
Range Tries for Scalable Address Lookup

Ioannis Sourdis, Georgios Stefanakis, Ruben de Smet, and Georgi N. Gaydadjiev

Computer Engineering
TU Delft

The Netherlands
{sourdis, gstefanakis, ruben, georgi}@ce.et.tudellft.nl

ABSTRACT

In this paper we introduce the Range Trie, a new multiway tree
data structure for address lookup. Each Range Trie node maps to
an address range [Na, Nb) and performs multiple comparisons to
determine the subrange an incoming address belongs to. Range
Trie improves on the existing Range Trees allowing shorter com-
parisons than the address width. The maximum comparison length
in a Range Trie node is ⌈log2(Nb − Na)⌉ bits. Address parts can
be shared among multiple concurrent comparisons or even omitted.
Addresses can be properly aligned to further reduce the required
address bits per comparison. In so doing, Range Tries can store
in a single tree node more address bounds to be compared. Given
a memory bandwidth, more comparisons are performed in a sin-
gle step reducing lookup latency, memory accesses per lookup, and
overall memory requirements. Latency and memory size scale bet-
ter than related works as the address width and the number of stored
prefixes increase. Considering memory bandwidth of 256-bits per
cycle, five to seven Range Trie levels are sufficient to store half a
million IPv4 or IPv6 prefixes, while memory size is comparable
and in many cases better than linear search. We describe a Range
Trie hardware design and evaluate our approach in terms of perfor-
mance, area cost and power consumption. Range Trie 90-nm ASIC
implementations, storing 0.5 million IPv4 and IPv6 prefixes, per-
form over 500 million lookups per second (OC-3072) and consume
3.9 and 11.4 Watts respectively.

Categories and Subject Descriptors

C.2.6 [Internetworking]: Routers

General Terms

Algorithms, Design

Keywords

Internet Router, Address Lookup, IP Lookup

1. INTRODUCTION
Address lookup is the core function for IP routing and packet

classification [7,14,18]. Internet backbone routers use the packet’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09, October 19-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

destination address to determine the next hop of a packet. They
contain hundreds of thousand entries in their tables and require to
perform millions of lookups per second. Packet classification re-
quires multi-Gbps throughput having multiple fields to lookup and
tens of thousand table entries. The growing size of routing-tables
and rapid growth of internet make more difficult to keep pace with
the increasing need for faster processing rates. IPv6 growth rate
tripled in the past two years [12] and coupled with the IPv4 exhaus-
tion poses the need for solutions scalable with the address width.

In general, there are many challenging issues which need to be
addressed when performing address lookup. Performance (fast look-
up and high throughput) is the primary objective for such algo-
rithms. Memory size is also important and often determines perfor-
mance (memory access delay). Memory bandwidth is limited and
its efficient utilization may also affect performance. As the routing
tables get larger performance needs to scale well with the number

of entries (i.e., number of prefixes), while moving from IPv4 to
IPv6 indicates that performance scaling with the address width is
also necessary. Finally, the latency of incremental updates as well
as power consumption are also important.

Although a plethora of algorithms has been proposed, several
of the above challenges remain open. On one hand, Trie-based
structures have lookup latency which scales linearly to the address
width and memory requirements which scale exponentially to the
length of strides. On the other hand, Range Trees are limited by the
available memory bandwidth, and hence their lookup latency and
memory requirements increase significantly for larger tables and
wider addresses, such as IPv6.

In this paper we introduce the Range Trie, a new approach for
address lookup, and attempt to address the above challenges. A
Range Trie is a multi-way tree structure that can be classified be-
tween the “search on values” (i.e. Range Trees) and “search on
length” (i.e. Tries) approaches, following the Ruiz-Sanchez et al.
taxonomy of IP lookup algorithms [14]. On one hand, Range Trees
search on the value dimension performing comparisons on com-
plete addresses. On the other hand, Tries search on length match-
ing parts of addresses. Range Tries perform comparisons on parts

of addresses. Addresses that define ranges are placed sparser or
denser in the address space creating longer or shorter ranges, re-
spectively. Comparisons of fewer address bits may be sufficient for
sparser areas in the address space. Denser areas need better preci-
sion but may have long common address parts that can be shared.
We capitalize on this observation to reduce the number of address
bits stored and processed in a tree node, improving memory band-
width utilization, and reducing lookup latency. The performance
of the proposed scheme scales well with the address width and the
number of address ranges stored in the tree.

The remainder of this paper is organized as follows: Section 2

ANCS 2009

143

offers some background on address lookup algorithms. In Sec-
tion 3 we describe the Range Tries data structure and in Section
4 the Range Trie hardware design. Then, in Section 5 we evalu-
ate the Range Trie performance, memory size, power consumption,
area cost, and scalability and compare with existing address lookup
data-structures. Finally in Section 6 we draw our conclusions.

2. BACKGROUND
Many address lookup algorithms have been proposed in the past;

most of them have been summarized in the survey by Ruiz-Sanchez
et al. [14]. We follow the taxonomy of [14] and briefly discuss
different approaches below.

A set of address ranges can be expressed, as shown in Figure
1(a), either directly as intervals, where the complete bit represen-
tation of the addresses can be compared to perform a lookup, or
as prefixes out of which the longest matching one should be re-
ported. As indicated in [14] address lookup involves searching in
two dimensions: length and value. Consequently, existing address
lookup data structures are categorized according to the dimension
their search is based on, namely in “search on length” and “search
on values” approaches.

Tries are considered a “search on length” approach as they per-
form a sequential search on the length dimension, matching at step
n prefixes of length n (Figure 1(b)). Improvements on the basic
Trie structure may include prefix expansion for multibit strides [16]
with or without leaf pushing, compressed Tries [11], the Lulea
bitmaps to reduce the storage requirements [4], or Tree bitmaps [5].
Trie-based structures inherently support longest prefix match, but
their major drawback is that the number of tree-levels scales lin-
early to the address width [14]. Multibit tries reduce the decision
tree height but do not improve scalability in the address width,
while significantly increase memory size.

Range Tree is a “search on values” approach, it avoids the length
dimension performing comparisons on the expanded prefixes (com-
plete addresses). As depicted in Figure 1(c), Range Trees perform
address comparisons creating a balanced decision tree. They store
complete addresses to be compared at each node and therefore con-
sume considerable memory size. Multiway Range Trees read and
compare at every step multiple addresses [19]. The number of com-
parisons per node, however, is limited by the available memory
bandwidth, which, consequently, reduces scalability with respect
to the address width. As described in [9, 14, 19], Range Trees need
to store additional information in order to support longest prefix
match.

In general, Tries perform exact match in parts of addresses, while
Range Trees perform comparisons of full addresses. The proposed
Range Tries attempt to combine the advantages of the above per-
forming comparisons in parts of addresses. Figure 1(d) illustrates
a Range Trie example and shows that comparing fewer address bits
can be sufficient for address lookup; the above are explained in de-
tail in Section 3.1. At the root node, comparing the two most sig-
nificant bits “01---” and the most significant bit “1----” is the equiv-
alent of comparing the complete addresses “01000” and “10000”.
In the second iteration and after taking the middle root branch, we
do not need to compare the two most significant bits since after
the first step we know the incoming address is “01xxx”. Simi-
larly, after taking the right branch of the root node we know that
the most significant bit is “1xxxx”. Then, the two addresses to be
compared (“11100” and “11101”) have a common prefix (“-110x”)
which is shared and compared separately. The decision of that node
is based on the outcome of the common prefix comparison and (if
needed) the comparison of the least significant bit. The created
Range Trie of Figure 1(d) is well balanced and shorter than the one

Prefixes
R1: 0*
R2: 0011*
R3: 0100*
R4: 0101*
R5: 011*
R6: 1*
R7: 11100

Intervals
R1: [00000,00110)
R2: [00110,01000)
R3: [01000,01010)
R4: [01010,01100)
R5: [01100,10000)
R6: [10000,11100)
R7: [11100,11101)
R6': [11101,100000)

(a) Address Ranges Set (Prefixes or Intervals).

0 2n

R1
R5

R6
R4R2 R3

0

0 1

1

R2
1

R1

0

R3

0

R4

1

1

R5

1

1
R6

R7

1

0

R7

0

(b) Search on Length: Trie

R1 R5 R6R4R2 R3

0 2n

R7 R6'

L G E
11100

L G E
00110 01010

L G E

10000 11101
L

G E

R1 R2

L

G E

R3 R4
L GE

R5 R6

L

G E

R7 R6

01100

01000

(c) Search on Values: Range Tree

R1 R5 R6R4R2 R3

0
R7 R6'

R1 R2 R3 R4 R5 R6 R7 R6

L G E

--11-

L

G E

--

01--- 1----

L

--01- --10-

L

G E L

G E L

G

CP: -110-

----1
E

L G E

G E

2n

(d) Range Trie.
CP: Common Prefix, ‘-’: omitted bit, L: less, E: equal, GE:
greater or equal, G: greater.

Figure 1: The Trie, Range Tree, and the proposed Range Trie

data structures.

of the Range Tree in Figure 1(c) using less memory bandwidth. In
the hardware description of the Range Trie (Section 4), we show
how a single comparator can be used to perform the above variable
length comparisons.

Recently, several related address lookup approaches target ASIC
implementations using embedded on-chip memory and pipelining
to reduce memory latency and increase throughput [2, 5, 8]. How-
ever, it is expected that the routing tables will continue to grow
in size; this combined with the transition to IPv6 will increase the

144

number of pipeline stages and the memory requirements making
harder to fit such solutions on-chip. As described in Section 4,
Range Tries target hardware implementations addressing the above
limitations.

3. THE RANGE TRIE DATA-STRUCTURE
The Range Trie is a multiway tree structure that gradually com-

pares parts of addresses to perform an address lookup. A Range
Trie reduces the number of address bits to be compared and there-
fore, given a memory bandwidth, increases the total number of
comparisons performed in a single step. In doing so, the deci-
sion tree has more branches per node and, consequently, tree height
is reduced compared to a Range Tree that uses the same memory
bandwidth and compares complete addresses. The Range Trie is
based on the following three observations:

• Nodes closer to the root compare addresses that are sparser in
the address space and therefore their suffixes can be omitted
without creating imbalance on the tree.

• Nodes closer to the leafs compare addresses that are denser
in the address space and therefore their prefixes can be either
omitted or shared.

• A single node, which may need to compare addresses placed
sparser or denser to each other, can process different num-
ber of bits for each individual address offering less or better
“precision”, respectively. In doing so, the decision tree can
be kept balanced.

Considering the above observations, it is expected that a Range
Trie will start comparing address prefixes at the root node omitting
the suffixes. Then, gradually at the next levels will continue with
the address infixes and will end up comparing suffixes as approach-
ing the leafs. Intuitively, as we traverse the Range Trie the common
address prefixes will gradually get longer and the shared or omitted
address suffixes will get shorter. That is because the search space
will gradually reduce and better “precision” will be required.

The Range Trie has the following properties:

• A node maps to an address range [Na, Nb) of the address
space. The union of the children node address ranges is the
address range of their parent node.

• The maximum number of required address bits per compari-
son at a Range Trie node is ⌈log2 (Nb − Na)⌉.

• Address suffixes can be omitted from processing, when they
are zero1.

• Common address parts are shared among concurrent address
comparisons.

• Addresses compared in a node can be aligned properly to
maximize address part sharing.

3.1 Range Trie Rules
The Range Trie exploits five rules to increase the number of

branches per node given a specific memory bandwidth and hence
reduce the depth of the decision tree. In this paragraph, we de-
scribe these rules and provide examples of Range Trie nodes that
use them. We consider a Range Trie node N , as illustrated in Fig-
ure 2, that maps to the address range [Na, Nb) and divides it in
k + 1 subranges R1, R2, ..., Rk + 1 defined by the unique ad-
dresses Ai ∈ [Na, Nb), ∀i ∈ N, i ≤ k, such that R1 = [Na, A1),
..., Ri = [Ai−1, Ai), ..., Rk+1 = [Ak, Nb). Then an incoming ad-
dress AIN ∈ [Na, Nb) needs to be compared against the addresses

1During a Range Trie construction, one may force an address suffix
to zero, losing in precision, but reducing the required address bits.

Na

A2A1

Nb

AkAk-1

[Na,A1) [A1,A2) [Ak-1,Ak) [Ak,Nb)
R1 R2 Rk Rk+1

Na ≤ AIN < Nb

RANGE TRIE NODE

Figure 2: Generic view of a Range Trie node.

R1

R1: [0x1A002134,0x1A0033FB)
R2: [0x1A0033FB,0x1A00672A)
R3: [0x1A00672A,0x1A009023)

Na ≤ Ain < Nb, Ain=0x1A00xxxx

Na: 0x1A002134
A1: 0x1A009023
A2: 0x1A00672A
Nb: 0x1A009023

L

SET OF
ADDRESS RANGES

R2 R3

G E

Na
L

0x1A009023

L

0x1A00672A

G EG E

R1 R2 R3
A1 A2 Nb

Range Trie node

Range Tree node

0x----9023
L G E

0x----672A

Figure 3: A Range Trie node with common node prefix vs. a

Range Tree node.

Ai in order to determine the subrange Ri to which it belongs. It
is noteworthy that the address width is W . A single comparator
reports whether the AIN is “Less”, “Equal” or “Greater or Equal”
to an address part of Ai. The construction of a Range Trie is based
on the following rules2:

Rule 1: Omit Node Common Prefix. The common prefix, of
length L bits (L < W), of all addresses in the node address-range
[Na, Nb) can be omitted from the comparisons between AIN and
Ai.

That is because addresses Ai, AIN ∈ [Na, Nb) will have the
same common prefix of their L most significant bits. This means
that the comparison of the L MSbits between AIN and Ai will
always result in equality, enabling the comparison of only the W −
L LSbits to produce the result.

Figure 3 illustrates an example of the node common prefix rule,
where all addresses in the address range of the node have a common
node prefix 0x1A00----. The bits corresponding to the common
node prefix can be omitted from the comparisons of AIN and Ai as
opposed to a Range Tree node which requires to store and compare
them completely.

Rule 2: Omit address Zero Suffix. Let an address Ai have a
suffix of length L bits, where L < W , that is zero. Then, this suffix
of Ai does not need to be compared against the L last bits of AIN .

In order for the comparison of the L-bit suffix to affect the final
result of the comparison, the W −L prefix comparison needs to re-
sult in equality (which translates into “GE”). In that case however,
the comparison between the AIN and Ai L-bit suffix will always
be “GE” since the Ai L least significant bits are zero. Then, since
“GE” is already the result reported by the prefix comparison we can
omit the zero suffix comparison.

Figure 4 illustrates an example of the zero-suffix rule, where the
A1 and A2 have a zero suffix of length 2 and 3 bytes, respectively.
Zero suffixes of A1 and A2 can be omitted. On the contrary, as il-
lustrated at the bottom part of Figure 4, a Range Tree node requires
to store these bits and consider them in the comparisons.

2The formal proofs of the rules are omitted due to lack of space.

145

R1: [0x1A002134,0x1B009000)
R2: [0x1B009000,0x1C000000)
R3: [0x1C000000,0x20009023)

Na: 0x1A002134
A1: 0x1B090000
A2: 0x1C000000
Nb: 0x20009023

L

SET OF
ADDRESS RANGES

G E

Na
L

0x1B090000

L

0x1C000000

G EG E

Range Trie node

Range Tree node

0x1B09----
L G E

0x1C------

R1 R2 R3R1 R2 R3
A1 A2 Nb

Figure 4: A Range Trie node that compares addresses Ai with

zero-suffixes vs. a Range Tree node.

G

R1

R1: [0x1A002134,0x1D337811)
R2: [0x1D337811, 0x1D33F463)
R3: [0x1D33F463,0x21512342)

Na: 0x1A002134
A1: 0x1D331811
A2: 0x1D33F463
Nb: 0x21512342

CP: 0x1D33----

L

E

L

SET OF
ADDRESS RANGES

R2 R3

G E

Na
L

0x1D337811

L

0x1D33F463

G EG E

R1 R2 R3
A1 A2 Nb

Range Trie node

Range Tree node

0x----1811

L
G E

0x----F463

Figure 5: A Range Trie node that compares addresses with a

Common Prefix.

It is worth noting, that we may exploit the benefits of this rule
by changing the value of an address Ai so that it has a long suffix
of zero. This way we economize in the number of bits to be stored
and compared in a node in exchange of losing “precision”, since the
more bits we modify in an address suffix the more we draw away
from the original value of Ai

3.
Rule 3: Share addresses’ Common Prefix. The Common Pre-

fix ACP
i of the addresses Ai of length L (L < W) can be shared

among concurrent comparisons and processed separately. Then, if
the AIN prefix of length L is Less than ACP

i , then AIN ∈ R1 (the
first address range of the node), if it is “Greater” than ACP

i then
AIN ∈ Rk+1 (the last address range of the node), otherwise we
consider the comparison result of the W − L bits suffix to deter-
mine the range AIN belongs to.

Figure 5 shows an example of the Common Prefix rule, where A1

and A2 have a common prefix of 2 bytes 0x1D33----. The common
prefix is stored in the node and compared with the respective AIN

part only once. In case AIN is less or greater than the prefix, R1 or
R3 match respectively. In case of prefix equality, the suffixes of the
addresses are considered as illustrated in Figure 5. As opposed to
the Range Trie, a Range Tree node would need to store and process
the addresses common prefix twice for A1 and A2.

Rule 4: Share addresses’ Common Suffix. The common suf-
fix ACS

i of the addresses Ai of length L (L < W) can be shared
among concurrent comparisons and processed separately. Let Rp =
[Ap−1, Ap) (where 1 ≤ p ≤ k + 1, A0 = Na, and Ak+1 = Nb)
be the address range that the comparisons of the W − L MSbits of
Ai and AIN indicate. Then AIN ∈ Rp−1 = [Ap−2, Ap−1) IFF
all three statements below are true:

(i) the AIN W − L MSbits are equal to the ones of Ap−1,
(ii) the AIN suffix of length L is less than ACS

i ,

3When forcing the suffix of an address Ai to zero, the original
address Ai is compared in a subsequent tree node.

G L

R1

R1: [0x1A002134,0x1D337811)
R2: [0x1D337811,0x1E447811)
R3: [0x1E447811,0x21512342)

Na: 0x1A002134
A1: 0x1D337811
A2: 0x1E447811
Nb: 0x21512342

0x1D33----

CS: 0x----7811

L

E

L

SET OF
ADDRESS RANGES

R2 R3

0x1E44----

E
L G EG E

Na

G

L

0x1D337811

L

0x1E447811

G EG E

R1 R2 R3
A1 A2 Nb

Range Trie node

Range Tree node

Figure 6: A Range Trie node that compares addresses with a

Common Suffix.

(iii) Rp 6= R1.
Otherwise, AIN ∈ Rp.

Figure 6 illustrates an example of the Common Suffix rule, where
A1 and A2 have a common suffix of 2 bytes 0x----7811. The com-
mon suffix is stored in the node and compared with the respective
AIN part only once. When a prefix comparison of either A1 or A2

results in equality, then the common suffix comparison is consid-
ered as shown in Figure 6. A Range Tree node would need to store
and process the addresses common suffix twice for A1 and A2.

Rule 5: Address Alignment. The lookup of address AIN in
node N , as described in Figure 2, is equivalent of the lookup of
address AIN − Na in node N ′ that maps to the address range
[0, Nb −Na) and divides it in k + 1 subranges R′

1, R′

2, ..., R′

k+1

defined by the addresses A′

i = (Ai − Na) ∈ [0, Nb − Na),
where i = 1, 2, ..., k, such that R′

1 = [0, A1 − Na), ..., R′

i =
[Ai−1 − Na, Ai − Na), ..., R′

k+1 = [Ak − Na, Nb − Na).
Figure 7 illustrates an example of the Address Alignment rule. In

this example, a node maps to [Na, Nb) and compares addresses A1

and A2. Although the node maps to a narrow address range there
are no common address parts to be shared or omitted according to
any of the previous rules. The length of the node address range
[Na, Nb) can be represented in one byte (⌈log2(Nb − Na)⌉ = 8).
The node can be replaced by a node N ′ which maps to [N ′

a, N ′

b)
and compares addresses A′

1 and A′

2 as shown in the example. As
opposed to node N , node N ′ has a long common node prefix of
3 bytes which can be omitted according to Rule 1. Then, only the
least significant byte of each address A′

i is required. The least sig-
nificant byte of Na is first subtracted from the corresponding byte
of the incoming address AIN . Subsequently, the result is compared
to the last byte of A′

1 and A′

2 in order to select the correct node
branch. The Range Trie node will produce the same result as that
of a Range Tree node shown at the bottom of Figure 7. However, in
the Range Trie case, storing and processing only the one byte per
address Ai and one byte to be subtracted is sufficient.

Rule 5 maximizes the benefits of rule 1 and in essence is the
means to achieve the most essential Range Trie characteristic: the

maximum number of address bits per comparison, a Range Trie

node needs to process, is equal to the number of bits needed to rep-

resent the length of the node address range ⌈log2(Nb −Na)⌉. The
above rule and Range Trie characteristic is the main improvement
over our previous work, the Range-Trees with Variable Length Com-
parisons (RT-VLC) [15].

A question arises regarding applying more than one of the above
rules in parallel. Rules 1-4 can be applied independently as they
do not affect each other. For instance, we can omit common node
prefix (Rule 1), omit any zero suffix (Rule 3), and then share ad-
dress common prefix (Rule 2) and suffix (Rule 4) of the remaining

146

R1

R1: [0x3FFFFFF0,0x3FFFFFF8)
R2: [0x3FFFFFF8,0x40000009)
R3: [0x40000009,0x4000000F)

Na: 0x3FFFFFF0
A1: 0x3FFFFFF8
A2: 0x40000009
Nb: 0x4000000F

Na’=Na-Na: 0x00000000
A1'=A1-Na: 0x00000008
A2'=A2-Na: 0x00000019
Nb’=Nb-Na: 0x0000001F

SET OF
ADDRESS RANGES

R2 R3

L

0x3FFFFFF8

L

0x40000009

G EG E

R1 R2 R3

Range Trie node

Range Tree node
Na A1 A2

Nb

Subtract
Ain - 0x------F0

0x------08 0x------19

L

L G E
G E

Na’
A1' A2'

Nb’

Figure 7: A Range Trie node that aligns incoming address and

compared addresses to maximize the common node prefix.

address bits. Rule 5 however is more difficult to apply combined
with the rest. Rule 5 aims at maximizing common node prefix, con-
sequently, it can be combined with Rule 1, but needs to be applied
before the common prefix rule (Rule 2) since the address prefixes
change after the subtraction. Regarding zero and common address
suffixes, Rule 5 can be applied independently.

3.2 Constructing a Range Trie
Given a set of k addresses Ai that define k + 1 basic address

ranges Ri at an address space, expressed as prefixes or intervals,
a Range Trie is constructed based on the above rules. This is per-
formed by selecting addresses to be compared at each tree node
targeting a low tree depth. There are two objectives when con-
structing a Range Trie. The first one is to select addresses which
require fewer bits to be stored and processed in order to maximize
the number of node branches. Second, the node should be branch-
ing to subtrees of equal or similar depth, so that the entire tree is
balanced. It may be the case that the above objectives contradict
each other; maximizing the number of branches may not necessar-
ily keep the tree balanced and vice versa. We developed heuristic
methods to construct a Range Trie, rather than seek an optimal so-
lution which would possibly have unacceptable complexity. Apart
from these two objectives there are other parameters to be consider
pertaining to the the Range Trie implementation, such as the mem-
ory bandwidth, the available lengths of comparisons, and address
alignment restrictions.

We developed two types of heuristic methods to construct a Range
Trie based on an arbitrary set of address ranges following either a
top-down or a bottom-up approach.

In a top-down approach a heuristic creates first the root node and
then similarly moves to its children and towards the leafs of the
tree. Each node selects addresses Ai to be included in the node
considering the five rules. At each node the heuristic attempts to
balance between “precision”4, number of node branches, and tree-
balance.

Bottom-up heuristics construct first the leaf nodes and subse-
quently their node bounds are used for the upper tree level; this
is repeated until the root of the tree is reached. Starting from A1,
a node includes as many addresses Ai as the resources allow (e.g.,
comparators, memory size and bandwidth), after applying first the
Range Trie rules. Then, the upper bound of the node is selected, so
that it has a long zero suffix and hence benefit from Rule 2.

As opposed to a top-down approach, a bottom-up heuristic cre-
ates balanced Range Tries that have all their leafs at the same level.
As shown in Section 5, in general the bottom-up heuristic achieves

4Number of bits per comparison as explained in Rule 2.

a better worst case latency, while the top-down heuristic results in
a lower lookup latency for the average case. A more detailed de-
scription of the Range Trie heuristics can be found in [3].

3.3 Longest Prefix Match & Incremental Up-
dates

In order for a Range Trie to support longest prefix match, each
node needs to store more information than just the parts of ad-
dresses to be compared. To our advantage, however, is the fact that
the Range Trie can be mapped one-to-one to a Range Tree of un-
limited memory bandwidth and number of branches per node. As
shown in Section 3.1 the external characteristics of a Range Trie
and a Range Tree node are the same; in both cases, a node maps
to an address interval, determines an address subrange to which
AIN belongs to, and accordingly branches to the next level. Con-
sequently, the Range Tree techniques for supporting longest prefix
match, as described in [9, 14, 19], apply to the Range Trie as well.

The prefixes are stored and updated in a Range Trie as described
in [9, 14, 19] for a Range Tree. The main idea is that a prefix can
be stored in internal nodes rather than only leafs of the tree. This
improves the update time from O(n) to O(log n) as updating only
a parent node that maps to a prefix is equivalent to updating all
its children. Slightly modifying the above techniques, supporting
longest prefix match and incremental updates in Range Tries re-
quires the following:

• a pointer to a prefix5, along with its prefix length, is stored at
every node the address range of which is part of the prefix,
but the address range of its parent node is not;

• each address compared in a node keeps a value to count the
number of prefixes having an endpoint on the address;

• a new prefix is inserted by:

– inserting its end points or updating the corresponding
counters if an endpoint already exists, and

– by storing a pointer to the prefix in every node
(i) the range of which is a subset of the prefix,
(ii) the prefix pointer is not stored at its parent node,
and
(iii) the prefix is longer than any previously stored one
in the node;

• for a prefix to be deleted we need to know the prefix to re-
place it with; then,

– the prefix endpoints are deleted or the corresponding
counters are decremented, and

– the prefix pointer is replaced in each node it is stored.

Updating a Range Trie requires to insert or delete addresses that
define address ranges (i.e., prefix endpoints). This can be achieved
by updating the affected leaf node or subtree performing splits or
merges. Similar to a Range Tree, the complexity of inserting or
deleting an address is O(k logk n) where n is the number of ad-
dresses stored in the tree, and k is the number of branches in a
node. In Range Tries however k is larger than in a Range Tree with
the same memory bandwidth.

Finally, it is worth noting that there are cases where a Range Trie
does not need to support longest prefix match. For example, port
ranges for packet classification are more efficient to be represented
as intervals rather than prefixes. Then, storing overlapping intervals
can be supported similarly to storing prefixes.

5To reduce memory requirements of the tree, the prefix pointer
stored in a node can be identical to the pointer to the node. This
may come at the cost of increased storage requirements at the end-
result memory which stores the actions associated with each prefix.

147

LEVEL 1 =>

LEVEL 2 =>

LEVEL 3 =>

LEVEL 4 =>

Node 10

Root Node

Node 3

Node 4 Node 5 Node 7Node 6

Node 1 Node 2

R1 R7R2 R3 R4 R5 R6 R8 R9 R10

Node 9Node 8

R11 R12 R13 R14 R15 R16 R20R17R18R19 R21

Next Level Memory
Pointer to the
leftmost child

(a) An example of a Range Trie structure.

PR
OC

ES
SI

NG

ST
AG

E MEM
2AIN

ma
tch

ing

ac
tio

n

Stage 1 Stage 2 Stage 3

Level 1 Level 2

Stage 4 Stage 5

Level 3

MEM
4

PR
OC

ES
SI

NG

ST
AG

E

PR
OC

ES
SI

NG

ST
AG

EMEM
3

ME
M1

ma
tch

ing
ran

ge

ACTION
ARRAY

Level 4

(b) Range Trie Hardware Block Diagram.

MEMORY
LEVEL 1
Root node Node 1

Node 2
Node 3

0
1
2

MEMORY
LEVEL 2

Node 4
Node 5
Node 6

0
1
2

Node 7
Node 8
Node 9

3
4
5

Node 106

R1 action
R2 action
R3 action

0
1
2

R4 action
R5 action
R6 action

3
4
5

R7 action6
R8 action
R9 action
R10 action

7
8
9

R11 action10

MEMORY
LEVEL 3

MEMORY LEVEL 4
(ACTION ARRAY)

R12 action
R13 action
R14 action

11
12
13

R15 action
R16 action
R17 action

14
15
16

R18 action17
R19 action
R20 action
R21 action

18
19
20

Next Level
Memory

Pointers to the
leftmost child

(c) Range Trie Memory levels.

Figure 8: Range Trie top-level hardware design and memory levels.

4. RANGE TRIE HARDWARE DESIGN
It is more efficient to implement a Range Trie in hardware rather

than in software where multiple bit-manipulation instructions are
required to shift addresses, select parts of addresses to be compared
and select the matching address range. Nevertheless, software im-
plementations can also benefit from the Range Trie data-structure
given that reducing the number of memory accesses would sub-
stantially improve performance. Bellow, we describe our Range
Trie hardware design.

The Range Trie hardware design, as illustrated in Figure 8(b),
is pipelined as interleaving processing stages and memory access
stages, the number of which is equal to the number of implemented
Range Trie levels. Figures 8(a) and 8(b) show an example of a
Range Trie and the way each level maps to the hardware imple-
mentation. The first level consists of only the root node and there-
fore a few registers are sufficient to store the node configuration.
The incoming address and the root node configuration feed the first
processing stage which performs the necessary computations to de-
termine the first node branch to be taken. Subsequently, the second
level of memory is accessed to provide the next node configuration
to the second processing stage. When reaching a leaf, we read the
action related to the matching range from the last memory level.

Figure 8(c) depicts the memory organization and contents for
the above example. Each memory line stores the configuration of a
node in the corresponding level. Memory addressing is performed
similarly to that in the Tree Bitmap Tries [5]; each node stores a sin-
gle pointer to its leftmost child and a subsequent addition between
this pointer and the processing stage outcome determines the ad-
dress of the child node to be read at the next level. In so doing,
only one pointer per node needs to be stored with the restriction of
storing contiguously all children nodes of a given Range Trie node.

Figure 9 offers the block diagram of a Range Trie processing
stage which performs the necessary computations in a Range Trie
node to determine its next branch for a given incoming address.
The configuration of a given node to be processed, previously read
from the memory of the respective tree-level, provides the address
parts to be compared along with the necessary control bits which
determine: (i) the incoming address parts to be compared, (ii) ad-
dress alignment information (Rule 5), (iii) comparison lengths, (iv)
common prefix/suffix comparisons, and (v) a pointer to the next
memory level.

0,2,4,6-bits shift
one level of
4-to-1 MUXs

4x 8-bit Comparators
(CMPs)

8-bit
CMP res

16-bit
CMP res

32-bit
CMP res

N

Encoder

32-bit
CMPs

Common
Prefix CMP
Max 24-bits

Common
Suffix CMP
Max 24-bits

R1 Rk
IF Common Prefix Out:
Equal encoder
Less R1

Greater Rk
k: the last region

Ri Ri-1 IFF
1. Suffix is Less,
2. Prefix Equal,
3. Low bound Infix Equal,
4. i≠0

Address align: 8-bit adder

Select address part

24-bits total

-1
Node Branch
to be taken

Child node
Memory address

Level N+1

+

Partial
Encoder

AIN
32

Shifter

8

8 8 8 8

8

Processing Stage N

++++

Next Level
Memory Pointer
to the leftmost

child

Me
mo

ry
Le

ve
l N

Figure 9: Range Trie processing stage.

The incoming address is first shifted properly (byte align) and a
part of it is selected according to the node configuration. Subse-
quently, a constant value is subtracted from the incoming address
parts according to the Range Trie Rule 56. The result feeds mul-
tiple comparators of length equal to the address width W 7, which
in this example is 32-bits. The second input of the comparators are
the Range Trie address parts of the node. Each 32-bit comparator
comprises of four 8-bit comparators, the results of which can be

6In case Rule 5 is disabled, the subtraction value is equal to zero.
7It is also possible comparators length to be less than W .

148

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

7

6

6

6

6
5

6

9

12

6
5

5

5

5

5

5

5

of prefixes

5

5

5
4

5
4

4

4

4

4

4

4

4

4

4
3

4
3

3

3

3
3

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(a) Bottom-up, uniform.

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

7
7

7

7
6

6

6

9

12

6

6
5

6

6
5

6
5

of prefixes

5

5

5

5

5

5
4

5
4

4

4

4

4

4

4
3

4

4
3

3

3
3

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(b) Top-down worst-case, uniform.

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

5.9
5.8

5.1

5.6

5

5

6

9

12

5.3

4.9

4.9

4.9

4.7

4.3

4.8

4.2

of prefixes

4

4.7

4

4

4.3

3.9

4

3.9

3.9

3.8

3.8

3.4

3.1

3.7

3.1

3

3.3

3

3

2.9

3
2.8

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(c) Top-down, average, uniform.

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

5
5

5

5

5

5

6

9

12

5
4

5

4

4

4

4

4

of prefixes

4

4

4

4

4
3

4

3

3

3

3

3

3

3

3

3

3

3

3

2

2
2

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(d) Bottom-up, Gaussian.

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

6

5

6

5

5

6

6

9

12

5

5

5

5

5

5

4

5

of prefixes

5

4

5

5

4

4

4

4

4

4

3

4

4

3

4

4

3

3

3

2

3
3

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(e) Top-down worst-case, Gaussian.

256
512

1024
2048

4096
8192

16k
32k

64k
128k

256k
512k

32
64

128

0

2

4

6

8

10

12

14

5
5

4.8

4.9

4.2

4.4

6

9

12

4.8
4

4

4

4

4

4

4

of prefixes

4

3.9

3.5

3.8

3.3

3.2

3.1

3

3

3

3

3.1

3

2.9

2.9

3

2.3

2.6

2.6

2

2.5
2

addr w
idth

#
 o

f
tr

e
e
 l
e
v
e
ls

Range Tree 32−bit

Range Tree 64−bit
Range Tree 128−bit

(f) Top-down, average, Gaussian.

Figure 10: Range Trie vs. Range Tree number of tree levels: uniform and Gaussian distribution of 256-512k prefixes considering 32,

64 and 128-bits address width and 256-bits/cycle memory bandwidth.

combined to report 16-bits or 32-bits comparisons. Based on the
node configuration, each 32-bit comparator can be configured to
perform comparisons of 8, 16, or 32 bits, or combinations of them.
For example a 32-bit comparator can be configured to perform 3
comparisons of 8, 8 and 16-bits. The available memory band-
width determines the number of 32-bit comparators. Subsequently,
the comparators results are encoded in two steps, first per 32-bit
comparator and then for the entire node. In parallel, we perform
the common prefix and common suffix comparisons, the results of
which are considered after encoding, according to the Range Trie
Rules 3 and 4. All of the above determine the node branch to be
taken according to the node configuration and the incoming ad-
dress. In order to compute the memory address for the next level,
the node-branch id is added to a next-level memory pointer to the
leftmost child of the node.

In general, Range Tries are suitable for single chip hardware im-
plementations due to their low memory requirements and number
of tree levels (and pipeline stages), as shown in the next Section 5.
Although significant processing is required for a Range Trie node,
the above design manages to support variable length comparisons
in an efficient way and provides a balanced delay comparable to the
memory access delay which leads, as explained in the Section 5.3
in high operating frequencies. A more detailed description of the
Range Trie hardware design is offered in [17].

5. EVALUATION
We evaluate the proposed Range Trie data-structure and hard-

ware design and measure performance, memory requirements, power
consumption, as well as the scalability of the above with the ad-
dress width and the routing table size. We first use synthetic and

real IPv4 and IPv6 routing tables for constructing a Range Trie
and count tree-levels, which correspond to memory accesses (and
latency) per lookup, and the required search memory size. Then,
we compare the above results with previous address lookup data-
structures. Subsequently, we evaluate several Range Trie hardware
designs in 90-nm CMOS technology, varying the address width and
supported routing table sizes, and measure frequency, throughput,
area, and power consumption. In our evaluation, we consider a
memory bandwidth per tree-level of 256-bits per cycle.

5.1 Synthetic Routing Tables
We first use synthetic routing tables with a uniform and a Gaus-

sian distribution of prefixes which define address ranges. The above
routing tables are not meant to be indicative for IPv4 and IPv6 ta-
bles, however, they provide useful input to evaluate the scalability
of the proposed approach. Hence, we can generate large synthetic
tables of 128-bit addresses, while current real IPv6 routing tables
contain only 1.6k prefixes, and also tables of 64-bit addresses in
order to have a third point to the address width axis.

We construct Range Tries using both the top-down and bottom
up heuristics described in Section 3.2. Range Tries are then com-
pared to the theoretical best-case Multiway Range Tree, which in
terms of lookup latency is known to scale better than Trie-based
solutions [14]. Multiway Range Trees, as described in [19], are
constructed using B-Trees which may not maximize the number
of branches per node and therefore may require more levels. In
this comparison, we consider that Range Trees have the theoretical
minimum number of tree-levels.

We generated synthetic sets of 256-512k prefixes of 32, 64 and
128-bits address width. Range Trie performs better for address
ranges generated with Gaussian distribution (Fig. 10(d), 10(e), and

149

256 512 1024 2048 4096 8192 16k 32k 64k 128k 256k 512k
10

0

10
1

10
2

10
3

10
4

10
5

of prefixes

M
e

m
o

ry
 S

iz
e

 (
K

iB
)

Range Trie 32−bit
Range Trie 64−bit

Range Trie 128−bit
Linear Search 32−bit

Linear Search 64−bit
Linear Search 128−bit

(a) Bottom-up, uniform

256 512 1024 2048 4096 8192 16k 32k 64k 128k 256k 512k
10

−1

10
0

10
1

10
2

10
3

10
4

of prefixes

M
e
m

o
ry

 S
iz

e
 (

K
iB

)

Range Trie 32−bit
Range Trie 64−bit

Range Trie 128−bit
Linear Search 32−bit

Linear Search 64−bit
Linear Search 128−bit

(b) Bottom-up, Gaussian

256 512 1024 2048 4096 8192 16k 32k 64k 128k 256k 512k
0

2

4

6

8

10

12

14

of prefixes

#
 o

f
tr

e
e

 l
e

v
e

ls

RT−VLC 128−bit TD (w/o Addr. Alignment)

Range Trie 128−bit TD w/ Addr. Alignment
Range Trie 128−bit BU w/ Addr. Alignment

(c) Effect of Range Trie Address Alignment
vs. RT-VLC [15].

Figure 11: In (a) and (b) the memory requirements of the Range Trie vs. linear search is shown. In (c) the effect of address alignment

in the height of a Range Trie is evaluated.

10(f)) rather than the uniform (Fig. 10(a), 10(b), and 10(c)); that is
because in the Gaussian distribution prefix bounds are concentrated
in a smaller range and therefore have large common address parts.

Range Tries constructed by the top-down heuristic may have leaf
nodes in more than one tree-levels and therefore their worst case
lookup latency differs from the average one. On the contrary, the
bottom-up heuristic creates Range Tries which have all their leafs
in the same tree level, and consequently, worst and average lookup
latencies are equal. As shown in Figure 10, the top-down heuris-
tic generates Range Tries with better average lookup latency (Fig.
10(f), 10(c)) compared to the bottom-up (Fig. 10(d), 10(a)), how-
ever in the worst case (Fig. 10(e), 10(b)) they are deeper.

In general, Range Trie height and latency scales better than the
Range Tree as the number of prefixes increase, even for addresses
of 32-bits width. Scalability improves even more as we increase
the address width. Moving from 32-bit addresses to 64 and 128
bits adds one or no extra tree level for the Range Trie, as opposed
to the Range Tree which requires 3 more levels when doubling the
address width for sets of 512k bounds. In all cases, even for 128-bit
addresses, a Range Trie needs at most 7 tree levels. On the contrary,
a Range Tree for 128-bit addresses and 512k address ranges needs
at least 12 tree levels, while any Trie-based structure would need
16 or 32 tree levels considering strides of 8 and 4 bits, respectively.

The Range Trie memory requirements are shown in Figures 11(a)
and 11(b) for the bottom-up heuristic (which is the most efficient)
and for both the uniform and Gaussian distributions. In both cases,
memory size scales similarly to a linear search algorithm. For the
uniform distribution the Range Trie memory size is about 2× the
one of the linear search, while in the Gaussian distribution -where
sharing is higher- Range Tries need about 50% the memory of the
linear search. For 512K ranges the Range Trie memory size is 1.4-
2.7, 1.5-6.1, and 1.9-13.5 Mbytes for 32, 64 and 128 bits address
width, respectively.

Another interesting result is retrieved when evaluating the effect
of the Range Trie address alignment rule. In Figure 11(c) we have
arranged the mean of the Gaussian distribution of prefixes such that
the Range Trie creates nodes similar to the example of Figure 7.
These nodes may map in narrow address ranges, the addresses of
which however do not have common parts. The only way of shar-
ing address parts in these cases is to perform address alignment
as discussed in Rule 5. Figure 7 shows that for the above sets an
RT-VLC8 [15] creates a tree with excessive height; for 128-bit ad-

8An RT-VLC is a Range Tree that compares parts of addresses, but

dresses and 512k the RT-VLC has 13 tree-levels. When enabling
address alignment, the Range Trie tree-levels are reduced to 9 and
6 for the top-down and the bottom-up heuristics, respectively.

5.2 Real IPv4 & IPv6 Routing Tables
Next, we evaluate the Range Tries lookup latency and mem-

ory requirements on real IPv4 and IPv6 routing tables consider-
ing again 256-bit memory bandwidth. We further compare with
other existing address lookup algorithms. We were able to find im-
plementations of other algorithms for 32-bit IPv4 addresses, how-
ever, we were able to only estimate performance of related address
lookup data-structures for the case of IPv6.

We used real IPv4 routing tables collected in 8/8/2008 from thir-
teen locations found in [13], each one having 262,310 to 275,706
prefixes (314,756-330,445 address bounds). As depicted in Figure
12(a) the Range Trie (bottom-up heuristic) requires 5 tree levels in
the worst case and 4.1-4.5 on average (top-down heuristic) for the
above IPv4 tables. The second best is the Tree bitmap which needs
6 levels considering strides of 13-4-4-4-4-3 bits, as described in [5].
Similar lookup latency is achieved by the LC-tries [11] which for
the JPIX table needs 5 levels, for the LINX needs 7, and for the
rest needs 6 tree-levels. Multibit tries require 7 levels considering
strides of 8-4-4-4-4-4-4. The Multiway Range Tree as described
in [19] using B-trees requires 9 levels. Finally, the Patricia algo-
rithm [10] requires 23 tree levels, and a simple Trie needs 32 levels.

Figure 12(b) depicts the memory requirements of the proposed
approach and existing algorithms for the IPv4 routing tables. A
Range Trie needs about 75% the memory size of the linear search
algorithm, in total about 0.75 Mbytes. Tries using Tree bitmaps,
considering 11-23 bytes per prefix as reported in [5], need about
4-5× more memory. Simple Tries and Range Trees require about
10× more memory, while the rest of the algorithms are more than
20× worse.

Figure 12(c) illustrates the number of tree levels for the Range
Trie, the best case Range Tree, and Trie-based structures for real
IPv6 routing tables retrieved from Hurricane Electric, and BGP
(AS6447, AS2.0) [1]. These three sets have only 1631, 1597, and
1625 prefixes, which map to 2997, 2558, and 2819 unique address
bounds, respectively. Although, the small size of the tables reduces

as opposed to the Range Trie, RT-VLC does not perform address
alignment [15]. In addition, each RT-VLC node supports compar-
isons of only a single length (e.g. a RT-VLC node may compare a
single address part of either 8 or 16 or 32 bits).

150

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

exchange point

#
 o

f
tr

e
e
 l
e
v
e
ls

am
si
x

de
ci
x

jp
ix

lin
x

m
ix

m
sk

ix

ne
tn

od ny
pa

ix

pt
tm

sp rip
e

sf
in
x

vi
x

Trie

PATRICIA

Multibit Trie

LC−Trie

Tree Bitmap

Range Tree

Range Trie

Range Trie (TDAVG)

(a) Number of tree-levels in Range Trie vs. related data-structures
when storing RIPE IPv4 routing tables of 270K prefixes [13].

10
2

10
3

10
4

10
5

exchange point

m
e
m

o
ry

 r
e
q

u
ir

e
m

e
n

ts
 (

K
iB

)

am
si
x

de
ci
x

jp
ix

lin
x

m
ix

m
sk

ix

ne
tn

od ny
pa

ix

pt
tm

sp rip
e

sf
in
x

vi
x

Linear Search

Trie

PATRICIA

Multibit Trie

LC−Trie

Tree Bitmap

Range Tree

Range Trie

(b) Memory size of Range Trie vs. related data-structures for the RIPE
IPv4 routing tables of about 270K prefixes [13].

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

exchange point

#
 o

f
tr

e
e
 l

e
v
e
ls

as
64

47

H
. E

le
ct
ric

A
S
2.

0

Trie−based Schemes

Range Tree

Range Trie BU

Range Trie TDavg

(c) Number of tree-levels in Range Trie vs. related data-structures
when storing Real IPv6 routing tables of 1.6K prefixes [1].

Figure 12: Range Tries latency and memory requirements vs.

related data-structures using real IPv4 and IPv6 routing tables.

the benefits of the Range Trie, it still performs better requiring only
5 tree levels in the worst case and 4 on average as opposed to 8 for
the theoretical best-case Range Tree. We can estimate that Trie-
based schemes would need at least 16 to 32 tree levels considering
strides of 8 and 4 bits respectively. It is worth noting, that the most
efficient Trie-based structure, the Tree-bitmaps, increases its mem-

2.5 10 40 160
0

2

4

6

8

10

12

Throughput (Gbps)

P
o

w
e

r
d

is
s

ip
a

ti
o

n
 (

W
)

512K prefixes, IPv4

512K prefixes, IPv6

Figure 14: Range Trie Power Consumption for different

throughputs.

ory bandwidth requirements 5 times when increasing the strides
length from 4 to 8 bits [6]. For the above IPv6 tables, Range Tries
need 18, 21 and 64 Kbytes of memory, while a linear search needs
about 40Kbytes.

We discuss next separately a more recent related work, CAMP,
which uses multibit tries in a circular pipeline [8]. CAMP needs
5-10 levels for IPv4 and an memory size of roughly 1.9-2.6 Mbytes
for the above routing tables. That is at best equal latency with the
Range Trie and over 2× more memory; however, for IPv6 tables
CAMP is expected to scale linearly both in latency and memory.

5.3 Hardware Implementation Results
We have implemented several Range Trie design points in hard-

ware, as described in Section 4, considering 90nm UMC CMOS
technology and report post-synthesis results using Synopsys ASIC
design tools. In order to evaluate the scalability of the designs
we implemented Range Tries that fit 256-512k prefixes for address
widths of 32-, 64-, and 128-bits. As shown in Figure 13, the above
designs are evaluated in terms of area cost, power consumption, and
operating frequency, which corresponds also to maximum through-
put in processed packets per second (MPPS). Finally, we measured
the power consumption of the largest designs when varying the
throughput requirements from OC-48 to OC-3072.

Figure 13(a) depicts the Range Tries operating frequency and
throughput. All designs could operate above 500MHz and up to
almost 700 MHz (in the case of 32-bit addresses) showing that
the processing stage has similar latency with the on-chip mem-
ory blocks. The operating frequency remains almost constant for
increasing routing table sizes and scales quite well to the address
width. The corresponding throughput is also between 500-700 MPPS
which suffices for supporting OC-3072 wire speeds (160 Gbps)
considering 40 bytes packet size.

The area cost of the designs is shown in Figure 13(b) and scales
linearly to the address width and also to the routing table size. De-
signs that store 0.5 million entries occupy 0.5, 1.2 and 2.5 cm2 for
address widths of 32-, 64-, and 128-bits, respectively. The primary
reason for the linear scalability of area is the over-provisioning of
the memory requirements of each design.

Figure 13(c) depicts the power consumption of the Range Trie
designs which scales similarly to the area cost. This is to be ex-
pected since the area cost is mainly due to the on-chip memory
and memory is the main source of power consumption. Range Trie
designs of 0.5 million entries consume 5, 10.6 and 18 Watts for
address widths of 32-, 64-, and 128-bits, respectively. For some
designs unused memory blocks could be turned-off to save power.

The above power dissipation results are for designs that operate
at their maximum frequency. Figure 14 shows the power consump-
tion of the largest Range Trie designs (storing 512k prefixes) for
required throughput of OC-48, OC-192, OC-768, and OC-3072. In

151

0

100

200

300

400

500

600

700

512K
256K

128K
64K32K16K8K

of prefixes

4K2K1K512256
12

8addr width

6432

O
p

e
ra

ti
n

g
 F

re
q

u
e

n
c

y
 (

M
H

z
)

T
h

ro
u

g
h

p
u

t
(M

P
P

S
)

(a) Range Trie throughput & frequency.

0

0.5

1

1.5

2

2.5

3

512K
256K

128K
64K32K16K8K

of prefixes

4K2K1K51225632addr width

6412
8

A
re

a
 (

c
m

2
)

(b) Range Trie area.

0

2

4

6

8

10

12

14

16

18

20

512K
256K

128K
64K32K16K8K

of prefixes

4K2K1K51225632addr width

6412
8

P
o

w
e

r
d

is
s

ip
a

ti
o

n
 (

W
)

(c) Range Trie power consumption.

Figure 13: Range Trie implementation results for 90-nm UMC technology. Different design points have been implemented for

address widths 32-, 64-, and 128-bits, and routing tables of 256-512k entries. The memory bandwidth per stage is 256-bits per cycle.

this evaluation we consider packet sizes of 40- and 60-bytes for
IPv4 and IPv6 respectively. In general, the IPv6 design consumes
about 3 times more power than that of IPv4. For up to 10 Gbps
throughput the power consumption is 0.1-0.7 Watts for both IPv4
and IPv6 cases. For 40 Gbps, IPv4 design dissipates 1 Watt and
IPv6 2.8 Watts. Finally, for 160 Gbps throughput IPv4 design con-
sumes 3.9 Watts and IPv6 11.4 Watts.

Compared to CAMP, storing 600k IPv4 prefixes and implemented
in the same technology (90-nm CMOS) [8], Range Tries can sup-
port the same throughput 160 Gbps. Considering the difference in
the number of stored prefixes between the two designs, Range Tries
require half the area of CAMP (0.5 vs. 1.25 cm2) mostly due to the
reduced memory requirements. Finally, Range Tries power con-
sumption is 3.9 Watts while CAMP consumes 2.2-4 Watts mainly
due to the balanced CAMP memory requirements per pipeline stage.
A circular pipeline could be applied to Range Tries as well. Al-
ternatively, the Range Tries power consumption can be further re-
duced by splitting the large memories of the last stages to multiple
banks at the expense of increased area cost. Then, only one bank
per stage would be accessed dissipating less power.

6. CONCLUSIONS
We have introduced the Range Trie, a new powerful data struc-

ture for address lookup which performs comparisons of parts of
addresses. We described five rules employed to construct a Range
Trie and to reduce the required address bits per comparison. Fur-
thermore, we offered a Range Trie pipelined hardware design which
employs comparators each of which can perform multiple variable
length comparisons. We showed the benefits of the proposed ap-
proach in terms of performance, memory size and scalability. Con-
sidering 256-bits/cycle memory bandwidth, half a million IPv4 and
IPv6 prefixes can be stored in 5 and 7 Range Trie levels respec-
tively; that is at least 15% and 40% lower lookup latency than re-
lated works. The memory requirements are 50% to 2× that of a lin-
ear search and more than 2× better compared to related techniques.
The proposed hardware design supports 160 Gbps throughput and
consumes 3.9 and 11.4 Watts for IPv4 and IPv6 routing tables, re-
spectively. Range Tries have substantially better scalability in the
address width than any known Trie-based approach which scales
only linearly, but also better than the Range Trees which are lim-
ited by the memory bandwidth; this offers a great advantage for
Range Trie in IPv6 routing and packet classification.

7. REFERENCES
[1] http://bgp.potaroo.net/.

[2] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A tree based
router search engine architecture with single port memories. In ISCA

’05, pages 123–133, Washington, DC, USA, 2005.

[3] R. de Smet. Range trie heuristics for variable-size address region
lookup. Master’s thesis, TU Delft, Computer Engineering, May 2009.

[4] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. SIGCOMM Comput.

Commun. Rev., 27(4):3–14, 1997.

[5] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap:
hardware/software IP lookups with incremental updates. SIGCOMM

Comput. Commun. Rev., 34(2):97–122, 2004.

[6] W. N. Eatherton and Z. Dittia. Data structure using a tree bitmap and
method for rapid classification of data in a database. US Patent
6728732, July 2007.

[7] P. Gupta and N. McKeown. Algorithms for packet classification.
IEEE Network, 15(2):24–32, Mar/Apr 2001.

[8] S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP: fast and
efficient IP lookup architecture. In ANCS ’06, pages 51–60, 2006.

[9] H. Lu and S. Sahni. A B-Tree dynamic router-table design. IEEE

Trans. Comput., 54(7):813–824, 2005.

[10] D. R. Morrison. PATRICIA—practical algorithm to retrieve
information coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[11] S. Nilsson and G. Karlsson. IP-address lookup using LC-tries. IEEE

JSAC, 17(6):1083–1092, 1999.

[12] NRO: IPv6 Growth Increases 300 Percent in Two Years.
www.nro.net/documents/press_release_031108.html, Dec 2008.

[13] RIPE Network Coordination Centre. http://www.ripe.net/.

[14] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous. Survey and
taxonomy of ip address lookup algorithms. IEEE Network,
15(2):8–23, Mar/Apr 2001.

[15] I. Sourdis, R. de Smet, and G. Gaydadjiev. Range trees with variable
length comparisons. In IEEE Workshop on High Performance

Switching and Routing, Paris, France, France, 2009.

[16] V. Srinivasan and G. Varghese. Fast address lookups using controlled
prefix expansion. ACM Trans. Comput. Syst., 17(1):1–40, 1999.

[17] G. Stefanakis. Design and implementation of a range trie for address
lookup. Master’s thesis, TU Delft, Computer Engineering, July 2009.

[18] D. E. Taylor. Survey and taxonomy of packet classification
techniques. ACM Comput. Surv., 37(3):238–275, 2005.

[19] P. Warkhede, S. Suri, and G. Varghese. Multiway range trees:
scalable ip lookup with fast updates. Comput. Netw., 44(3):289–303,
2004.

152

