower degree of FT (no
redundancy) can be easily achieved by avoiding duplication
of certain instructions. From now on we assume that the user
can specify the degree of replication.

In ILCOFT-enabled EDDI, only critical instructions are
replicated. As discussed in Section II-B, the programmer spec-
ifies the required FT degree of all program statements or as-
sembly instructions. Alternatively, it is done automatically by
the compiler. During compilation, each instruction is replicated
according to its FT degree and then the results are compared
or voted. Memory replication is not used in ILCOFT-enabled
EDDI because all instructions have to be replicated to maintain
a consistent memory copy. Instead, memory protection can
be implemented by using ECC or other popular methods,
preferably in hardware (this is outside the scope of this paper).
In Section III and Section IV, the performance and energy
dissipation of ILCOFT-enabled EDDI is compared to those of
EDDI. It will be shown that minimizing the degree of FT for
non-critical instructions provides a substantial gain. Besides
that, the fault coverage of these schemes will be evaluated.

Franklin [17] proposed to duplicate instructions in super-
scalar processors at run time and compare the results to detect
errors. The two places, where instructions can be duplicated,
were presented and analyzed: (1) in the dynamic scheduler
after an instruction is decoded, and (2) in the functional
unit where the instruction is executed. To adapt this scheme
to support ILCOFT, the required FT degree of executed
instructions has to be passed to the hardware. Based on this
information, the hardware performs the appropriate FT action,
i.e., duplicates the instructions if necessary. This can be also
applied to the scheme proposed in [18].

The DIVA approach [19], [20], [21] uses a simple and robust
processor, called DIVA checker, to verify the operation of the
high-performance speculative core. This approach can also
be adapted to support ILCOFT by selecting the instructions
whose results have to be verified by the DIVA checker.

ILCOFT is also applicable to FT techniques based on
simultaneous multithreading [22], such as those presented
in [4], [23], [24], [25], [26], slipstream processors [5], and
others.

It should be noted that for FT techniques implemented

in hardware, there must be a way to set the required FT
mode for every instruction. For example, several bits in the
instruction encoding can specify the required FT degree.
The number of bits allocated for this purpose depends on
the number of available FT modes supported by hardware.
Alternatively, special instructions can be introduced which
configure hardware to work in the desired FT degree mode.
Finally, separate versions of each instruction can be created
for every supported FT degree. The last solution does not look
promising, however, because it implies a large overhead.

III. KERNEL-LEVEL VALIDATION

This section presents experimental results with several ker-
nels. The advantages and disadvantages provided by applying
ILCOFT to an existing FT scheme are evaluated. Due to the
experimental setup limitations, we work with only one FT
scheme, i.e. the software error detection technique EDDI [11].
We adapt EDDI to support ILCOFT. EDDI and ILCOFT-
enabled EDDI are presented in Section II-C.

The FT features of EDDI and ILCOFT-enabled EDDI are
discussed first. ILCOFT-enabled EDDI limits the sphere of
replication of EDDI, protecting only the critical instructions,
and avoiding memory duplication. Both EDDI and ILCOFT-
enabled EDDI reliably protect only against transient hardware
faults that do not last longer than one instruction execution. To
protect against faults taking more time, including permanent
faults, there should be a way to ensure that an instruction and
its duplicate execute on different hardware units. For example,
they can execute on different CPUs in a multiprocessor system,
or on different functional units of a superscalar processor. In
the latter case, long-lasting faults are covered only within the
functional units. Alternatively, to avoid hardware replication,
techniques changing the form of the operands of a duplicate
instruction, such as alternating logic [27] and recomputing
with shifted operands [28], can be used. However, these
enhancements are expected to have a significant impact on
performance, and are outside the scope of this paper.

The following kernels are investigated: image addition (IA),
discussed in Section II-A (Figure 1), matrix multiplication
(MM), sum of absolute differences (SAD), and a Fibonacci
numbers generator (Fib). Section III-A presents and analyzes
the performance evaluation results, Section III-B – the energy
results, and Section III-C – the fault coverage evaluation.

A. Performance Evaluation

To evaluate the performance gain delivered by applying IL-
COFT to EDDI, performance results of four kernels in non-
redundant (i.e. original), EDDI and ILCOFT-enabled EDDI
forms are compared. The SimpleScalar simulator tool set [29],
[30] is utilized for performance simulation. The default Sim-
pleScalar PISA architecture is used.

For each kernel, the C source code is compiled to Sim-
pleScalar assembly code. The compiler-optimized version of
the application (i.e. compiled by GCC with -O2 flag) plays

 Add Images Matrix Multipli-
cation

Sum of Absolute
Differences (SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDIS
lo

w
d
o
w

n

(a) Issue width 1

 Add Images Matrix Multipli-
cation

Sum of Absolute
Differences (SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDIS
lo

w
d
o
w

n

(b) Issue width 2

 Add Images Matrix Multipli-
cation

Sum of Absolute
Differences (SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Original

ILCOFT

EDDIS
lo

w
d
o
w

n

(c) Issue width 4

 Add Images Matrix Multipli-
cation

Sum of Absolute
Differences (SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Original

ILCOFT

EDDIS
lo

w
d
o
w

n

(d) Issue width 8

Fig. 3. Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-redundant version, for varying issue widths

the role of the “original”, non-redundant application, with no
FT.

The EDDI version of the kernel is derived from the original
version by hand, according to the specification presented
in [11]. All the instructions and memory are duplicated, and
the checking instructions are integrated. Checking instructions
only appear before a value is stored or used to determine a con-
ditional branch outcome. Faults are free to propagate within
intermediate results. This is proposed in [11] to minimize the
performance overhead.

The ILCOFT-enabled EDDI version is obtained from the
original application by duplicating only the critical instructions
in the kernel and comparing their results, without memory
duplication. The original to ILCOFT-enabled EDDI transfor-
mation is also performed by hand. The control instructions are
considered to be critical. For the IA kernel, these are the in-
structions to which the loop control statements in Figure 2 are
compiled, and the instructions on which the control variables
depend.

Figure 3 depicts the slowdown of EDDI and ILCOFT-
enabled EDDI over the non-redundant scheme for four dif-
ferent processor issue widths. Figure 4 demonstrates the ratio
of the number of committed instructions of both schemes to
that of the non-redundant scheme. Without ILP, speculation
etc., Figure 3 is expected to be similar to Figure 4. The
performance results of Figure 3(a) (issue width 1) are quite
consistent with Figure 4, but for larger issue widths, the
processor exploits the available parallelism better (the original
instruction and its duplicate are independent). Because of this,
the slowdown of EDDI and ILCOFT-enabled EDDI decreases

 Add Images Matrix Multipli-
cation

Sum of Absolute
Differences (SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDI

R
a
ti

o
 o

f
co

m
m

it
te

d
 i
n

st
ru

ct
io

n
s

Fig. 4. Committed instructions

when the issue width increases, unless there are other limiting
factors. MM, for example, has a structural hazard: there is only
one multiplier, so the duplicate of a multiplication instruction
cannot be executed in parallel with the base instruction.

Figure 3 shows that despite duplication of all instructions
and memory in EDDI, especially for larger issue widths, its
slowdown over the original application is in most cases smaller
than the intuitively anticipated two times (actually, more than
two because of the checking instructions, duplicated memory,
and register spilling). This happens due to the increased ILP
introduced by the duplicates which are independent on the
original instructions. This leads to a more efficient resource
usage and fewer pipeline stalls. ILCOFT-enabled EDDI also
profits from this feature. Figure 3 also shows that ILCOFT-
enabled EDDI is considerably (up to 50%) faster than EDDI.
Several factors contribute to this:

• The number of instructions in ILCOFT-enabled EDDI is

Add Images Matrix Multipli-

cation
Sum of Absolute
Differences
(SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDI

(a) Issue width 1

Add Images Matrix Multipli-

cation
Sum of Absolute
Differences
(SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDI

(b) Issue width 2

Add Images Matrix Multipli-

cation
Sum of Absolute
Differences
(SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDI

(c) Issue width 4

Add Images Matrix Multipli-

cation
Sum of Absolute
Differences
(SAD)

Fibonacci
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDI

(d) Issue width 8

Fig. 5. Energy consumption increase of EDDI and ILCOFT-enabled EDDI over non-redundant kernels, for varying issue widths

smaller than in EDDI (by about 40% on average, see
Figure 4).

• EDDI duplicates memory, while ILCOFT-enabled EDDI
does not.

• EDDI needs more registers than ILCOFT-enabled EDDI,
since ILCOFT-enabled EDDI duplicates fewer instruc-
tions and, hence, reduces register pressure. Higher reg-
ister usage leads to more register spilling.

As these factors have different weights for different kernels,
the speedup of ILCOFT-enabled EDDI over EDDI is not
constant. For example, for the IA kernel, the simulation results
show that memory duplication contributes 1.3% to the speedup
of ILCOFT-enabled EDDI over EDDI. The contribution of
additional register spilling (two more registers are saved in
stack for EDDI) is negligible (less than 1%). The remaining
contribution should be attributed to the increased number of
instructions.

B. Energy and Power Consumption

To evaluate the energy saving of ILCOFT-enabled EDDI, we
use the power analysis framework Wattch [31]. Wattch is an
architectural-level microprocessor power dissipation analyzer.
It is a high-performance alternative to lower-level tools which
are more accurate, but can only provide power estimates when
the layout of a design is available. According to [31], Wattch
provides a 1000 times speedup with the accuracy within
10% of the layout-level tools. We use the default Wattch
configuration. The results for the clock gating style which
assumes 10% of the maximum power dissipation for unused
units [31] are considered.

Energy consumption increase of EDDI and ILCOFT-
enabled EDDI over the non-redundant (original) scheme is
presented in Figure 5. Four kernels, the same as in Sec-
tion III-A, are used. As expected, the energy graphs follow
closely the performance graphs at Figure 3. This is because
the same factors (number of instructions and used resources)
affect energy and performance. Figure 5 demonstrates that
ILCOFT is able to significantly (up to 50%) reduce the energy
consumption overhead.

The average power consumption per cycle of the different
schemes has also been evaluated. The power consumption
does not vary significantly for the three considered schemes,
because the resource utilization is similar for them. The
maximum fluctuation observed is 10%. As can be expected,
the fluctuation is minimal with lower issue widths (no more
than 3% for issue width 1), and increases with higher issue
widths. This can be explained by approximately equal resource
usage with lower issue widths. With higher issue widths,
the resource usage varies for different schemes, due to the
difference in the available ILP, and the power consumption
varies accordingly. In most cases EDDI consumes more power
per cycle than the other two schemes, because it generates
more ILP, and, therefore, keeps more resources busy.

C. Fault Coverage Evaluation
In this section we provide an evaluation of the fault coverage
of ILCOFT-enabled EDDI. The purpose is to determine how
ILCOFT affects the fault coverage of EDDI.

We simulate hardware faults by extending the SimpleScalar
sim-outorder simulator with a fault injection capability. At a
specified frequency (every N instructions) a fault is injected

by corrupting an input or output register of an instruction
(overwriting its content with a random value). Only integer
arithmetic instructions are affected by the fault injector. This
is because the tested kernels have only integer arithmetic,
memory and branch instructions, but the faults inside memory
access and branch instructions are not covered by EDDI (only
their inputs are protected). Thus ILCOFT-enabled EDDI is also
not expected to cover them. Fault injection into an instruction
input register simulates a memory, bus or register file fault.
Fault injection into an output register simulates a functional
unit fault also. Faults are injected only within the kernel code,
because the main function is not protected in our experiments.

We remark that the fault appearance does not represent a
realistic model. The aim here is to evaluate the fault coverage
of the investigated schemes under different fault pressures
(frequencies), and to ensure that as many as possible of the
fault propagation paths within the kernels are examined. By
making the fault injection periodic rather than random, and by
varying the frequency for each of a large number of simula-
tions, we attempt to gain a better control over the process, and
to achieve the mentioned goals. Moreover, we simulate burst
(multi-bit) faults rather than more probable single-bit faults
with the purpose to represent the worst possible case.

Table I, Table II, and Table III present the faults injection
results for the three different schemes. The first column
specifies the used kernels. The second column of each table
shows the number of simulations executed. The chosen number
of simulations differs for each kernel, and depends on the
number of committed instructions. The frequency of injected
faults starts from one fault per every 1000 (in some cases
100) instructions, and every new simulation decreases the fault
frequency until it becomes roughly one fault per execution. In
this way we make sure that all the situations with frequent
down to rare faults are evaluated, and that random instruc-
tions within kernels are affected. The third column shows
how often faults have been detected by the FT scheme. For
example, for the IA, 86.66% simulations were aborted with
an error message by ILCOFT-enabled EDDI, and 100% –
by EDDI. The fourth column demonstrates how often errors
were detected by the simulator, for example, the application
was terminated with an illegal memory access reported. The
column “Undetected” contains the percentage of simulations
with undetected fault(s), which shows how often the execution
finished without reporting errors. The column “Application
crashed” demonstrates how often an application crashed, i.e.,
did not produce any output. The column “Escapes” shows
how often escapes occurred, i.e. an application delivered a
correct result despite the presence of (undetected) fault(s).
The faults have not propagated to the output. In parentheses
the maximum number of undetected faults in this situation
is given. The column “Max. # injected faults” gives the
maximum number of faults injected per execution, before
the execution finished either normally or abnormally (was
interrupted reporting errors). There are usually fewer injected
faults in EDDI than in other schemes, because EDDI detects
and reports faults, aborting the execution, earlier. The column

“Max. # undetected faults” shows the maximum number of
undetected faults, which were injected but not detected; the
execution is then finished without reporting errors. Most of
the times these undetected faults result in corrupted application
output, except the cases counted in the column “Escapes”. The
columns “Max. output corruption” and “Av. output corruption”
present the maximum and the average output corruption caused
by undetected faults. Only simulations with undetected faults,
which finished without reporting errors, are considered here.
This demonstrates how many undetected faults propagate to
the output, and how much they affect the output. An output
corruption percentage is defined as a ratio of the number of
wrong output elements generated by an execution to the total
number of output elements. The average output corruption is
calculated as a sum of all the corruption percentages divided
by the number of simulations, i.e. it is the arithmetic average.
The average output corruption is used to emphasize that a very
high maximum output corruption does not necessarily mean
that the output is usually corrupted so much. It can be an
exceptional case.

Obviously, ILCOFT affects kernels in very different ways.
The difference in the fault coverage can be explained by
the density of the duplicated instructions in a kernel. The
more instructions are duplicated, the better fault coverage is,
and the lower performance and energy consumption gain is.
Among the presented kernels, the worst fault coverage (the
greatest percentage of executions finished with undetected
faults) appears in MM and SAD. This is because in these
kernels relatively many unprotected computational instructions
reside between the protected control instructions. Depending
on the application, the significant performance increase at
the expense of the weak fault coverage can be considered
acceptable. For example, for SAD used in motion estimation,
a wrong motion vector leads to a wrong block, which can
usually be tolerated by the user.

The exceptionally high percentage of escapes in MM (with
the original and ILCOFT-enabled EDDI schemes) can be
explained by the fact that most of the results (output matrix
elements) are truncated when overflow occurs. Truncation
masks faults by assigning the maximum possible value to any
(correct or wrong) greater value. This can also be one of the
reasons why MM has a relatively small percentage of detected
faults with the ILCOFT-enabled EDDI scheme: the faults are
masked before they propagate to a checking instruction which
can detect them. With a higher calculations precision (more
bits per value), the number of escapes would drop. EDDI does
not have any escapes, because it detects all the faults in MM.

The most important fault coverage characteristic from a
user point of view is the final output corruption. The fact
that a certain amount of corruption can be allowed in some
applications drives the idea behind ILCOFT. Obviously, this
is application-specific and depends solely on the algorithm
employed. The IA kernel, computing every pixel value in-
dependently, without a long chain of computations, shows a
very good result for ILCOFT-enabled EDDI: only a few pixels
(maximum 0.13% of the whole output image) are corrupted.

TABLE I
FAULT INJECTION RESULTS FOR THE NON-REDUNDANT SCHEME FOR THE FOLLOWING KERNELS: IMAGE ADDITION (IA), MATRIX MULTIPLICATION

(MM), FIBONACCI NUMBERS GENERATION (FIB) AND SUM OF ABSOLUTE DIFFERENCES (SAD)

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 2768 n/a 0 100 0 0 6438 6438 99.66 1.074
MM 621 n/a 0 100 0 43 (9) 50 50 94.75 2.992
Fib 532 n/a 32.33 67.67 0 10.71 (4) 5 5 97.78 53.991
SAD 326 n/a 0 100 0 8.28 (10) 130 130 100 100

TABLE II
FAULT INJECTION RESULTS FOR THE ILCOFT-ENABLED EDDI SCHEME

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 13526 86.66 0 13.34 0 0.07 (2) 22 11 0.13 0.012
MM 621 53.62 0 46.38 0 23.19 (5) 15 11 99 3.103
Fib 581 66.44 25.99 7.57 0 0 8 3 96.67 38.232
SAD 340 55.88 0 44.12 0 0.29 (1) 25 18 100 100

TABLE III
FAULT INJECTION RESULTS FOR THE EDDI SCHEME

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 6025 100 0 0 0 0 2 0 0 0
MM 621 100 0 0 0 0 11 0 0 0
Fib 581 67.81 32.01 0.17 0 0 3 2 96.67 96.667
SAD 340 98.53 0 0.29 1.18 0.29 (1) 23 1 100 100

This can often be unnoticed by a user. The maximum output
corruption happened when a fault was injected into the register
which held the base address of an array representing one
input image line (matrix row), and was later used to fetch
all the image data on this line. As a result, garbage was
fetched from a random memory location for every pixel of
the rest of the line, and the resulting image line was entirely
corrupted from the point where fault appeared. This was quite
visible on the output image. It could be solved by performing
checks of computed addresses before every load and store,
as will be discussed later. Then, only single pixels would
have been affected. In all other kernels, the resulting values
depend on a long chain of computations, and even on each
other, so the final output corruption increases dramatically.
For example, in Fib, every subsequent value depends on the
previous one, and thus, all the values behind the first erroneous
one become wrong, independently on the FT scheme used.
This leads to the extremely high final output corruption even
in EDDI (see Table III). However, only one of 581 simulations
(0.17%) finished with undetected errors (2 undetected faults)
with EDDI, and 7.57% of simulations – with ILCOFT-enabled
EDDI, while 67.67% of unprotected executions finished with
undetected errors. The single error undetected by EDDI obvi-
ously manifested among the first Fibonacci numbers, so all
the following numbers were computed on the base of this
error, and thus, about 97% of the final output was corrupted.
The average output corruption of about 97% is equal to the
maximum, because this is the only undetected error. SAD
delivers only one value as a result, which can be either correct
or wrong, and any unmasked fault in the computations leads to
an error. Consequently, all the undetected and unmasked errors

in protected and unprotected executions affect 100% of the
output. However, the unprotected execution delivered wrong
result in 100% of the simulations, while EDDI-protected –
only in 0.29% of the simulations. The execution protected
with ILCOFT-enabled EDDI, as expected, fits in between,
delivering wrong output in 44.12% cases.

To investigate the behavior under a more realistic fault
appearance model, the same experiments have been conducted
with a random, rather than periodic, fault injection. Faults into
input or output registers were injected at random instructions,
with varying fault pressure. The general impression from the
results of these experiments is the same as with the periodic
fault injection presented above. However, a few significant
differences have been observed, which are discussed below.

For IA protected by ILCOFT-enabled EDDI, the maximum
output corruption increased to 21.3%. We explain this by
a larger number of faults affecting registers holding array
base addresses. For MM, the maximum output corruption
decreased to 30% for the non-redundant scheme, and to
50% for ILCOFT-enabled EDDI. With the EDDI scheme,
the percentage of detected faults decreased to 73.1%, and
the percentage of escapes increased to 26.9%. We attribute
these differences to a larger number of faults injected before
truncation is performed (the effect of truncation is discussed
above). For Fib, the average output corruption decreased to
41.7% for EDDI. This is because fault(s) propagated to the
output in more than one simulation (1.4% simulations finished
with undetected faults), affecting the output in different ways.
For SAD protected by EDDI, the detected percentage dropped
to 86.7%. However, most of these faults did not propagate to

the output (the percentage of escapes increased to 13%).

The experimental results demonstrate that the fault coverage
of ILCOFT-enabled EDDI can be significantly improved at
a relatively low cost. This can be achieved by protecting
the computed memory access addresses. For example, as
mentioned, it could solve the corrupted output line problem in
IA. The protection can be applied before every load and store
instruction, by checking the value of the register which holds
the memory address. Of course, the redundant value must be
computed by a chain of duplicated instructions (which can
be done automatically by a compiler). This brings back the
trade-off between performance and fault coverage.

The memory access address problem is not relevant for
EDDI, because the memory is duplicated there. Thus, all
the loads and stores reference different memory locations.
However, this can be a point where the fault coverage of
ILCOFT-enabled EDDI is stronger than that of EDDI itself:
EDDI does not have any memory address protection, so a
fault in a store instruction can damage any memory location.
ILCOFT-enabled EDDI with memory access protection saves
from this.

To minimize the performance loss, only the store addresses
can be protected, assuming that a memory corruption is worse
than fetching a wrong value. But in this case, the IA corrupted
line problem discussed above is not solved.

IV. APPLICATION-LEVEL VALIDATION

In this section we discuss how ILCOFT can be applied to an
entire application while keeping the programming effort min-
imal. We estimate the advantages that it brings and evaluate
the price to be paid for that.

As discussed in Section II-B, it is infeasible that the ap-
plication developer manually annotates all (block) statements
with the required FT degree. Instead, everything can be
automatically protected, and the programmer can focus only on
some most promising application parts to minimize resource
consumption at the minimum effort and reliability cost.

The running time of some applications (e.g., multimedia)
is dominated by a few kernels or loops. The most time-
consuming kernels often feature the natural error tolerance
on which the ILCOFT idea is based. Moreover, the most
time-consuming kernels are often relatively small, hence it
is feasible to manage their protection manually. Thus these
kernels favor ILCOFT the most, from the points of view
of effectiveness, error tolerance, and minimal programming
effort. A significant benefit is expected if the programmer
manages manually protection of only (some of) these kernels,
the rest of the application could be protected automatically.

We apply this strategy to the cjpeg application [32], which
compresses an image file to a JPEG file. We have profiled
this application and the results show that one of the most
time-consuming functions on the simulated architecture is
jpeg fdct islow, which implements the Inverse Discrete Co-
sine Transform (IDCT). This function takes from 20.7% to
23.1% of the total execution time, depending on the issue

width. However, this function has a relatively small (compar-
ing to the whole application) number of static instructions,
which makes it easy to manage by hand. We apply ILCOFT-
enabled EDDI only to the IDCT kernel (manually), and assume
that the rest of the application is protected (automatically)
by full EDDI. Further we show how this relatively small
programming effort affects the whole application.

Section IV-A analyzes the performance results, Section IV-B
– energy consumption results, and Section IV-C – fault cov-
erage results of this experiment.

A. Performance Evaluation

We compare the performance of the three schemes using the
SimpleScalar simulator tool set [29], in the manner similar to
Section III-A. Since currently we do not have an automatic
tool implementing EDDI protection, we only apply the FT
schemes to the IDCT kernel in the simulation. We measure
the application execution time with the IDCT kernel free of
redundancy, with EDDI and ILCOFT-enabled EDDI protec-
tion. Then we use these results to derive expected results for
the completely protected application. Specifically, let the total
running time of cjpeg be given by

Ttotal = Tidct + Trest,

where Tidct is the time taken by the IDCT kernel and Trest
is the time of the rest of the application. Furthermore, assume
that applying full EDDI (using a tool) to the rest of the
application slows it down by a factor of f , then the total
running time of cjpeg protected with EDDI is given by

Ttotal-eddi = Tidct-eddi + f · Trest,

where Tidct-eddi is the measured running time of the IDCT
kernel when protected with EDDI. Similarly, the total running
time of cjpeg protected with ILCOFT-enabled EDDI is

Ttotal-ilcoft = Tidct-ilcoft + f · Trest,

where Tidct-ilcoft is the measured running time of the IDCT
kernel when protected with ILCOFT-enabled EDDI. In other
words, for the IDCT kernel we take the measured running
time and for the rest which is protected by full EDDI we
assume an overhead by the factor of f (which is the same
for both Ttotal-eddi and Ttotal-ilcoft). We assume that EDDI
introduces 100% overhead, which is quite pessimistic for
higher issue widths, because EDDI increases the amount of
available instruction-level parallelism [11]. Note that the less
overhead EDDI introduces in the rest of the application,
the more pronounced benefits ILCOFT-enabled EDDI brings.
100% EDDI overhead means the factor f equals 2 in our
estimations.

Figure 6(a) presents the slowdown of the IDCT kernel
protected with EDDI and ILCOFT-enabled EDDI over its
non-redundant version. The runtime of all the IDCT function
invocations during JPEG encoding process is accumulated.
This figure reflects the simulation results. Unlike in Sec-
tion III-A, this experiment uses a slightly modified version
of EDDI, which does not duplicate memory. Duplicating

Issue width 1 Issue width 2 Issue width 4 Issue width 8

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

Original

ILCOFT

EDDIS
lo

w
d
o
w

n

(a) Simulated: IDCT kernel slowdown, accumulated for all its invoca-
tions in JPEG encoding.

 Issue width 1 Issue width 2 Issue width 4 Issue width 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Original

ILCOFT

EDDIS
lo

w
d

o
w

n

(b) Estimated: JPEG encoder slowdown with protection applied to the
whole application. Based on the assumption that for the rest of the
application (except the IDCT kernel), EDDI introduces 100% overhead.

Fig. 6. Slowdown of EDDI and ILCOFT-enabled EDDI versions over the non-redundant version, for varying issue widths.

(allocating and copying) memory for each invocation of the
IDCT function would bring a significant unjustified overhead
in the application, which in our opinion would not reflect the
actual EDDI influence. Usually one would expect EDDI to
introduce lower overhead than Figure 6(a) reports, because the
duplicated instructions it adds are independent of the original
ones, so the available instruction-level parallelism is increased.
However, for the IDCT kernel EDDI introduces overhead
higher than 2 times, for example, 2.59 times for issue width 1
and 2.11 times for issue width 4 (see Figure 6(a)). We attribute
this to the high register utilization in IDCT. EDDI halves the
number of available registers, allocating 13 of them, leading
to a need in a large amount of register spilling. Besides the
additional memory overhead from register spilling, the stored
value of every store instruction should be checked in EDDI,
which significantly increases the number of inserted branch
instructions. A bad scaling with the increased issue width we
attribute to the fact that the original IDCT code has enough
independent instructions that can be executed in parallel, so
the additional instruction-level parallelism brought by EDDI
cannot be fully utilized due to the lack of computing resources.

Unlike with EDDI, IDCT is very friendly to ILCOFT (when
considering only the control instructions to be critical). There
are only two loops in the jpeg fdct islow function, which are
not nested. Therefore ILCOFT-enabled EDDI allocates only
one register (for shadow copies of the counters), duplicates
only a few instructions and adds only two checks. This is
very little redundancy for a function with about 350 static
instructions, which leads to a negligible performance overhead
over the original.

Figure 6(b) presents the analytically estimated performance
overhead for the whole JPEG encoder. Here the IDCT kernel
is protected with either EDDI or ILCOFT-enabled EDDI, and
the rest of the application – with EDDI. It shows that applying
ILCOFT to only the IDCT kernel of EDDI-protected JPEG
encoder is able to deliver a performance gain of 14% on
average.

B. Energy Consumption

Similar to Section III-B, we obtained the energy consumption
results with Wattch [31]. The results show a behavior similar
to that of the performance in Figure 6. On average, the JPEG
encoder with the IDCT kernel protected by ILCOFT-enabled
EDDI consumes about 14% less energy than with EDDI.

C. Fault Coverage Evaluation

We perform experiments similar to those in Section III-C,
injecting faults regularly (from once per 500 thousand to
once per 50 million instructions) into the input and output
registers of the instructions within the IDCT kernel. The fault
frequency decreases with each simulation. Table IV presents
the fault injection results for 100 simulations. The presentation
is similar to that of Table I.

Table IV shows that EDDI detected almost all the faults
(98%). The effects of the other 2% faults have been masked,
did not propagate to the output, or were detected by the
simulator before the FT scheme. ILCOFT-enabled EDDI did
not detect any faults in our simulation. We explain this by the
fact that the number of checks performed within the kernel is
very low as compared to EDDI.

The column “Detected (application)” shows that 59% of
the faults in ILCOFT-enabled EDDI have been detected by
the application, reporting an out-of-range DCT coefficient.
Nothing has been detected by the application in EDDI, because
the faults have been caught earlier by EDDI or the operating
system. The column “Detected (simulator)” demonstrates that
for both schemes some faults have been detected by the
simulator (operating system), reporting, for example, an illegal
memory access. From the column “Application crashed” it can
be seen that the application never crashed due to the faults,
neither for EDDI nor for ILCOFT-enabled EDDI.

It may appear surprising that in the column “Max. # injected
faults”, the maximum number of faults injected per simulation
is much larger for EDDI than for ILCOFT-enabled EDDI. This
is due to the way our error handler works: when EDDI detects
a fault, it reports an error and returns from the running IDCT
function, but does not stop the whole application. In this way
we are able to see if EDDI detects faults in future IDCT

TABLE IV
FAULT INJECTION RESULTS FOR THE JPEG ENCODING

sim.
Detected

(FT scheme)
%

Detected
(application)

%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Escapes
% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

ILCOFT 100 0 59 4 35 0 9(4) 9 8
EDDI 100 98 0 27 0 0 0 147 0

invocations. However, unlike in EDDI, undetected faults in
ILCOFT-enabled EDDI easily propagate to the points where
the wrong values are used in loads and stores, which triggers
a simulator (operating system) exception, and the application
stops. Thus, the simulation is shorter, and the fault injector is
not able to inject more faults.

Fig. 7. Output corruption due to the undetected faults in IDCT

35% of the ILCOFT scheme simulations ended with un-
detected faults, which were either masked or propagated to
the output. Figure 7 depicts one of the most corrupted output
JPEG images produced by our simulations. It was produced
with fault frequency of once per 10 million instructions, and
this particular simulation produced the maximum number of
undetected faults (equal to 8). The three areas where we were
able to visually recognize corruption are marked with squares.
On the right, the magnified versions of these areas are shown,
in the original image (left column) and the corrupted image
(right column).

We believe that the possibility to end up with this kind of
output corruption is quite an acceptable price for a significant
speedup and energy saving which ILCOFT applied to the
protection of the IDCT kernel provides. This is under the
assumption of relatively low requirements to the output image
quality, which can be quite appropriate in embedded systems,
PCs and other systems not designed for critical missions. For
applications with very high requirements to the output image
quality JPEG is not a good choice anyway, because it is
originally lossy. The other expectation is a relatively low fault
rate which is anticipated in the foreseeable future in normal
environments (ILCOFT does not target extreme cases such as
environments with a high radiation). The low fault rate means
that most of the time redundancy is not useful, but only brings

overhead. In this situation, reducing time and energy overhead,
still being guaranteed against severe crashes, but increasing the
chance of tolerable errors, makes sense.

V. CONCLUSIONS

In this work we have proposed an instruction-level, rather
than application-level, configurability of FT techniques. This
idea is based on the observation that some applications might
pose different FT requirements for their different parts. For
example, in multimedia applications, an error in parts cal-
culating the value of a pixel, a motion vector, or a sample
frequency (sound) can be easily unnoticed or ignored by a
human observer. However, an error in the control (critical) part
will most probably lead to a crash of the whole application.
This suggests that it is most important to apply the strongest
FT features to the critical parts, and non-critical parts can be
protected with a weaker FT (or left unprotected) to improve the
application performance and save resources. In applications
with execution time constraints, the time saved by reducing
the FT of non-critical parts can be used to further increase the
FT of the critical parts, thus improving the overall application
reliability.

We have shown how several existing FT schemes could be
adapted to support ILCOFT. We also proposed a way how a
programmer could specify the desired degree of FT in a high-
level language or assembly code, and indicated how a compiler
could apply FT techniques to control code automatically.

The experimental results have demonstrated that ILCOFT is
able to significantly improve an application performance and
reduce the energy consumption when applying a higher FT
degree to its critical parts (instructions) only. At the kernel
level, the performance and energy dissipation improved up
to 50%, and at the application level – up to 16%. In the
application-level experiments, this improvement is achieved
by applying ILCOFT to only one of the most time-consuming
kernels, minimizing the programmer effort. This indicates
that adaptation of only one kernel provides a significant
application-level improvement.

The price to be paid for the performance and energy gains
provided by ILCOFT is the decreased fault coverage. The ex-
perimental results have shown that fault coverage of ILCOFT
is very application-specific and works best with applications
that compute independent elements. The fault coverage cer-
tainly depends on the amount of redundancy applied. In some
cases the output corruption introduced by ILCOFT is tolerable,
in others it is not acceptable. Finally, we have demonstrated
that adding memory access address protection in ILCOFT-
enabled EDDI could significantly improve the fault coverage.

Future work consists of applying ILCOFT to other FT
schemes, also in hardware. Furthermore, development of com-
piler support for specification of FT degree is necessary to
evaluate ILCOFT for large applications, such as audio/video
codecs.

ACKNOWLEDGEMENTS

This work was partially supported by the European Commis-
sion in the context of the SARC integrated project #27648
(FP6).

REFERENCES

[1] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. In DSN-02: Proc. 2002 Int. Conf. on Dependable
Systems and Networks, pages 389–398, Washington, DC, USA, 2002.

[2] T.R.N. Rao and E. Fujiwara. Error-Control Coding for Computer
Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[3] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Ch. Dai.
Impact of CMOS Process Scaling and SOI on the Soft Error Rates of
Logic Processes. VLSI Technology. Digest of Technical Papers, pages
73–74, 2001.

[4] N.R. Saxena and E.J. McCluskey. Dependable Adaptive Computing
Systems–the ROAR project. In Proc. IEEE Systems, Man, and Cyber-
netics Conf, volume 3, pages 2172–2177, Oct 1998.

[5] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Processors:
Improving Both Performance and Fault Tolerance. ACM SIGPLAN
Notices, 35(11):257–268, 2000.

[6] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of slipstream
processors. In MICRO-33: Proc. 33rd annual ACM/IEEE Int. Symp. on
Microarchitecture, pages 269–280, New York, NY, USA, 2000.

[7] M.A. Breuer, S.K. Gupta, and T.M. Mak. Defect and Error Tolerance
in the Presence of Massive Numbers of Defects. IEEE Design and Test
of Computers, 21(3):216–227, 2004.

[8] H. Chung and A. Ortega. Analysis and Testing for Error Tolerant Motion
Estimation. In DFT-05: Proc. 20th IEEE Int. Symp. on Defect and Fault
Tolerance in VLSI Systems, pages 514–522, Washington, DC, USA, Oct
2005.

[9] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August.
SWIFT: Software Implemented Fault Tolerance. In CGO ’05: Proc. of
the Int. Symp. on Code Generation and Optimization, pages 243–254,
Washington, DC, USA, 2005.

[10] N. Oh and E.J. McCluskey. Error Detection by Selective Procedure
Call Duplication for Low Energy Consumption. IEEE Transactions on
Reliability, 51(4):392–402, Dec 2002.

[11] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error Detection by Dupli-
cated Instructions in Super-Scalar Processors. IEEE Transactions on
Reliability, 51(1):63–75, Mar 2002.

[12] D.J. Lu. Watchdog Processors and Structural Integrity Checking. IEEE
Transactions on Computers, C-31(7):681–685, Jul 1982.

[13] A. Mahmood and E.J. McCluskey. Concurrent Error Detection Using
Watchdog Processors–A Survey. IEEE Transactions on Computers,
37(2):160–174, Feb 1988.

[14] J. von Neumann. Probabilistic Logics and the Synthesis of Reliable Or-
ganisms from Unreliable Components. In Automata Studies, volume 34
of Annals of Mathematics Studies, pages 43–98. Princeton University
Press, Princeton, NJ, 1956.

[15] B.W. Johnson. Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley, Jan 1989.

[16] J.L. Hennessy and D.A. Patterson. Computer Architecture, a Quantita-
tive Approach. Morgan Kaufmann, third edition, May 2003.

[17] M. Franklin. A Study of Time Redundant Fault Tolerance Techniques
for Superscalar Processors. IEEE Int. Workshop on Defect and Fault
Tolerance in VLSI Systems, pages 207–215, Nov 1995.

[18] J. Ray, J.C. Hoe, and B. Falsafi. Dual Use of Superscalar Datapath for
Transient-Fault Detection and Recovery. MICRO-34, pages 214–224,
Dec 2001.

[19] T.M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microar-
chitecture Design. In MICRO-32: Proc. 32nd annual ACM/IEEE Int.
Symp. on Microarchitecture, pages 196–207, Washington, DC, USA,
Jun 1999.

[20] S. Chatterjee, C. Weaver, and T. Austin. Efficient Checker Processor
Design. In MICRO-33: Proc. 33rd annual ACM/IEEE Int. Symp. on
Microarchitecture, pages 87–97, New York, NY, USA, 2000.

[21] C. Weaver and T. Austin. A Fault Tolerant Approach to Microprocessor
Design. Dependable Systems and Networks, pages 411–420, Jul 2001.

[22] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. In ISCA-95: Proc. 22nd annual Int.
Symp. on Computer architecture, pages 392–403, New York, NY, USA,
1995.

[23] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors. In FTCS-29, pages 84–91, Madison,
Wisconsin, USA, Jun 1999.

[24] S.K. Reinhardt and S.S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. In ISCA-00: Proc. 27th annual Int. Symp.
on Computer architecture, pages 25–36, New York, NY, USA, 2000.

[25] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault Recovery
Using Simultaneous Multithreading. In ISCA-02: Proc. 29th annual Int.
Symp. on Computer architecture, pages 87–98, Washington, DC, USA,
2002.

[26] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The Case for a Single-Chip Multiprocessor. In ASPLOS-VII: Proc.
seventh Int. Conf. on Architectural support for programming languages
and operating systems, pages 2–11, New York, NY, USA, 1996.

[27] Reynolds and G. Metze. Fault Detection Capabilities of Alternating
Logic. IEEE Transactions on Computers, C-27(12):1093–1098, Dec
1978.

[28] J.H. Patel and L.Y. Fung. Concurrent Error Detection in ALU’s by
Recomputing with Shifted Operands. IEEE Transactions on Computers,
C-31(7):589–595, Jul 1982.

[29] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0.
SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[30] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling. Computer, 35(2):59–67, 2002.

[31] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In ISCA-00:
Proc. of the 27th annual Int. Symp. on Computer Architecture, pages
83–94, New York, NY, USA, 2000.

[32] Independent JPEG Group webpage. http://www.ijg.org/.

http://www.ijg.org/

	Introduction
	ILCOFT
	Motivation
	Specification of the Required FT Degree
	In Assembly Code
	In High-Level Language
	Automatically by the Compiler

	FT Schemes Adaptable to ILCOFT

	Kernel-Level Validation
	Performance Evaluation
	Energy and Power Consumption
	Fault Coverage Evaluation

	Application-Level Validation
	Performance Evaluation
	Energy Consumption
	Fault Coverage Evaluation

	Conclusions
	References

