Butterfly vs. Unidirectional Fat-Trees for Networks-on-Chip:
not a Mere Permutation of Outputs®

D. Ludovici®, F. Gilabert!, C. Gémez',
M.E. Gémez', P. Lépez!, G.N. Gaydadjiev¥, and J. Duato'

T Dept. of Computer Engineering, Universidad Politecnica de Valencia, Spain.
§ Computer Engineering Lab., Delft University of Technology, The Netherlands.

Abstract

Bidirectional topologies are usually preferred over
unidirectional ones. However, recent works have
demonstrated that RUFT, a traffic-balancing rout-
ing algorithm on a Unidirectional Multistage Network
(UMIN), can perform as well as a Bidirectional Mul-
tistage Network, but significantly reducing both imple-
mentation and operating costs. RUFT is a simplifica-
tion of the k-ary n-tree topology, the most widely-used
implementation of the Fat-Tree topology. RUFT re-
sembles the classical unidirectional Butterfly topology,
but with a different connection pattern between switches
from the last stage and cores. This work provides a
comparison in terms of performance and implementa-
tion costs between both topologies, RUFT and unidi-
rectional Butterfly for on-chip interconnects. Our high
level and post-layout analysis shows that RUFT is a
much more convenient alternative than traditional But-
terfly when laying out on silicon.

1 Introduction

The common trend in interconnect architecture re-
search is to improve network performance at the cost of
increasing physical implementation complexity. For in-
stance in [1] the mesh topology is modified to increase
its performance by halving the number of switches, but
doubling the switch radix. Hence, switch complexity
is doubled. Another example is shown in [11], where
two H-Trees are combined to build a torus-like topol-
ogy with a reduced network diameter, thus decreasing
packet latency. For this, network interfaces are modi-

*This work was supported by the Spanish MEC under Grant
TIN2006-15516-C04-01 and by CONSOLIDER-INGENIO2010
under Grant CSD2006-00046.

fied to allow packet switching, also increasing the num-
ber of network links and switches.

Nowadays, there is an emerging relevance of power
consumption [12] and implementation costs [3]. As in-
tegration scale grows up, leakage power [8] and heat
dissipation are becoming two mayor issues to consider
when designing a new system. This has forced re-
searchers to consider new design paradigms that prior-
itize costs and power consumption over performance.
Power related problems become even more important
in very restricted domains such as Networks-on-Chip
(NoCs). NoCs are a new paradigm for scalable commu-
nication among the several cores located into a single
chip [2]. The basic idea is borrowed from the off-chip
network domain, and consists of a point-to-point switch
based network with packet-switched communication
that forwards packets to destinations through a cer-
tain number of intermediate hops. As aforementioned,
NoCs have restrictions in terms of power consumption
and cost (mainly silicon area and design cost), since
total system cost and power consumption should not
be seriously affected by the employed NoC.

Following this trend, a new topology, Reduced Uni-
directional Fat-Tree (RUFT), was proposed in [7]. This
topology is the result of combining a simplified Fat-
Tree [9] with a load-balanced routing algorithm, halv-
ing the amount of hardware required while achieving a
similar performance. These papers revisited unidirec-
tional topologies, showing that they are competitive
enough to be used in future high-performance systems.
Although initially proposed for off-chip designs, RUFT
was considered in [10] as a suitable NoC topology for
Multi-Processor Systems-on-Chip designs (MPSoCs).
This work concluded that RUFT is a power-wise topol-
ogy whose performance scales very well as the number
of cores in the system grows. RUFT resembles the
classical unidirectional Butterfly topology [5], as the

(a) A RUFT derived from a 2-ary 3-tree.

Figure 1. Topologies with switches of arity 2 and 3 stages. Sw

only difference is the connection pattern between the
switches from the last stage and the cores. This work
points out that although apparently similar, RUFT and
unidirectional Butterfly (Butterfly for now on) cannot
be considered such when the physical implementation
perspective is taken.

The paper is organized as follows. First, Section 2
presents a brief description of both topologies. In Sec-
tion 3 a high level comparison between the investigated
interconnection networks is discussed. Section 4 points
out physical design issues and a post-layout analysis is
provided in Section 5. Finally, conclusions are drawn
in Section 6.

2 Topologies Analysis

This section provides a brief description of the in-
vestigated topologies: RUFT and Butterfly. Reduced
Unidirectional Fat-Tree (RUFT) is a topology de-
rived from the k-ary n-tree [13], which is the most
widely-used implementation of Fat—Tree. Fat—trees
are a particular type of a set of topologies known as
multistage interconnection networks (MIN). In MINs,
switches are deployed in a set of stages. Each switch
can only be connected to switches belonging to their
previous or to their next stage. In bidirectional
MINS, cores are attached to the switches of the lowest
stage. k-ary n-trees are implemented by using identi-
cal switches of a fixed radix. The number of stages is
n and k is the arity or the number of links of a switch
that connect to the previous or to the next stage (i.e.,
the switch radix is 2k). Notice that k-ary n-trees are
bidirectional MINs. A k-ary n-tree connects N = k"
cores using nk™ ! switches and 2nk™ — k unidirectional

(b) A 2-ary 3-fly.

itch ports show their reachable cores.

links.

RUFT is a topology obtained by simplifying k-ary
n-trees. This simplification is granted by the load bal-
ancing provided by the deterministic routing algorithm
for k-ary n-trees proposed in [6]. In this way, k-ary n-
trees become k-ary n-RUFTs, an unidirectional MIN
with the same connection pattern between switches as
a k-ary n-tree. As switches become unidirectional, the
amount of resources required for their implementation
is halved, i.e., switch radix is k. The main difference
is that switches belonging to the last stage are directly
connected to the cores, according to the paths provided
by the routing algorithm in which each switch of the
last stage only receives packets destined to the k desti-
nations that can be reached through its output ports.
For example, Figure 1(a) shows a RUFT with switches
of arity 2 and 3 stages. As it can be seen, switches of
the last stage only receive packets destined to two desti-
nations. An unidirectional reduced k-ary n-tree is able
to connect N = k™ processing nodes using nk™ ! uni-
directional switches and nk™ unidirectional links. The
main drawback of UMINS is the length of the links that
connect the switches from the last stages to the cores.
Those links may become too long, but as demonstrated
in [10], they do not compromise RUFT feasibility. The
resulting topology resembles an unidirectional butter-
fly with a permutation on the reachable destinations
from the last stage.

Butterfly is another type of unidirectional multi-
stage interconnection network. A k-ary n-fly is im-
plemented by using unidirectional switches of radix k
organized in n stages, as in RUFT. A k-ary n-fly is also
able to connect N = k™ processing nodes using nk"™ !
switches and nk™ — k unidirectional links. An example

Topology

\ Max. Time \ Min. Time | Rel. Diff. ‘

2-ary 4RUFT | 4617231 4567331 1.1%
2-ary 4-fly 4639669 4585143 1.2%
d-ary 22RUFT | 4308401 4266017 1.0%
d-ary 2-fly 4345453 4294243 1.2%

Table 1. Maximum and minimum execution
times in cycles for all processor-memory
placements in several 16-core topologies.

of this topology is shown in Figure 1(b). The main dif-
ference between RUFT and Butterfly is the connection
pattern between last stage switches and cores. Figure 1
shows in bold black the destinations reachable through
the output ports of the switches from the last stage
in both topologies. As it can be observed, this dif-
ference forces routes through Butterfly to completely
differ from the ones provided by RUFT. As in the case
of RUFT, Butterfly topologies also present longer links
between switches of the last stage and cores. In Sec-
tion 4 we will analyze the effect of those links over the
feasibility of the topology.

3 Performance Evaluation

In an MPSoC there are two types of cores: pro-
cessors and memories. We define core placement as
the policy used to map processors and memories on a
given topology. The core placement directly influences
the communication pattern of a topology and its over-
all performance. In this section we analyze the impact
of the core placement on the overall performance of
the two topologies under test. We will show that dif-
ferences between both topologies do not depend on the
core placement policy employed. In this way, we assure
that, from a performance point of view, the choice of
the best topology is not affected by the core placement.

To assess the real impact of the core placement over
performance, we performed a parametric in-depth ex-
ploration of all the possible processor-memory place-
ments in a 16-core NoC. In this exploration, we used
the cycle-accurate transaction-level simulator proposed
in [10], based on the Xpipes-Lite NoC architecture [14].
For each of the possible placements, 250000 transac-
tions were executed according to an uniform distri-
bution of transaction destinations. Furthermore, the
network was working at the same injection rate, near
the saturation point. Two different configurations of
16-core topologies were considered. The first configu-
ration is composed by 32 switches of arity 2 organized
in 4 stages, that is 2-ary 4-RUFT or 2-ary 4-fly. The

Topology \ Time ‘
2-ary 6-RUFT | 1188676

2-ary 6-fly 1215068
4-ary 3-RUFT | 1096946

4-ary 3-fly 1103594

Table 2. Execution time in cycles for 64 cores
topologies.

second one is composed by 16 switches of arity 4 orga-
nized in 2 stages, that is 4-ary 2-RUFT or 4-ary 2-fly.
Table 1 shows the results of the topology exploration,
measuring the execution time of the test in cycles. The
2nd and 3rd columns represent the maximum and min-
imum achieved execution time of all configurations, re-
spectively. The 4th column contains the relative differ-
ence between both times with respect to the minimum.
As can be observed, the impact of core placement over
performance is negligible for all configurations, since
the maximum relative difference is 1.2%. Regarding
the comparison between both topologies, there is not
a great difference in performance. When considering
only the best case (the minimum execution time), the
Butterfly has a 0.6% and a 0.4% higher execution time
than RUFT for the 2-ary and the 4-ary configurations,
respectively. This is a negligible difference.

Finally, in order to validate the previous results, we
extend this analysis to a larger system. We consider
two different 64-core configurations. The first config-
uration is composed by 192 switches of arity 2 orga-
nized in 6 stages, that is 2-ary 6-RUFT or 2-ary 6-fly.
The second one is composed by 48 switches of arity 4
organized in 3 stages, that is 4-ary 3-RUFT or 4-ary
3-fly. Table 2 shows the total execution time in cycles
for each 64-core configuration. Since the exploration
space of possible core mappings is overly large, we have
only considered an intuitive core placement policy: in-
terleaving processors and memories. The simulations
were executed under the same conditions as the previ-
ous experiment. The Butterfly has a 2.2% and a 0.6%
higher execution time than RUFT for the 2-ary and the
4-ary configuration respectively. As it can be seen, the
gap in performance between both topologies is again
negligible. This result is certainly determined by the
homogeneous and well distributed traffic generated by
each processor cores. Implications of more irregular
traffic patterns on topology performance and differen-
tiation is work underway. We now delve into physical
design issues, aiming at assessing whether the topolo-
gies under test are equivalent also when it comes to
silicon implementation.

Max Post-. Post- Area Tot. Wire
Topology Arity | Synthesis. | place&route | 16 cores Length
2-ary 4-fly 2x2 0.6 ns 4.0 ns 603k pm?2 | 9605 mm
2-ary 4-RUFT 2x2 0.6 ns 1.15 ns 795k pm?2 8370 mm

Table 3. Physical synthesis reports

Sl

(a) (b)

Figure 2. Floorplan of topologies under test:
a) 2-ary 4-fly b)2-ary 4-RUFT. Only the main
wiring patterns are reported.

4 Physical Design

Synthesis time constraints forced us to limit the
physical design to 16 core systems. We implemented
the 2-ary 4-RUFT and 2-ary 4-fly leveraging network
building blocks of the Xpipes-Lite NoC architecture.
Initial topology specification is in RTL-equivalent Sys-
temC. The backend synthesis flow leverages standard
industrial synthesis and physical design tools. Our
work targets a 65nm low-power STMicroelectronics
SVT technology library [4]. For a comprehensive dis-
cussion about the backend flow, see [10]. Next, the
criteria utilized to floorplan the design of the topolo-
gies under test is discussed.

The 2-ary 4-RUFT (Fig.2(b)) is an unconventional
fat-tree where links are unidirectional. A switch be-
longing to the last stage of this topology is directly
connected to the network interface of a core. This link
is viewed in [7] as the intuitive weakpoint of the layout
of this interconnection network. In order to overcome
this problem, our floorplanning directive is to minimize
the wirelength of such a critical set of links. In this re-
spect, cores are clustered in groups of four and switches
from the last stage are positioned in the middle of each
cluster. Obviously, also the first stage has to be close to
the appropriate cores. Therefore, it is placed above and
below the middle of the chip between two neighboring
clusters, so to equalize the link length and keep the de-
lay as homogeneous as possible on the wires of the first
stage. As the third stage has to be connected to the

last one and to the second one, two groups of switches
belonging to the third stage are placed at the left and
at the right of the chip center. This also achieves an
easy connection with the second stage, whose switches
are positioned in the center of the chip. An interest-
ing property of the presented floorplan is that the link
length is kept almost constant on a stage-by-stage ba-
sis.

The butterfly fat-tree (2-ary 4-fly) is a popular inter-
connection network that has been widely investigated
in literature. In spite of its good theoretical properties,
the butterfly is a challenging topology when laid out on
a silicon surface. In this respect, the best known ap-
proach [15] utilizes a floorplan strategy where switches
of different stages (but belonging to the same row)
are clustered together and placed nearby their com-
putational unit. This intuitive approach exhibits sen-
sible scalability issues due to the fact that floorplan
is realized in a vertical fashion with consequent link
length penalty. In order to overcome this limitation,
we adopted a new floorplan approach in line with the
one presented for the 2-ary 4-RUFT topology. Cores
are clustered in groups of 4 units. Each cluster gathers
consecutive computational units (i.e., 0...3) and the
correspondent switches from the first and last stage are
placed in the middle of the cluster. With our approach,
link length has been minimized as much as possible
compared to traditional butterfly floorplans. Nonethe-
less, long wires connecting switches from 3rd and 4th
stage represent an intrinsic limitation that implies a
considerable performance drop after place&route (Ta-
ble 3, 4th column).

5 Post-Layout Analysis

In all topologies, the network building blocks have
been synthesized for maximum performance. The post-
synthesis critical paths (ignoring place&route effects)
are reported in Table 3, 3rd column. We found the crit-
ical path to be always in the switch. Consequently, we
iterated place&route starting from the post-synthesis
target frequencies. Timing closure was achieved at the
post-layout speed reported in the 4th column of Ta-
ble 3. Performance degradation turns out to be very
significant for the 2-ary 4-fly, thus pointing out the

critical role of interconnects. In fact, for both topolo-
gies, the critical path goes through the switch-to-switch
links. While data/flit wires are sampled at the input
and output port of the switch, flow control wires go
through the FSM of the flow control stages at switch
I/0. As a consequence, these control wires go through
logic gates whose delay adds up to the link delay, deter-
mining the critical path. The impact of the link delay
is evident, in that the critical delays of the topologies
are differentiated by the longest link in the topology
itself. In general, we assessed a higher wiring overhead
(last column in Table 3) for the 2-ary 4-fly due to its
longer links that connect switches from the 3rd and 4th
stages.

From the area viewpoint, both topologies present
the same I/O buffering requirements. Therefore, a
similar area footprint was expected. In this respect,
we found an interesting consequence of the much
higher post-layout frequency of 2-ary 4-RUFT: in or-
der to meet its stringent timing requirements, the
place&route tool utilizes larger buffers to speed up
signals thus increasing significantly the area overhead.
Obviously, should we target the same affordable speed
for both topologies, this effect would vanish, thus re-
sulting in more or less the same area for the two solu-
tions.

6 Conclusions

In this paper, we proposed RUFT as a feasible
and more powerful alternative to traditional butterfly
topologies for NoCs. We analyzed the impact of all
possible core-placement alternatives detecting a negli-
gible worst-case relative difference of 1.2% in terms of
performance. The same conclusions for systems with
a reduced number of stages (4-ary 2-RUFT and 4-ary
2-fly) have been drawn. As the number of stages in-
creases, RUFT becomes a slightly more attractive so-
lution with a 2.2% performance improvement with re-
spect to a 6-stage butterfly, although the difference is
still marginal. We then performed an in-depth physical
level analysis for 16 cores systems showing that RUFT
best suits 2D silicon layout compared to butterfly. This
enables considerable higher post-layout frequencies due
to shorter and better equalized link lengths. There-
fore, whenever the execution cycle performance of both
topologies can be retained the same (as in the traf-
fic scenario analysed in this paper), RUFT should be
the preferred solution because of its structure better
matches layout constraints. Future work includes the
exploration of a broader range of traffic patterns to as-
sess the behaviour of RUFT and butterfly topologies
and the analysis of their floorplan scalability.

References

(1]

2]

3]

4]

(5]

(7l

(8]

[10]

(11]

(12]

[13]

(14]

[15]

J. Balfour and W. J. Dally, “Design Tradeoffs for Tiled
CMP On-chip Networks”, Proc. Annual Int. Conf. on
Supercomputing, 2006.

L. Benini, “Networks on chip: a new paradigm for
systems on chip design”, In Proc. of Conf. on Design,
Automation and Test in Europe, 2002.

F.Boekhorst, “Ambient Intelligence, the Next
Paradigm for Consumer Electronics: How will it
Affect Silicon?”, ISSCC 2002 , February 2002.

“Circuits Multi-Projects, Multi-Project Circuits”,

http://cmp.imag.fr

J. Duato, et al., Interconnection Networks. An Engi-
neering Approach, Morgan Kaufmann, 2004.

C. Gémez, et al.,, “Deterministic versus Adaptive
Routing in Fat-Trees”, in Proc. Workshop on Com-
munication Architecture on Clusters (CAC’07) , as a
part of IPDPS’07, March, 2007.

C. Gémez, et al., “Beyond Fat—tree: Unidirectional
Load-Balanced Multistage Interconnection Network”,
IEEE Computer Architecture Letters, 2008.

N. S. Kim, et al., “Leakage current: Moore’s law meets
static power”, Computer, 2003.

C. Leiserson, “Fat-trees: Universal Networks for Hard-
ware Efficient Supercomputing”. IEEE Tran. on Com-
puter, 1985.

D. Ludovici, et al., “Assessing Fat-Tree Topologies
for Regular Network-on-Chip Design under Nanoscale
Technology Constraints”, to appear in Proc. of Conf.
on Design, Automation and Test in Europe, 2009.

H. Matsutani, et al., “Performance, Cost, and Energy
Evaluation of Fat H-Tree: A Cost-Efficient Tree-Based
On-Chip Network”, Proc. of IEEE International Par-
allel and Distributed Processing Symposium, 2007.

Trevor Mudge, “Power: A First-Class Architectural
Design Constraint” , IEEE Computer, 2001.

F. Petrini and M. Vanneschi, “k-ary n-tress: High
Performance Networks for Massively Parallel Archi-
tecture”, IEEE Micro, 1995.

S.Stergiou et al., Xpipes Lite: a Synthesis Oriented
Design Library for Networks on Chips, DAC, 2005.

T. T. Ye and G. De Micheli, “Physical planning for
on-chip multiprocessor networks and switch fabrics”,
In Proceedings of the Application-Specific Systems, Ar-
chitectures and Processors (ASAP), 2003

