Integration of Power Saving Techniques in the
UNISIM Simulation Framework through the
Shadow Module design paradigm

Daniele Ludovici!, Georgios Keramidas?,

Georgi N. Gaydadjiev', and Stefanos Kaxiras?

! Delft University of Technology, Computer Engineering Lab, The Netherlands
{D.Ludovici,G.N.Gaydadjiev}@tudelft.nl
2 University of Patras, Dept. of Electrical and Computer Engineering, Greece
{keramidas,kaxiras}@ee.upatras.gr

Abstract. Performance is no longer the only metric dominating modern
system-level design. Power is emerging as major constraint to consider
during system development. Consequently, several CAD tools with power
estimation capabilities in addition to performance figures have been de-
veloped. Among these tools, UNISIM is a simulation framework that
enables the architects to rapidly design a new system at different levels
of granularity in systemC. It allows quick design space exploration and
offers cycle accurate performance evaluation. We propose the shadow
module, a new design paradigm for UNISIM that enables the frame-
work to account for energy estimation. In this respect, we discuss the
implementation of various cache power saving techniques. Experimental
results utilizing realistic benchmarks show that power and performance
figures can be easily identified with our enhanced analysis framework.

1 Introduction

Recent years have seen proliferation of cell phones and other mobile equipment,
such as palmtops and laptops, in various aspects of our daily life. A common
requisite for portable devices is a lengthy battery lifetime along with high per-
formance due to more and more sophisticated applications. Furthermore, key
requisite for a successful product is a limited design-time which consequently
turns out in a shorter time-to-market. Advanced design tools play a prime role
given the intrinsic complexity of the problem. The chance to quickly evaluate
different options, at early stages of the design, represents a key factor that avoids
incurring in erroneous design choices. Such choice would imply extra design cy-
cles with a consequent additional cost in terms of development effort, money and
design time. For this reason, considerable effort has been dedicated to develop
tools for high level system design and simulation. Moreover, along with fast sys-
tem development, these tools enable rapid power and performance estimation.
UNISIM [1] is an example of framework for developing simulators at different
levels of abstraction.

In this paper we present a new design paradigm for UNISIM, which enables
clean separation between software describing system implementation and power
estimation modeling code. Moreover, we discuss the integration of a power re-
duction technique, i.e. the MRU way predictor, showing its ease of development
through the shadow module paradigm. Furthermore, we present results of power
consumption as well as execution cycles for a normal cache utilization as well
as sequential [2], phased [3] and MRU cache [4]. The rest of the paper is orga-
nized as follows. Section 2 gives an overview regarding CAD power estimation

2 D. Ludovici et al.

tools. In Section 3 the UNISIM framework is presented and our improvements
are discussed in Section 4. Section 5 presents the implementation of a MRU way
predictor utilizing the shadow module design paradigm. and points out simula-
tion results. Finally, Section 6 summarizes conclusions.

2 Related Work

In the Computer-Aided Design landscape, numerous power estimation tools
working at different abstraction levels can be found. Transistor level simulators
like SPICE [5] and PowerMill [6] enable accurate power consumption estima-
tion requiring both a substantial development effort and rather long simulation
times though. Such limitations pressed for new simulation infrastructures such
as XTREM [7] and SimplePower [8] with higher abstraction level and shorter
time to obtain accurate results. Further examples at this level are constituted by
Wattch [9] and Hotleakage [10] that have contributed significantly to low-power
research. Recently, many efforts of design space exploration infrastructures at
system-level have been developed and an example is represented by the Sesame
project [11]. Furthermore, the Asim project [12], along with its modular capabil-
ities, constitutes a framework for creating performance models to be used in sim-
ulation infrastructures. Our work extends the UNISIM framework with power
estimation capabilities. The inherent modularity and re-usability of UNISIM,
along with the new power features enable designers to evaluate the impact that
architectural modifications entail in terms of both performance and power.

3 The UNISIM Framework

UNISIM [1] is a simulation framework for developing simulators at different level
of detail (transaction-level, cycle accurate, and more). In the development of a
new simulator for an architecture, each hardware block is modeled as a software
module. The entire system can be seen as composition of multiple hardware
blocks mapped into different UNISIM modules. Modules communicate through
interfaces. Moreover, UNISIM proposes a novel approach to facilitate code re-
usability. Commonly, most of the simulator code is devoted to model hardware
control. The control code implemented within a module describes its interactions
with other modules. Therefore, a module depends upon the one it communicates
with. As result, control code needs to be rewritten if a module is replaced, thus
decreasing re-usability. To address this issue, UNISIM defines a standard com-
munication protocol that characterizes interaction between modules and hides
this mechanism in the module communication interfaces of each module. There-
fore, if a module implementing a particular cache strategy is replaced by another,
no modifications are needed because the control part (and consequently the in-
teraction with the other module) is hidden into the standardized interfaces of
the modules itself. Another interesting aspect of the UNISIM framework is the
possibility to easily attach an external service to perform a particular estimation
(e.g., area, timing, power). The service ée.g., area estimator) is implemented as
a module and is connected using a dedicated interface to the module that is
being monitored (e.g., a cache). These modules communicate according to a
client-server paradigm, i.e., the client must provide the server with the neces-
sary information to enable the desired estimation. For instance, a cache module
supplies the area estimator module with the number of cache lines, line widths
in order to estimate area occupation for such memory structure.

4 Shadow Module: A New Design Paradigm for UNISIM

In order to build a modular and re-usable framework, different functionalities
must be kept separate. The shadow module is a new design paradigm for the
UNISIM framework. It enables the division between behavioral-code and power
simulation-code. In Fig. 1 an example is shown. The shadow module analyzes
ingress/egress traffic and collects statistics connecting to the communication

channel (1). Whenever an operation is correctly executed by the ALU, the
shadow module is notified using a dedicated interface (2). Power estimation
is performed according to a configuration selected from the XML file (3) that
determines the entry to lookup in the power characterization table (4). As previ-

.
Register
File [\® LY

XML
Configuration
File

Lookup Table

Fig. 1. The shadow module mechanism.

! Shadow
A Module

ously mentioned in Section 3, a hardware block in UNISIM is modeled through a
software module and different modules are interconnected using communication
channels. Channels are realized utilizing ports which permit data exchange ac-
cording to a protocol defined by the framework. The shadow module is connected
to input ports of the monitored module. Therefore, it can analyze ingress/egress
traffic of the module that is shading and collect statistics (e.g., switching ac-
tivity) to be utilized for power estimation. Shadow module and its counterpart
communicate directly through a dedicated interface meant for synchronization.
The necessity stems from the fact that the shadow module needs to be notified
whenever an operation has been performed. The UNISIM communication proto-
col has been designed in such a way that modules have to perform a handshake
using three wires: data, accept and enable in order to exchange data. Indeed,
data could be sent many times if the target module does not accept it. In the
example shown in Fig. 1, the ALU could be busy for various reasons (e.g., buffer
full, more cycles to complete an operation, etc.) and thus not ready to accept
data from the register file that would keep sending as long as succeed. From
the shadow module point of view, this could bring to an erroneous evaluation
because it has to collect statistics only when an operation has been really per-
formed. Another interesting characteristic of this new design paradigm is the
possibility to easily speed up design space exploration. The shadow module has
been designed in order to select different configurations for the hardware block
under investigation (e.g., for an arithmetic logic unit: implementation type, tar-
geted technology, etc.). Different configurations correspond to different lookup
table entries with their specific power characterization values. The configuration
can be selected by modifying the XML file. Once the setup has been tailored,
power consumption results for a different technology implementation of the same
hardware unit can easily be acquired. The proposed approach allows rapid eval-
uation of various design choices permitting the selection of the most appropriate
according to the power requirements to meet. Additionally, the shadow module
has been envisioned also to support power optimization techniques such as MRU
cache, sequential cache and phased cache, etc.

4 D. Ludovici et al.

5 Power Saving Techniques Integration

In this section, the implementation through the shadow module design paradigm
of typical cache level power reduction techniques (i.e., sequential cache, phased
cache, and MRU cache) will be discussed. The aforementioned methods are the
most popular for dynamic power reduction at the cache level. The underlying
idea of all these techniques is to avoid (as much as possible) the associative
search of a N-way set associative cache. To test and assess the versatility of the
shadow model paradigm, we evaluated those power reduction techniques in the
UNISIM framework without changing (or by not heavily change) the vanilla im-
plementation of the system caches. Each of the above methods is implemented as
a shadow module which monitors the ingress/egress traffic of the normal cache.
However, compared to the previous example (ALU shadow model) two basic
changes are needed. We will discuss those changes by employing the MRU way
prediction technique. This technique aims at predicting a single way where a
new reference might hit. A correct prediction results in a fast hit (the cache
behaves as a direct map cache) and yields power benefits roughly proportional
to the associativity (a single way out of N is accessed). On the other hand, a
way misprediction results in no power savings and a slow hit, because the rest
of the ways need to be searched and accessed. The MRU way predictor, that
resides inside the shadow module, is implemented as a array of logs(N) bit bi-
nary numbers. The array has exactly the same number of sets as the cache and
it is indexed by the same portion of the address that is used for cache indexing.
Every entry of this array contains only the most recently accessed way of the
corresponding cache set (this way number is used for the next prediction). Fig.
2(a) shows the general view of the way prediction scheme for a 4-way set asso-
ciative cache. Compared to the ALU shadow module, a few changes are needed

N CPU AW, hit/miss,
Way ‘ tag H index ‘ i i
Cache Cache Shadow
_ Cache Ways
0 1 2 3 Module Module
1 | Predictor
10
Hn - .
Way prediction — =
(e.g. way 2) latency
MRU Way Lower Memory Hierarchy
(a) Way prediction scheme (b) MRU Predictor implemented as

Shadow Module

Fig. 2. The way prediction scheme and its implementation with the shadow module.

in order to accurately model this cache level power reduction technique. First
of all, as showed for the ALU example, the cache shadow module is connected
to the input/output ports of the monitored cache (shown in Fig. 2(b)). There-
fore, the cache shadow model can snoop the next memory reference (from the
import port) that is forwarded to the cache. A hash of this reference is used to
index the way prediction array (this array is implemented in the cache shadow
module). The indexed array entry contains the predicted way (from now PW).
The behavioral code of the normal cache will perform the associative search in
the cache array (no changes are needed so far in the normal cache code). At
this point, the cache module and its shadow counterpart should communicate
each other utilizing the services provided by the Unisim framework. The cache

module will sent the hit/miss and the read/write information along with a way
number (from now AW) to the shadow module. The AW way can be either the
way where a hit just happened, or the way that is selected for replacement (in
case of a miss). The cache shadow model will use this information to decide the
latency of the current cache access (the information will be sent back to the
normal cache module), to update the way predictor and to calculate the dy-
namic energy consumed by the cache during the current access. All the previous
operations should happen for every new memory reference. The communication
sequence is depicted in Fig. 2(b). The next step is to calculate the energy con-
sumption of each cache access by consulting the power characterization lookup
table initialized by Cacti [13]. For all the power reduction techniques, the cache
shadow module is responsible to calculate the number of the ways (tag and data)
accessed every time a new reference is inserted into the cache and account for
the relative power consumption.

5.1 Experimental Results

In this section, we present both performance and power estimation results for a
set of 5 benchmarks of the SPEC2000 suite. The benchmarks were compiled using
the cross-compiling tool provided by the UNISIM project. For each benchmark,
we skip the first 1Byte of instructions to avoid unrepresentative startup behavior
and then we simulate 100MByte committed instructions using the reference in-
puts. The processor modeled is a PowerPC 405. The main cache module reflects
a 64K, 8 way, write back, blocking, dual port L1 cache memory. In our imple-
mentation, we assume that the way predictor access proceeds in parallel with the
cache decoder (the first pipeline stage of the cache), thus we do not account for
the extra delay introduced by accessing the way predictor. The assumption has
been verified with Cacti which shows that accessing a small predictor structure
of few kilobits (way predictor array) is comparable in terms of latency to cache
decode. Additionally, using Cacti we verify that the energy for accessing the way
predictor is less than 0.5% of a full L1 access, consequently this extra energy is
not considered. Furthermore, we assume a 2 cycles pipelined L1 cache (1 cycle
for the decoder and 1 cycle for accessing the memory array, the sens. amps., the
output driver, etc.) and we account for an extra cycle in order to quantify the
negative impact of re-accessing the cache. Fig. 3(a) shows the results in terms
of execution cycles, while Fig. 3(b) graph presents the power consumed by the
L1 cache measured in mWatts.

[@ Normal [Phased [J Sequential [] MRU @ Normal W Phased [Sequential [] MRU

1 140

1 120 m

100 Tt

1

800000000 -t

600000000 404 _
400000000 20 T -
0 T T

] T T
gzip parser mef crafty bzip2 gzip parser mef crafty bzip2

[mw]
]

[cycles]

(a) Execution cycle for several bench- (b) Total cache power consumption with
marks deploying different power saving different power saving techniques.
strategies.

Fig. 3.

6 D. Ludovici et al.

The obtained results provide evidence of the correctness of the implemented
methods with respect to prior work and prove that the proposed shadow model
approach can be easily utilized to better understand which power saving tech-
nique best meets the energy budget of the underdevelopment architecture.

6 Conclusions

In this paper we presented an augmented version of the UNISIM framework
from the power perspective. We illustrated a new design paradigm describing
the shadow module mechanism. Moreover, we showed an application describ-
ing the ease of implementation of classical power saving techniques leveraging
the presented approach. Experimental results point out the effectiveness of the
shadow module paradigm: useful insights concerning the power consumption
along with performance figures can be easily gained with an affordable coding
effort.

References

1. August, D., Chang, J., Girbal, S., Gracia-Perez, D., Mouchard, G., Penry, D.,
Temam, O., Vachharajani, N.: UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative Development. IEEE
Computer Architecture Letters (CAL 6% 1\}September 2007)

2. Kessler, R.E., Jooss, R., Lebeck A, D.: Inexpensive implementations of
set- assocratlwty SIGARCH Comput Archit. News 17(32((1989) 131-139

3. Hasegawa, A., Kawasaki, I., Yamada, K., Yoshioka, awasaki, S., Biswas, P.:
Sh3: High code density, Tow power. IEEE Micro 15(6) December 1995)

4. Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-associative cache for
high performance and low energy Consumptlon In: Proceedings of the International
Symposium on Low Power Electronics and Design. (1999) 273-275

5. Quarles, T., Pederson, D., Newton, R., Sangiovanni-Vincentelli, A., Wayne, C.:
SPICE, Simulation Program with Integrated Circuit Emphasis http //bwrc. eecs.
berkele edu/Classes/IcBook/SPICE/.

6. Huang, (% X., Zhang, B., Deng, A.C., Swirski, B.: The Design and Implementation
of PowerMill. In: Proceedings of the 1995 International Symposium on Low Power
Design (ISLPED ’95), Dana Point, California, USA (1995) 105-110

7. Contreras, G., Martonom M., Peng, J., Ju, R., Lueh, G.Y.: XTREM: A Power
Simulator for the Intel XScale Core. In: Proceedings of the 2004 ACM SIG-
PLAN/SIGBED conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’04), Washington, DC, USA (2004) 115-125

8. Ye, W, ijaykrishnan N, Kandemlr M Irwin, M.J.: The Design and Use of
SimplePower: A Cycle—Accurate Energy Estimation Tool. In: Proceedings of the
37th Design Automation Conference (DAC-2000), Los Angeles, California, USA
2000) 340-345

9. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. In: Proceedings of the 27th International
Symposium on Computer Architecture (ISCA 2000), Vancouver, Canada (2000)
83-94

10. Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K., Stan, M.: Hotleakage:
A Temperature-aware Model of Subthreshold and Gate Leakage for Architects.
Technical Report CS-2003-05, University of Virginia, Dept. of Computer Science
March 2003)

11. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-
level modeling and simulation of embedded systems architectures. EURASIP J.
Embedded Syst 2007(1) (2007)

12. Emer, J., Ahuja, P., Borch, E., Klauser, A., Luk, C.K., Manne, S., Mukherjee, S.S.,
Patil, H Wallace, S Bmkert7 N., Espasa, R., Juan, T.: Asim: A performance
model framework. Computer 35(2) (2002) 68-76

13. Reinman, G., Jouppi, N.P.: Cacti 2.0: An Integrated Cache Timing and Power
Model. Technical report, HP Labs (2007)

