
Using RRNS Codes for Cluster Faults Tolerance in Hybrid Memories

Nor Zaidi Haron1,2 Said Hamdioui1

1Computer Engineering Laboratory, Delft University of Technology, The Netherlands
2Faculty of Electronic and Computer Engineering, Univeristi Teknikal Malaysia Melaka, Malaysia

{N.Z.B.Haron, S.Hamdioui}@tudelft.nl1, zaidi@utem.edu.my2

Abstract

Hybrid CMOS/non-CMOS memories, in short hybrid memories, have been lauded as future
ultra-capacity data memories. Nonetheless, such memories are going to suffer from high degree of
cluster faults, which impact their reliability. This paper proposes two modified Redundant Residue
Number Systems (RRNS) based error correcting codes to tolerate cluster faults in hybrid memories,
namely (i) Three Non-Redundant Moduli RRNS (3NRM-RRNS) and (ii) Two Non-Redundant Moduli
RRNS (2NRM-RRNS). Experimental results and analysis show that 3NRM-RRNS and 2NRM-RRNS
possess competitive error correction capability to that of Reed-Solomon (RS) and conventional
RRNS (C-RRNS), but at lower cost (reduced code size, lower performance penalty). E.g., for 16-
bit memory 2NRM-RRNS provides a bit-wise error correction capability up to t=41.5% using 41
bits codeword, whereas RS offers only up to t=33.3% using 48 bits and C-RRNS supports up to
t=31.1% using 61 bits. In addition, 2NRM-RRNS is 5.6 times faster than C-RRNS in recovering a
correct data, which in turn results in higher speed decoding performance.

1. Introduction

The remarkable reduction in CMOS transistor geometry and the introduction of non-CMOS nan-

odevices have made it possible to have ultimate large-scale of hybrid memories for storing digital

data. Several research groups from, e.g., academia [1, 2, 3] and industries [4, 5] have come out

with their hybrid memories. According to [1], these kind of memories are able to store data up

to 1 TBit/cm2. Nonetheless, such memories are likely to suffer from high degree of multiple bit

upset due to transient faults. Constant technology scaling of CMOS enables a reduction in voltage

and capacitance, on the other hand, lowering the signal-to-noise ratio. Likewise, the charged-based

non-CMOS nanodevices (e.g., single electron junctions and molecules), which require low voltage

to change their internal state, will have a similar impact to that of nanoscale CMOS. Moreover,

because the components are very tiny, the effect of these faults may impact several neighboring

components leading to cluster faults.

Research on applying fault tolerance techniques to hybrid memories is growing in order to im-

prove their reliability. Fault tolerance techniques such as hardware redundancy [6, 7], reconfig-

uration [8], and error correction codes (ECCs) [1, 6]–[11] have been utilized to tolerate faults.

Among these fault tolerance techniques ECCs is the most used. ECCs like Hamming [1, 6], Bose-

Chaudhuri-Hocquenghem (BCH) [9, 8], and Euclidean Geometry (EG) [10, 11] have been em-

ployed as part of fault tolerance techniques for hybrid memories. Nevertheless, these works rely on

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/09 $26.00 © 2009 IEEE

DOI 10.1109/DFT.2009.37

85

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/09 $26.00 © 2009 IEEE

DOI 10.1109/DFT.2009.37

85

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

conventional ECCs, which are based on random faults but not for cluster faults. Hence, a new type

of error correction is required to mitigate cluster faults.

Redundant Residue Number Systems (RRNS) code is proposed to correct cluster faults [13]. Cur-

rent applications, that use RRNS to mitigate faults, include digital signal processing [13, 14] and

communication [15] but not in memory technology. Furthermore, existing applications employ

conventional RRNS, which is subject to high cost. In this paper two modified RRNS codes are

proposed to tolerate cluster faults in hybrid memories with low cost overhead.

The rest of the paper is organized as follows. Section 2 reviews the fundamental structure of

hybrid memories. Section 3 discusses the basic concept of RRNS codes. Section 4 introduces the

two modified versions of RRNS code suitable for cluster faults. Section 5 presents an experimental

analysis of the proposed RRNS variants including the comparison with RS and conventional RRNS

codes. Lastly, Section 6 draws the conclusion.

2. Hybrid Memories Structure

Fig. 1 shows the generic structure of hybrid CMOS/non-CMOS circuits [1]. The circuits con-

sist of arrays of nanowire (or carbon nanotubes) crossbar fabricated on top of nanoscale CMOS

circuit. At each nanowire crosspoint, a two-terminal nanodevice (e.g, single electron junction, or-

ganic molecule, or phase change material) is embedded that serve as a single bit memory cell. In

such memories, a specific memory cell can be accessed by activating its (local) column and row

nanowires (the crossbar nanowires). Immediately after the access, a sufficient voltage (depending

on the type of the two-terminal nanodevice being used) is biased to the memory cell to change its

internal state (resistance) for writing, or to supply appropriate current flow for reading. However,

the state-of-the-art of non-CMOS devices cannot amplify signals as CMOS can do; thus require

CMOS to perform the peripheral task (e.g., encoding/decoding, sensing global interconnecting).

Cone-type interface pins are used to connect the CMOS circuits to nanoscale crossbar arrays.

CMOS
Nanoscale
Crossbar
Arrays

Interface
pins

Nanodevice
Two−terminal

Figure 1. Generic structure of hybrid CMOS/nanodevices circuits.

The CMOS circuit and nanoscale crossbar arrays are fabricated using top-down techniques (e.g.,

extreme ultra violet lithography and nanoimprint). Whilst, two-terminal devices and interface pins

are structured using bottom-up technique (e.g., self-assembly). Nevertheless, due to imprecise top-

down fabrication technique, defects such as broken/open/short/misalignment/loosen nanowires are

probable to occur. The immature bottom-up fabrication techniques may also cause defects like

open/close/missing of two-terminal nanodevices and interface pins. These defects might result in

hard or intermittent faults leading to low production yield.

In addition, the tiny components are likely to suffer from transient faults due to lower signal-to-

noise ratio and parametric variations [1, 8, 12]. When this problem happens, the impacted memory

cells may flip the stored data causing reliability problem during the operation of memory-based

systems. Moreover, because the nanodevices used to structure the nanoscale crossbar arrays are

closely connected, the impact of defects and faults might last up to several contiguous memory

cells resulting in cluster faults.

8686

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

3. Redundant Residue Number Systems Codes
RRNS code is a type of block codes where dataword is explicitly distinguished from checkword

(parity). A RRNS codeword is divided into two parts, namely (i) non-redundant residue, which is

represented by k symbols of xa; 1≤a≤k, and (ii) redundant residue, which is delineated by (n−k)
symbols of xb; k+1≤b≤n as shown in Fig. 2 [15]. Here, n and k symbols consist of a number of

bits. The non-redundant residues and redundant residues act as dataword and checkword (parity),

respectively. Note that a residue is the remainder of a division. RRNS codes possess equivalent

error correction capability to RS codes, i.e., t=�n−k
2 �.

RRNS(,)n k

non−redundant residue

1x xk xk+1 xn

 redundant residue

Dataword Checkword(Parity)

Figure 2. Structure of RRNS codes with k symbols dataword and (n−k) symbols checkword.

In producing the residues, a set of non-redundant moduli ma, and a set of redundant moduli mb

are used. These moduli sets must fulfill three rules; they are explained next [13]:

1. The moduli comprise of pairwise relatively prime positive integers, such that the greatest

common divisor for any ith and jth (i�=j) moduli is gcd(i, j)=1 .

2. The integer value for succeeding modulus is greater than the preceding modulus, i.e., {m1<...
<mk<mk+1<...<mn}.

3. The products of the moduli Ma and Mb, must be sufficient to represent all numbers in the

legitimate range of [0,Ma−1] and [0,Mb−1], respectively.

Fig. 3 illustrates the basic block diagram of RRNS encoder/decoder in a memory system. A d
bits input data is encoded into a set of i bits of residues (RRNS codeword) by modulo converters

in parallel. Note that i is different for each residue depending on the moduli used; the length is

defined as i=�log2 ml�; 1≤l≤n. The codeword is then stored in blocks of memory cell array.

When reading the selected codeword is decoded to check its validity. If it is valid, the decoded data

is read and sent out. However, if it is invalid, a correction procedure is performed for recovering

the correct data before it is sent out. The following subsections explain the encoding and decoding

of RRNS code.

Block

Block Block

BlockBlockBlock

Block Block

Modulo ModuloModulo Modulo

RRNS encoder/decoder
Data

d

Cell ArrayMemory

A
dd

re
ss

 d
ec

od
er

Address

i i i i

Figure 3. Block diagram of RRNS encoder/decoder in memory system.

8787

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

3.1. Encoding of RRNS code

Encoding of RRNS code is straightforward by performing modulo operation of input data to

the chosen moduli set. Example 1 explains the encoding calculation, which uses decimal number

instead of binary for easy understanding and readability.

Example 1. A 8 bits RRNS codeword will be generated based on the moduli set {m1, m2, m3, m4

, m5}={5, 7, 8, 9, 11}, where the first three moduli are non-redundant moduli ma, and the last two

moduli are the redundant moduli mb. The RRNS codeword for input data X=125 will be as follow,

xki
= {|125|5, |125|7, |125|8, |125|9, |125|11}

xki
= {0, 6, 5, 8, 4}

Note that the RRNS dataword is represented by three non-redundant of integers with small values

(0, 6, 5) instead of an integers with a larger values (X=125). The integers with small values enable

fast computation to be performed during decoding. Note that the considered RRNS codeword in this

example has two redundant residues, which means that it is able to correct one erroneous residue

(t=n−k
2 =5−3

2 =1), or detect two erroneous residues (n−k=5−3=2).

3.2. Decoding of RRNS code

Decoding of RRNS codeword is executed first by detecting the validity of a codeword and then

by correcting the erroneous residues, if any. During detection the codeword is compared to a pre-

determined value Ma. The codeword is regarded as valid (no correction is required) if its value

is less than Ma. On the other hand, it is regarded as invalid if its value is equal or larger than

Ma. Error correction is required in the second case, where numerous steps are executed to search

for the correct data. Two algorithms can be used, either Chinese Remainder Theorem (CRT) or

Mixed-Radix Conversion (MRC) [13]. CRT and MRC use large and small integers, respectively, in

calculating the data. Thus, in this paper MRC is used due to less complex calculation. Note that,

the accomplishment of correcting the error depends on the correction capability; i.e., the number of

errors to be corrected must be less or equal to the capability of the RRNS code. The error detection

and correction procedures are described as follows:

1. Compute/decode the read codeword to Xn (data) using all n residues.

2. If Xn≤Ma, no error thus output the Xn.

3. If Xn>Ma, errors are detected. Error correction procedure starts by discarding t number

of residues where t is error correction capability of the RRNS code. Compute Xz from the

remaining z=(n−t) residues, and compare to the product of the remaining moduli Mz . Note

that the minimum Mz will be Mb; that is the reason Mb must be larger than the legitimate

range. This procedure is a trial and error step and must be repeated for maximum Cn
t times,

each with difference combination of remaining residues.

4. If any of the Xz falls within the Mz , then Xz is the corrected version of input data.

5. If all of the Xz fall beyond the Mz , then RRNS codes cannot correct the erroneous codeword.

Mixed-Radix Conversion (MRC). MRC is based on the following equation [13].

Xr =
n∑

s=1

vsws (1)

where vs is calculated as

v1 = |X|m1 = x1, vs =
∣∣∣
(
((xs − v1)×m1s)− v(s−1)

)
×m(s−1)s

∣∣∣
ms

(2)

8888

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

where xs=|X|ms
and m(s−h)s is the multiplicative inverse of m(s−h) with respect to ms defined as

|m(s−h)×m−1
(s−h)|ms=1 for s>h, 2≤s≤n, and 1≤h≤n-1. Whereas ws is

w1 = 1, ws =
n−1∏
s=2

ms (3)

Example 2. Assume that the third residue of the codeword of Example 1 (i.e., 5) is corrupted during

the storing, which results in x={0, 6,1, 8, 4}. Decoding the codeword using MRC requires the cal-

culation of multiplicative inverses. E.g., m12 = |m−1
1 |m2=3 because |m1×m−1

1 |m2=|5 × 3|7=1.

In a similar way, the other multiplicative inverses are calculated, which result in m13=5, m23=7,

m14=2, m24=4, m34=8, m15=9, m25=8, m35=7, m45=5. The legitimate range for this code-

word is Ma = 5×7×8=280.

• Step 1 of the decoding procedure is performed by using Equations 1–3,

v1=|125|5=0, v2=|(6− 0)(3)|7=4
v3 = |((1− 0)(5)− 4)(7)|8 = 7

v4=|(((8− 0)(2)− 4)(4)− 7)(8)|9=4

v5=|((((4− 0)(9)− 4)(8)− 2)(7)− 6(5)|11=5

Xn=(0× 1) + (4× 5) + (2× 5× 7) + (7× 5× 7× 8) + (5× 5× 7× 8× 9)

Xn=13985 > 280 (error detected)

• Step 3 is executed since Xn>Ma where Xz is calculated using Equations 1–3. The integers

as shown in Table 1 are obtained.

Table 1. Result of correcting single erroneous residue.
Iteration, c 1 2 3 4 5

Discarded Residue, xc x1 x2 x3 x4 x5

Recovered Data, Xzc 2897 2105 125 1665 1385

• Since Xz3<280, the correct data, X=125 is recovered.

Note that the number of discarded residues is equivalent to error correction capability t, where in

this example it is one residue. For RRNS with higher error correction capability, e.g., t=3, each

iteration will discard three residues in recovering the correct data and the maximum number of

iteration will be C9
3=15.

4. Modified Redundant Residue Number Systems Codes

Conventional RRNS code termed as C-RRNS is based on three restricted non-redundant mod-

uli ma={2f ,2f−1,2f+1} where f is a positive integer. Unrestricted mb are commonly appended

to the ma in generating a RRNS codeword. The mb are selected from any number of pairwise

relatively prime positive integer. The value of integers for mb must be larger than that of ma.

In order to represent all numbers in the legitimate range of 16 bits word [0, 216−1], the small-

est f=6 is chosen to produce ma={64, 63, 65} and Ma=
∏3

a=1 ma=262080. To ensure the three

residues dataword can be corrected if corrupted, six mb={67, 71, 73, 79, 83, 89} are arbitrarily cho-

sen, which clearly generate Mb larger than the legitimate range. Hence, the codeword is now

consists of k+(n− k)=3+6=9 residues and possess t≤�n−k
2 �≤�9−3

2 �≤3.

8989

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

Table 2. Moduli sets used by C-RRNS, 3NRM-RRNS, and 2NRM-RRNS codes.
ECC Moduli

Types Non-Redundant, mk Redundant, m(n−k)

C-RRNS {2f , 2f − 1, 2f + 1}f=6 = {64,63,65} {67,71,73,79,83,89}
3NRM-RRNS {2f , 2f − 1, 2f + 1}f=6 = {64,63,65} {31,29,23,19,17,11}
2NRM-RRNS {2f + 1, 2f}f=8 = {257,256} {61,59,55,53}

Because the redundant moduli consist of integers with larger values than that of non-redundant

moduli, the C-RRNS code produces longer codeword bit length than RS code. To reduce the length

of the codeword while providing high error correction capability, two modified RRNS codes are

proposed in this work. The idea behind this is to use integers with smaller value as the redundant

moduli, provided that the product of the moduli is larger than the legitimate range (see Section 3).

4.1. Three Non-Redundant Moduli RRNS (3NRM-RRNS) Code.

The 3NRM-RRNS code uses the same three restricted non-redundant moduli ma={64, 63, 65}
as the C-RRNS code. Nevertheless, the unrestricted redundant moduli mb for 3NRM-RRNS are

based on integers with smaller value that of ma as shown in Table 2. To ensure the three residues

dataword can be corrected if corrupted, six arbitrary integers mb={31, 29, 23, 19, 17, 11} are cho-

sen. Similar to C-RRNS, the codeword for 2NRM-RRNS comprises of nine residues, which

contribute to t≤3. These integers are the minimum values that fulfill the first and third rule

of generating RRNS explained in Section 3; they are co-prime to each other and their product

Mb=
∏6

b=1 mb=73465381>216−1. Nonetheless, the use of mb with smaller value that that of ma

violates the second rule, but this violation can be resolved by using maximum likelihood decoding
(MLD) method proposed in [16] (explain later in Subsection 4.3).

4.2. Two Non-Redundant Moduli RRNS (2NRM-RRNS) Code.

The 2NRM-RRNS code utilizes two restricted non-redundant moduli ma={2f+1,2f} instead of

three ma as in C-RRNS and 3NRM-RRNS (see Table 2). For 16 bits data, the smallest f satisfying

the legitimate range is f=8, which produces ma={257, 256} and Ma=
∏2

a=1 ma=65792>216−1.

To ensure the two residues dataword can be corrected if corrupted, four arbitrary integers with

smaller values than that of ma are selected for unrestricted moduli mb. For this, mb={61, 59, 55, 53}
and its Mb=

∏4
b=1mb=10491085>216−1. Equivalent to 3NRM-RRNS, this code also fulfill the

first and third rule of RRNS, but violates the second rule. The same MLD method is used to solve

the violation.

4.3. Maximum Likelihood Decoding.

Some input data encoded into 2NRM-RRNS and 3NRM-RRNS may posses more than one value

that fall within the legitimate value. This is because the modified RRNS codes violate the second

rule in generating residue number system (see Section 3). Nevertheless, this ambiguity is resolved

by using maximum likelihood decoding method as proposed in [16]. The ambiguous numbers are

re-calculated by performing modulo operation to the chosen moduli. The resulted residues are then

compared to the read residues. The ambiguous number, which residues have the smallest difference

(Hamming distance) to the read residues is regarded as the valid data.

5. Experimental and Analysis
To validate the capability of correcting errors both modified RRNS codes were compared to RS

and conventional RRNS codes. The comparison between RRNS and RS codes is relevant because

both codes are designed for correcting cluster errors and they have equal error correction capability.

9090

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

5.1. Simulation Setup

Because 16 bits word memory data is considered in this work, the valid data (i.e., legitimate

range) is between [0,216-1]. However, as mentioned in Section 3.2, Ma and Mz are used as ref-

erences to determine the occurrence of error in a codeword. In this work Ma and Mz have bigger

number than the valid data and must be are replaced by 216−1=65535. This adjustment is done

to avoid decoded data that larger than 65535 to be falsely decoded. E.g., for 3NRM-RRNS codes

if Ma is taken as the reference, invalid decoded data from 65536 to 262079 will be considered as

valid data.

The RRNS variants and RS codes, 4K×16-bit memory, and fault injection were described using

MATLAB script. All codes were set to the corresponding t to protect the dataword from transient

faults. For RRNS decoding process, MRC was chosen because the algorithm uses smaller number

value as compared to CRT to alleviate long simulation time. For RS code, built-in RS encoding and

decoding MATLAB functions were used [17]. An appropriate adjustment in polynomial generator

was done to encode and decode 16 bits word memory.

Faults were uniformly injected to the memories where the number of fault were increased from

single bits to 20 bits faults per codeword. These faults flip the impacted memory bits from 0 to 1

and vice versa. Various fault rates were set from 1% up to 10% of the total memory capacity.

5.2. Simulation Results

Table 3 shows the total number of bits that represent the codeword for each code. RS, C-RRNS,

3NRM-RRNS, and 2NRM-RRNS are represented by 48, 61, 48, and 41 bits. These numbers are

the total number of bits required to represent dataword and checkword. E.g., the 2NRM-RRNS

requires g=9+8+6+6+6+6=41 bits. C-RRNS produces the longest codeword, whereas 2NRM-

RRNS results in the shortest codeword among all codes. C-RRNS, 3NRM-RRNS, and 2NRM-

RRNS produce bit length difference of 27.1% longer, equal, and 14.6% shorter, respectively, when

compare to RS. 3NRM-RRNS and 2NRM-RRNS are shorter by 21.3% and 32.8%, each, when

compared to C-RRNS.

Table 3. 16 bits word Reed Solomon and Redundant Residue Number Systems variant codes.
ECC Number of bits Differences (%)

Types Dataword Checkword Codeword Compared to RS Compared to C-RRNS

RS 4,4,4,4 4,4,4,4,4,4,4,4 48 – -21.3

C-RRNS 6,6,7 7,7,7,7,7,7 61 +27.1 –

3NRM-RRNS 6,6,7 5,5,5,5,5,4 48 0 -21.3

2NRM-RRNS 9,8 6,6,6,6 41 -14.6 -32.8

Fig. 4(a) shows the simulation results for the RRNS variant and RS. Overall, the correction

capability of all codes reduces as the fault rates become higher. However, all considered codes

are able to protect more than 96% of the memory locations for at 10% fault rate. All three RRNS

variants perform better than RS in correcting faults for all fault rates. E.g., at 10% fault rate, C-

RRNS and 3NRM-RRNS are able to protect highest number of memory locations, which is 99%

follow by 2NRM-RRNS (97.1%) and RS (96.1%).

5.3. Analysis

Although C-RRNS and 3NRM-RRNS are able to correct the largest memory locations as shown

in Fig. 4(a), 2NRM-RRNS is the best in certain points of view. These include (i) correction

capability-per-generated codeword length, (ii) correction capability-per-fixed codeword length, (iii)

9191

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10
96

96.5

97

97.5

98

98.5

99

99.5

100
Correctable memory locations at various fault rates

Fault rate (%)

C
or

re
ct

ab
le

 m
em

or
y

lo
ca

tio
ns

 (
%

)

CRRNS
3NR−RRNS
2NRM−RRNS
RS

C−RRNS 3NRM−RRNS 2NRM−RRNS RS
0

5

10

15

20

25

30

35

40

45

50
Maximum correctable bits per codeword (%)

C
or

re
ct

ab
le

 b
its

 p
er

 c
od

ew
or

d
(%

)

Types of error correction codes

(b) Maximum correctable bits per codeword(a) Correctable memory locations at various fault rates

Figure 4. Simulation result and analysis

data memory size-per-fixed data storage capacity, and (iv) decoding time complexity.

First, with regard to the correction capability-per-generated codeword length. For 16 bits input

data encoded into 2NRM-RRNS the maximum number of erroneous bits it can correct is 17 out

of 41 bits. This means that 17/41=41.5% of each codeword will be corrected as shown in Fig.

4(b). However, 3NRM-RRNS, RS, and C-RRNS possess only 19/48=39.6%, 16/48=33.3%, and

19/61=31.1%, respectively. Thus, 2NRM-RRNS provides the best correction capability follow by

3NRM-RRNS, RS, and C-RRNS.

Second, with regard to correction capability-per-fixed codeword length. Taking the codeword

length of 2NRM-RRNS as a reference, RS and C-RRNS will be encoded into 40 bits (i.e., by tak-

ing off the last two- and three residues checkword, respectively), while 3NRM-RRNS will be rep-

resented by 39 bits (i.e., by removing the last two residues checkword). These reductions decrease

the error correction capability to t≤�10−4
2 �≤3 for RS, t≤�6−3

2 �≤1 for C-RRNS, and t≤�7−3
2 �≤2

for 3NRM-RRNS codes. The maximum 16 bits word memory data that can be corrected by RS is

now 4+4+4=12 bits (t×number of bits), by C-RRNS is 7 bits, and by 3NRM-RRNS is 6+7=13

bits. Yet, 2NRM-RRNS can still protect 9+8=17 bits by the four residues checkword. Hence,

2NRM-RRNS is able to offer the highest correction capability follow by 3NRM-RRNS, RS, and

C-RRNS.

Third, with regard to memory chip size for fixed data storage capacity where as reported in [1]

1Tbit hybrid memory can be fabricated in a centimeter square, assuming that no ECC capability is

used. The same data capacity encoded into 2NRM-RRNS will result in 41/16=2.6× larger than the

original size. Nevertheless, even larger memory size will be required when input data is encoded

into 3NRM-RRNS, RS, and C-RRNS; each by 3×, 3×, and 3.8×. Thus, 2NRM-RRNS results in

smallest memory size (or provides better data storage) follow by 3NRM-RRNS, RS, and C-RRNS.

Fourth, with regard to decoding time for RRNS codes. Since 2NRM-RRNS holds at most two

error correction capability the code requires C6
2=15 iterations to recover a correct data (i.e., Cn

t rule

in Section 3.2). However, for C-RRNS and 3NRM-RRNS the procedure needs C9
3=84 iterations.

Therefore, 2NRM-RRNS is 5.6 times faster than C-RRNS and 3NRM-RRNS, which in turn results

in higher speed decoding operation.

9292

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

6. Conclusion
In this paper two modified Redundant Residue Number Systems codes have been proposed to tol-

erate high rate of cluster faults in hybrid memories. The modified RRNS codes, referred to as Three

Non-Redundant Moduli RRNS (3NRM-RRNS) and Two Non-Redundant Moduli RRNS (2NRM-

RRNS), are based on three and two non-redundant moduli sets, respectively. On the contrary to

conventional RRNS (C-RRNS), the redundant moduli for 3NRM-RRNS and 2NRM-RRNS consist

of integers with value smaller than that of non-redundant moduli. The simulation results for 16 bits

word memory show that both modified RRNS codes have competitive error correction capability to

that of Reed-Solomon (RS) and C-RRNS, but at reduced code size and lower performance penalty.

This work has proved that the modified RRNS codes are able to provide sufficient error correction

capability for reliability improvement in hybrid memories. Future work is to further reduce the bits

that represent a RRNS codeword to realize lower cost.

References
[1] D. B. Strukov and K. K. Likharev, “Prospects for terabit-scale nanoelectronic memories”, Nanotechnology, vol.

16, pp. 137–148, 2005.

[2] A. DeHon, S. C. Goldstein, P. Kuekes, and P. Lincoln, “Nonphotolithographic nanoscale memory density
prospects”, IEEE Transactions on Nanotechnology, vol. 4, no. 2, pp: 215–228, March 2005.

[3] L. Rispal and U. Schwalke, “Large-Scale In Situ Fabrication of Voltage-Programmable Dual-Layer High-kappa
Dielectric Carbon Nanotube Memory Devices With High On/Off Ratio”, IEEE Electron Device Letters, vol. 29,
no. 12, pp. 1349–1352, Dec 2008.

[4] ZettacoreTM. ZettaCoreTMmemory. http : //www.zettacore.com/

[5] K. Bullis, ”Ultradense Molecular Memory: Researchers develop a large-scale array of nanoscale memory circuits”,
MIT Technology Review, http://www.technologyreview.com/Nanotech/18100/

[6] C.M. Jeffery, A. Basagalar, and R. J. O Figueiredo, “Dynamic sparing and error correcting techniques for fault
tolerance in nanoscale memory structures”, Proceedings IEEE Conference on Nanotechnology, pp. 168–170, Aug.
2004.

[7] S. Biswas, T. S. Metodi, F. T. Chong, and R. Kastner, “Combining static and dynamic defect-tolerance techniques
for nanoscale memory systems”, Proceedings of the 2007 IEEE/ACM international conference on Computer-aided
design, pp. 773–778, 2007.

[8] F. Sun and T. Zhang, “Defect and Transient Fault Tolerant System Design for Hybrid CMOS/Nanodevice Digital
Memories”, IEEE Transactions on Nanotechnology, vol. 6, no. 3, pp. 341-351, May 2007.

[9] D. B. Strukov and K. K. Likharev, “Architectures for defect-tolerant nanoelectronic crossbar memories”, Nan-
otechnology, vol. 7, pp. 151–167, 2007.

[10] H. Naeimi and A. DeHon, “Fault Tolerant Nano-Memory with Fault Secure Encoder”, Proceedings of Interna-
tional Conference on Nano-Networks, Sept. 2007.

[11] S. Ghosh and P.D. Lincoln, “Dynamic Low-Density Parity Check Codes for Fault-tolerant Nanoscale Memory
Fault-tolerant Nanoscale Memory”, Proceedings of Foundation of Nanoscience, April 2007.

[12] K. K. Likharev, “Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges”, Journal of Nanoelec-
tronics and Optoelectronics, vol. 3, pp. 203–230, 2008.

[13] J. D. Sun and H. Krishna, “A coding theory approach to error control in redundant residue number system - Part
II: multiple error detection and correction”, IEEE Transactions on Circuits and Systems, pp. vol. 39, 18–34, Jan
1992.

[14] F. Barsini and P. Maestrini, “Error correcting properties of redundant residue number systems”, IEEE Transactions
of Computers, vol. 2, no. 2, pp. 915–923, 1973.

[15] L. Yang and Lajos Hanzo, “Redundant Residue Number System Based Error Correction Codes”, Proceedings of
IEEE Vehicular Technology Conference, pp. 1472–1476, Oct 2001.

[16] V. T. Goh and M. U. Siddiqi, “Multiple Error Detection and Correction based on Redundant Residue Number
Systems”, IEEE Transactions on Communications, vol. 56, no. 3, pp. 325–330, March 2008.

[17] MathWorksTM. Reed-Solomon Decoder Simulation. http : //www.mathworks.com/matlabcentral

9393

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 03,2010 at 10:12:04 UTC from IEEE Xplore. Restrictions apply.

